Corso di Laurea in Ingegneria delle Telecomunicazioni Sistemi di Elaborazione-25 giugno 2004

Esercizio 1. Si progetti il grafo degli stati di una macchina sequenziale minima che accetti 2 possibili stati d'ingresso, A e B, e tale che l'uscita della macchina valga 1 ogni volta che si è presentata in ingresso una delle possibili stringhe palindrome di 3 simboli.			
Esercizio 2. Un elaboratore nel quale e' realizzato il meccanismo della paginazione dispone di 4 pagine di memoria virtuale, ma solo 2 frame di memoria fisica. Partendo da uno stato iniziale in cui la memoria fisica e' vuota, un programma accede alla segunte sequenza di pagine virtuali:			
acesso N.: 0 1 2 3 4 5 6 7 8 pagina: 1 3 2 4 2 1 4 3 1 a) Supponendo che l'algoritmo di rimpiazzamento sia LRU, dire quali quali accessi causeranno un page fault.			
a) supponendo ene rargoriano di rimpiazzamento sia ENO, une quan quan accessi causcranno dii page fautt.			

b) E' possibile trovare un algoritmo di rimpiazzamento che, per questa sequenza, causi meno di 6 page fault? Giustificare la risposta.

Esercizio 3. Si definisca il microprogramma di un sistema Mo-Me in grado di eseguire le seguenti operazioni : 0: A*M*N → A	
1: B div (M-N) \rightarrow B . Si considerino M, N>0 dati esterni in complemento a 2. La parte operativa contiene al più un FA e un HA co reti aritmetiche.	ome
	İ

Esercizio 4.

Si supponga che, a partire dall'indirizzo 100, sia memorizzata, per righe, una matrice di 10x10 elementi da un byte, e, a partire dall'indirizzo 200, sia memorizzato un vettore di 10 elementi da un byte. Dire quale sarà il contenuto del registro AL quando l'esecuzione raggiunge l'istruzione con etichetta fine.

	MOVL \$100, EBX MOVL \$0, ECX	conta:	PUSHL ECX MOVB \$0, AL
ripe	tripeti: CALL conta		MOVL \$0, ECX
_	MOVB AL, 200 (ECX)	ciclo:	CMPB \$0, (EBX, ECX)
	ADDL \$10, EBX		JE salta
	INCL ECX		INCB AL
	CMPL \$10, ECX	salta:	INCL ECX
	JL ripeti		CMPL \$10, ECX
	CALL conta		JL ciclo
	fine:		POPL ECX
		RET	

Esercizio 5. Si progetti la Parte Operativa del sistema dell'esercizio 3.					