
Using PythonUsing Python

Alessio Bechini
Dip. Ing. Informazione

Università di Pisa

2

AgendaAgenda

• Compilation vs interpretation and scripting languages
• Python architecture
• Data structures and control flow
• Functional features
• Basic input/output
• Object Oriented Programming
• Advanced features
• Scientific scripting: NumPy
• Extending and Embedding the Python Interpreter

3

What Python is said to be easy to…What Python is said to be easy to…

• Writing down “readable” code
– Natural syntax
– “Blocks by Indentation” forces proper code structuring &

readability

• Code reuse
– Straightforward, flexible way to use modules (libraries)
– Massive amount of libraries freely available

• Object-oriented programming
– OO structuring: effective in tackling complexity for large programs

• High performance (close ties to C…)
– NumPy (numerical library) allows fast matrix algebra
– Can dump time-intensive modules in C easily

4

Compilation and Interpretation Compilation and Interpretation

• Actual execution of programs
written in high-level languages is usually obtained
by two different alternative approaches:

• Compilation
– the executable code for the target CPU is obtained

by processing self-contained pieces of source code.
This operation is carried out by a compiler.

• Interpretation
– an interpreter program takes care of reading

the high-level statements (from a source file or a console)
and executing them one at a time

5

Compilation and Interpretation StepsCompilation and Interpretation Steps

Lexical Analyzer

Syntactical Analyzer

Semantic Analyzer

Code Generator

SYMBOL

TABLE

Source

Code

(as a whole)

Machine

Code

Lexical Analyzer

Syntactical Analyzer

Semantic Analyzer

Executor

SYMBOL

TABLE(s)
(Used in exe)

Source

Code

(stm by stm)

OutputOutput

6

Use of Intermediate LanguagesUse of Intermediate Languages

Lexical Analyzer

Syntactical Analyzer

Semantic Analyzer

Bytecode Generator

SYMBOL

TABLE

Source

Code

Intermediate

Code

Lexical Analyzer

Syntactical Analyzer

Semantic Analyzer

Output

SYMBOL

TABLE(s)
(Used in exe)

Executor

7

Scripting LanguagesScripting Languages

• Python is a scripting language: What does this mean?
– Programming languages are aimed at developing programs
– Scripting languages are aimed at controlling applications

• A scripting language for an operating system
is called a shell script.

• Scripts are usually interpreted from the source code
or "compiled" to intermediate representation (bytecode),
which is interpreted.

• Some examples: shells (e.g. bash), Unix AWK,
JavaScript/ActionScript (Flash), VBScript, Perl, Tcl,
Python, Ruby, Boo, Groovy, MATLAB, MEL, PHP, …

8

Python’s Features (I)Python’s Features (I)

• Simple
– Python is a minimalistic language.

It allows you to concentrate on the solution of the problem.

• Easy to Learn
– Python is easy to get started with (very simple syntax).

• Free and Open Source
– Copies can be freely distributed, it can be changed at will

and used in new free programs, etc.

• High-level
– Programs are transparent to low-level details

(e.g. memory management, etc.).

• Portable
– Programs can work on several platforms with no changes at all

(if you avoid any system-dependent features).

9

Python’s Features (II)Python’s Features (II)

• Multi-paradigm
– Programming paradigm: a particular approach to master program

complexity by decomposing problems into simpler ones.

• Object Oriented
– OO deals with proper combination of data and functionality.

• Extensible
– If performance is required, a critical piece of code can be

developed in C/C++ and then used from a Python program.

• Embeddable
– Python can be embedded in C/C++ programs to provide them

with ‘scripting’ capabilities.

• Extensive Libraries
– The Python Standard Library is really huge and available on

every Python installation:
This is called the 'Batteries Included' philosophy of Python.

10

Interpretation in PythonInterpretation in Python

• Interpreter:
a computer program that executes instructions
written in a given programming (scripting) language

• Python interpreter translates source code
into an efficient intermediate representation (bytecode)
and immediately executes it.

• The main benefits of interpretation are
– flexibility
– ease of use
– development rapidity

• The main disadvantages are related
to limited execution performance.

11

Interacting with the InterpreterInteracting with the Interpreter

• Start Python by typing "python"
– The actual installation directory must be in PATH …

• Other possibility: IDLE (GUI)
• ^D (control-D) exits

% python

>>> ^D

%

• Comments start with ‘#’
>>> 2+3 #Comment on the same line as text

5

>>> 7/3 #Numbers are integers by default, so…

2

>>> x=y=z=0 #Multiple assigns at once

>>> z

0

12

Running Python ProgramsRunning Python Programs

• A program is contained in a text file with extension .py
• To invoke the interpreter over the program:

% python myprogram.py

• How to create executable scripts (under Unix)
– Make file executable:

% chmod +x myprogram.py

– The first line is a kind of special comment, as it makes the OS
know how to execute it:

#!/usr/bin/python

– Then you can just type the script name to execute
% myprogram.py

– or
% myprogram.py > myoutput.txt

13

Editors and PythonEditors and Python

• A number of diverse text editors
supports development of Python scripts,
by means of syntax highlighting, etc.

• There is also a Python development environment
in IDLE.

14

Getting StartedGetting Started

• Overview of language architecture; then…
• What we need to master in the first place:

– Data types (very basic ones)
– Literals
– Variables
– Control flow/conditionals
– Functions
– Modules

Python Structural OverviewPython Structural Overview

16

Handled EntitiesHandled Entities

In Python, every handled entity is either
an object or a name or a namespace.

• Objects are management units
aimed at storing data or functionality.
All data is kept in objects,
and modules, functions, classes,
methods are objects as well.

• Names are used to refer objects.
Multiple names can refer the same object.
A non-referred object cannot be used
and will be automatically garbage-collected.

• Namespaces are aimed at collecting names.

name1
name2
name3

•
•
•

Namespace objectX

objectY

17

Python ObjectsPython Objects

• Every object has an identity, a type and a value
• Identity: defined at creation (obj’s address in memory)

– Identity of object x can be known by invoking id(x)

– Identity of two objects can be compared by ‘is ’

• Type: defines possible values/operations for the obj
• Value: - trivial –

– it can be MUTABLE or IMMUTABLE, depending on the fact
it can be changed or not, according to the type

– Changes to mutable objects can be done in place,
i.e. without altering its identity (address)

18

More on Python ObjectsMore on Python Objects

>>> x = 1

>>> y = ['hello']

>>> x is y

False

>>> z = x

>>> x is z

True

>>> type(x)

<type 'int'>

>>> type(y)

<type 'list'>

>>> id(x)

9852936

• Objects not referenced anymore
are garbage collected by the system

19

Attributes and Local VariablesAttributes and Local Variables

• An object can be supplied
other directly related objects (attributes).
Every object has an associated namespace
for its attributes.

• Attributes can be accessed
using the “dot notation”.
E.g.: foo.bar refers to
the attribute named “bar”
of the object named “foo”.

• A function attribute of a class
(or a class instance)
is ordinarily called “method ”

• In addition, functions and methods provide a temporary namespace
during execution to storage local variables.

foo
bar

bar2

foo

foo
…
…

bar

bar2bar
bar2

20

What Namespace?What Namespace?

Rules that determine in which namespace a given name resides:

• Definitions within functions and methods are made in the temporary
execution namespace.
Code in a function can also use (but not assign to) names in the
surrounding module.

• Definitions in modules end up in the attribute namespace of the
module object.

• Definitions in a class are in the attribute namespace of the class.
• Finally, in a class instance, when an attribute is requested that is not

in the object namespace, it is searched for in the class namespace.
This is how methods are normally found.

21

Callable ObjectsCallable Objects

• Callable types are those whose instances support the
function-call operation, denoted by the use of (), possibly
with arguments.

• Among callables:
– Functions
– Built-in types like list , tuple , int (the call create an instance)

>>> a=list('ciao')

>>> a

['c', 'i', 'a', 'o']

– Class objects (the call create an instance)
– Methods (functions bound to class attributes)

Data Types:
- Basic
- Composite

Data Types:
- Basic
- Composite

23

Python's Basic Data TypesPython's Basic Data Types

• Integers - equivalent to C longs
• Floating-Point numbers - equivalent to C doubles
• Long integers
• Complex Numbers
• Strings
• Some others, such as type and function

• Special value: None
– just to refer to nothing (resembles ‘void’ in C)

24

Python's Composite Data TypesPython's Composite Data Types

• aka “Container data structures”
• In other languages (e.g. Java, C++) Containers are “add-

on” features, not part of the core language
• Python holds them as fundamental data types!

• Sequences:
– Lists
– Tuples
– Dictionaries,

aka Dicts, Hash Tables, Maps, or Associative Arrays
– the built-in function len(<seq>) returns the length of a sequence

• Arrays are not a built-in feature (!)

25

Entering Values (Numbers)Entering Values (Numbers)

• Literals for integers and long integers
n = 25

n = 034 #octal, prepending 0 (zero)

n = 0x4f #hex, prepending 0x

longn = 135454L

• Computations with short integers that overflow
are automatically turned into long integers

• Floating point literals
f1 = 4.0

f2 = 4.2E-12

• Complex literals
cn = 10+4j

imunit = 1j

26

Entering Values (Strings)Entering Values (Strings)

• Strings: single or triple quoted
• Only triple quoted strings can span multiple lines
• Single quoting can be done using either ‘ or “, but:

s = ‘spam‘ #ok

s = “spam“ #ok

s = ‘spam“ #not correct

s = “spam‘‘ #correct as well!

• Triple quoting can be done repeating three times either “
or ‘:

s1 = “““foo“““ #three times “

s2 = ‘‘‘bar‘‘‘ #three times ‘

s3 = “‘foofoo“‘ #not correct!

27

Escape Sequences and Raw StringsEscape Sequences and Raw Strings

• We want to deal with the sentence “What’s your name?”
>>> “What’s your name?”

“What’s your name?”

>>> 'What\'s your name?'

"What's your name?"

>>> print 'What\'s \nyour name?'

What's

your name?

• ‘\’ can be used to break command lines
• Raw strings (escape seq not processed): pre-pend ‘r’

>>> print r"Newlines are indicated by \n"

Newlines are indicated by \n

28

print Statementprint Statement

• The print command prints out to the standard output
>>> print "a", "b"

a b

>>> print "a"+"b"

ab

>>> print "%s %s" % (a,b) #we’ll see later…

a b

• Notes
– print automatically insert a new line
– print(string) is equivalent to sys.stdout(string + '\n')
– formatted print presents a similar syntax to its C-counterpart

(printf())

29

VariablesVariables

• Variables:
– “places” to store “values”, referenced by an identifier (“object name”)

• Assignment: ‘=’
– binds names to objects stored in memory

• Python is not a strongly typed language
>>> x = 12.0

>>> x

12.0

>>> _ #_ refers to the last value

12.0

>>> y = 'Hello'

>>> y = y+x # error! incompatible data types!!!

>>> y = 4.5j # re-assignment

>>> x = x+y # now x refer to a complex value

>>> x

(12+4.5j)

‘Hello’y

30

Variables and Data TypesVariables and Data Types

• No type declaration is required in Python
• Type info is associated with objects,

not with referencing variables!

• The type corresponding to a referenced object
is often inferred by the way it is used (!)

• This is “duck typing”, widely used in scripting languages.

“If it walks like a duck, and it quacks like a duck,
then we would call it a duck”

• Duck typing is a form or dynamic typing
that allows polymorphism without inheritance (we’ll see)

31

Symbol Table(s)Symbol Table(s)

• The binding (name → referenced object)
is kept by the interpreter in a so-called “Symbol table”

• Depending on the particular execution position,
different symbol tables can be consulted by the interpreter

• Different symbol tables in the same execution are properly related
• A name “x” can be deleted from the symbol table by calling del(x)

– It is illegal to del(x) in case the name x is referenced in an enclosing
scope (we’ll see later)

x
spam

y

•
•
•

32

Assigning VariablesAssigning Variables

• Whenever a variable references an IMMUTABLE value,
a new object has to be created if a different value has to
be stored

>>> x = 10

>>> x

10

>>> y = x

>>> y = y*2.15

>>> y

21.5

>>> x

10

10x

y

10x

21.5y

33

ListsLists

• Lists are general sequences of items
• Lists are MUTABLE

– items can be added, removed, searched for
>>> mylist = ['bye', 3.1415, 2+1j]

>>> mylist

['bye', 3.1415000000000002, (2+1j)]

>>> mylist[0] # starts from 0, as in C arrays

'bye'

>>> mylist[-2] # neg. index: from the end

3.1415000000000002

>>> mylist[0:2] # ‘:’ denotes a range

['bye', 3.1415000000000002]

>>> mylist[:3] # up to index 3 (excluded)

['bye', 3.1415000000000002, (2+1j)]

>>> mylist[2:] # from index 2 (included) on:

[(2+1j)]

34

Manipulating Lists (I)Manipulating Lists (I)

>>> a = mylist # from the previous example

>>> a

['bye', 3.1415000000000002, (2+1j)]

>>> a = a + ['hello'] # append one element

>>> a

['bye', 3.1415000000000002, (2+1j), 'hello']

>>> mylist

['bye', 3.1415000000000002, (2+1j)] # why???

>>> a

['bye', 3.1415000000000002, (2+1j), 'hello']

>>> a.append(2L) # another way to append (a “met hod”!)

>>> a

['bye', 3.1415000000000002, (2+1j), 'hello', 2L]

>>> del mylist[1] # delete element 1: let’s check!

>>> mylist

['bye', (2+1j)]

35

Manipulating Lists (II)Manipulating Lists (II)

>>> list1 = ['a', 'b', 'c']

>>> list2 = list1 #list2 -> the same obj as list1

>>> list2

['a', 'b', 'c']

>>> list1.append(1j) # in-place append!

>>> list2

['a', 'b', 'c', 1j]

>>> list1 = list1 + [2j] # list-copy append!

>>> list2 #list2 still -> the “old” list1

['a', 'b', 'c', 1j]

>>> list1

['a', 'b', 'c', 1j, 2j]

36

Manipulating Lists (III)Manipulating Lists (III)

>>> a = [4, 5, -2, 6, 1.2]

>>> a

[4, 5, -2, 6, 1.2]

>>> a.sort() #this modify the list in p lace!

>>> a

[-2, 1.2, 4, 5, 6]

>>> b = [0, 1]

>>> a[1] = b

>>> b.append(2)

>>> a

[-2, [0, 1, 2], 4, 5, 6]

>>> b

[0, 1, 2]

method

37

Referencing Lists (I)Referencing Lists (I)

– Whenever a new variable is assigned
another variable that references a MUTABLE value (as a list),
the new variable will reference the same obj

>>> x = [1, 2]

>>> y = x

>>> y

[1, 2]

>>> x.append(3)

>>> y

[1, 2, 3]

>>> del x[0]

>>> x

[2, 3]

x 1 2

y

x 1 2

y

3

x 2

y

3

38

Referencing Lists (II)Referencing Lists (II)

>>> a = ['a', 'b']

>>> x = [1, a, 2]

>>> x

[1, ['a', 'b'], 2]

>>> a.append('c')

>>> x

[1, ['a', 'b', 'c'], 2]

>>> del a #delete the var!

>>> x

[1, ['a', 'b', 'c'], 2]

>>> a #error!

a ‘a’ ‘b’

x 1 • 2

a ‘a’ ‘b’

x 1 • 2

‘c’

a ‘a’ ‘b’

x 1 • 2

‘c’

39

TuplesTuples

• Tuples, like strings, are IMMUTABLE sequences
• The items of a tuple are arbitrary Python objects

(either mutable or immutable)
– Used to handle collections that are not expected

to change over time (but single objects in them could…)

>>> firstprimes = (2,3,5,7)

>>> firstprimes[1]

3

>>> firstprimes

(2, 3, 5, 7)

>>> firstprimes.append(9) #error!

>>> del firstprimes[0] #error!

40

Manipulating Tuples (I)Manipulating Tuples (I)

>>> monkeys=['joe','jack']

>>> zoo=('lion', 'tiger', monkeys)

>>> zoo

('lion', 'tiger', ['joe', 'jack'])

>>> zoo[1]

'tiger'

>>> zoo2=zoo

>>> zoo2

('lion', 'tiger', ['joe', 'jack'])

>>> del zoo

>>> zoo2

('lion', 'tiger', ['joe', 'jack'])

>>> zoo #error!

>>> monkeys.append('jim')

>>> zoo2

('lion', 'tiger', ['joe', 'jack', 'jim'])

>>> del zoo2[2] #error!

>>> zoo2[2][1]

'jack'

monkeys ‘joe’ ‘jack’

zoo ‘lion’ ‘tiger’ •

zoo2

monkeys ‘joe’ ‘jack’

zoo ‘lion’ ‘tiger’ •

zoo2

‘jim’

immutable!

41

Manipulating Tuples (II)Manipulating Tuples (II)

>>> new_zoo = ('ape','zebra')

>>> zoo2 = new_zoo

>>> d_zoo = new_zoo + new_zoo

>>> d_zoo

('ape', 'zebra', 'ape', 'zebra')

>>> del new_zoo

>>> zoo2

('ape', 'zebra')

>>> d_zoo

('ape', 'zebra', 'ape', 'zebra')

new_zoo ‘ape’ ‘zebra’

zoo2

new_zoo ‘ape’ ‘zebra’

zoo2

d_zoo ‘ape’ ‘zebra’ ‘ape’ ‘zebra’

co
py

copy

new_zoo ‘ape’ ‘zebra’

zoo2

d_zoo ‘ape’ ‘zebra’ ‘ape’ ‘zebra’

42

Manipulating Tuples (III)Manipulating Tuples (III)

>>> zoo3 = (‘dog’,) + zoo2*3

>>> zoo3

('dog', 'ape', 'zebra', 'ape', 'zebra', 'ape', 'zeb ra')

d_zoo ‘ape’ ‘zebra’ ‘ape’ ‘zebra’

‘ape’ ‘zebra’zoo2

zoo3

‘dog’ ‘ape’ ‘zebra’ ‘ape’ ‘zebra’ ‘ape’ ‘zebra’

copy

Notation for

one-element tu
ple

43

Tuples & printTuples & print

• Tuples are commonly used
in the formatted print statement

• print takes a “format model string”, followed by a tuple
with values to be substituted in the model string:

>>> n= ‘Alex’

>>> print ‘My name is %s and I am %d years old’ \

% (n, 21)

My name is Alex and I am 21 years old

Tuple with params

44

Dictionaries:
Python’s Associative Arrays
Dictionaries:
Python’s Associative Arrays

• Dictionary: container of objects,
referred through an index set (“keys”)

• The notation a[k] selects the item indexed by k
from the mapping a
– used in: expressions, as target of assignment/del statements

>>> atomic_num = {'Dummy' : 0,'H' : 1,'He' : 2}

>>> atomic_num['He']

2

>>> atomic_num['C'] = 6 #add a new element…

>>> atomic_num['Dummy'] = -1 #overwrite…

>>> del atomic_num['H']

>>> atomic_num

{'Dummy': -1, 'He': 2, 'C': 6}

45

Using Sequences: IndexingUsing Sequences: Indexing

• Lists, tuples and strings are examples of sequences.
• Indexing allows to fetch a particular item in the sequence

– on strings:
>>> s='London bridge is falling down'

>>> s[1]

'o'

>>> s[-2]

'w'

– on lists and tuples, the same syntax applies.
– on dictionaries, indexing is possible through a value for the key:

>>> t = {3:'jim', 'foo':'jack', 'num0':7.1, 'bar': 'john'}

>>> t['num0']

7.0999999999999996

>>> t[3]

'jim'

>>> t[1] #error!

46

Using Sequences: SlicingUsing Sequences: Slicing

• Slicing allows to retrieve a part of the sequence
>>> s='London bridge is falling down'

>>> s[13:-3]

' is falling d'

>>> s[15:] #from 15 to the end

's falling down'

>>> s[:] #from the beginning to the end

'London bridge is falling down‘

• Slicing can be used to get a copy of a list!
>>> even = [2,4,6]

>>> even_prime = even[:]

>>> even_prime.append(8)

>>> even

[2, 4, 6]

>>> even_prime

[2, 4, 6, 8]

even

even_prime 2 4 6

2 4 6

2 4 6 8

[:]

even

even_prime

2 4 6

Assignment OperationAssignment Operation

48

…Just a Few Words…Just a Few Words

• Assignement can be either plain or augmented

• Plain assignment: in the form target = expression
• Plain assignment to a variable (name = value)

is the way to create a new variable
or (if already existing) to rebind it to a new value.

• Similar semantics holds whether the target
is an object attribute or a container item(s);
– in these cases, the operation must be intended

as a request of binding issued to the involved object,
and such request could be either accepted or not.

49

Augmented AssignmentAugmented Assignment

• In these cases, an augmented operator is used instead:

+= -= *= /= //= %=
**= |= >>= <<= &= ^=

• Augmented assignment is allowed only
with already existing (and thus bounded) targets

– If the target refers an object that has a corresponding in-place method
for the operator, it will be called with the right-side expression as
argument;

– otherwise, the corresponding binary operator will be applied to both the
left and right sides, and the target will be bound to the result

Control Flow:
- Conditionals
- Iteration

Control Flow:
- Conditionals
- Iteration

51

Identifying Code BlocksIdentifying Code Blocks

• Instructions can be grouped in blocks;
syntactically, a block is defined by its indentation depth

• Statements in the same block are consecutive,
with the same indentation for each logical line.

• New blocks of statements cannot be arbitrarily started,
so pay attention to initial blanks

x = 1

print 'x: ', x # Error! a single space…

• How to indent:
– Do not mix tabs/ spaces
– Follow a precise indentation style, e.g.

a single tab or a fixed number of spaces for each indentation level

52

Conditionals: the if StatementConditionals: the if Statement

• The if statement is used to check a condition;
if the condition is true, a block (the if-block) is run,
else another block (the else-block) is executed.
The else clause is optional.

n = 51

guess = int(raw_input('Type an integer: '))

if guess == n:

print 'You guessed it!' # block: first line

print "Congratulations!" # block: last line

elif guess < n:

print 'Too low!' # block

else:

print 'Too high!' # block

print 'Program finished' # Always executed

textual input

53

Conditions as ExpressionsConditions as Expressions

• Conditions (e.g. as used in the if statement) are implemented in
Python as expressions.

• “In a Boolean context”, in case an expression returns a nonzero
value or a nonempty container, such outcome is taken as True;
zero, None or empty containers are taken as False.

• The most elegant way (in Pythonic sense) to test a value x is:

if x:

• Other (less elegant) ways:

if x is True:

if x == True:

if bool(x):

54

Iterating with whileIterating with while

• In Python, the while statement can possibly present an else clause

n = 51

guessed = False

while not guessed:

guess = int(raw_input('Type an integer: '))

if guess == n:

print 'You guessed it! '

guessed = True

elif guess < n:

print 'Too low!'

else:

print 'Too high!'

else:

print 'Finally out of the loop!'

print 'Program finished'

55

Simple Iterations with for ... inSimple Iterations with for ... in

• The for..in statement is used to iterate over a sequence of objects .

for x in [0, 2, -1, ‘foo’, 18, ‘bar’]:

print x

else: #possible else clause here as well!

print ‘End of program’

• The built-in function range() returns arithmetic progressions
>>> range(10) #from 0 (incl.) to 10 (excl.)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(1,12,2) #from 1 to 12 step 2

[1, 3, 5, 7, 9, 11]

– Example:
for x in range(1, 5):

print x

– Example:
a = ['Mary', 'had', 'a', 'little', 'lamb']

for x in range(len(a)):

print x, a[x]

56

Use of for Loops in Other LanguagesUse of for Loops in Other Languages

• Please note that for loops in Python are very different
from their C/C++ counterparts.

• for loops in Python resemble foreach loops in C#.
• Java, since v. 1.5, provides a similar construct:

for (int i : IntArray)

• In C/C++:
for (int i = 0; i < 100; i++) { … }

• In Python:
for i in range(0,100): …

57

Use of the break StatementUse of the break Statement

• break is used to stop the execution of a looping
statement, regardless of the usual loop control.

• If you break out of a loop, any corresponding else block
is not executed.

while True:

s = raw_input('Enter a string: ')

if s == 'exit':

break

print 'The length is', len(s)

print 'End of program'

58

Use of the continue StatementUse of the continue Statement

• continue is used to skip the rest of the statements
in the current iteration

while True:

s = raw_input('Enter a string: ')

if s == 'exit':

break

if len(s) < 4:

continue

print 'The length is sufficient:', len(s)

print 'End of program'

59

range() and xrange()range() and xrange()

• Very large lists to loop over in the for statement may lead to
unreasonable waste of memory.

• To cope with this problem, xrange() can be used instead of range().
• xrange() returns a special-purpose read-only object that consumes

much less memory (with a moderately higher overhead).

for x in range(1,2000,2): […]

for x in xrange(1,200,2): […]

>>> range(1,10,2)

[1, 3, 5, 7, 9]

>>> xrange(1,10,2)

xrange(1, 11, 2) Special output format

60

IteratorsIterators

• A more general way to loop over items in a data structure
makes use of Iterators .

• An Iterator is an object i such that it is possible to call i.next() ,
getting back the next item of iterator i .

• In case all items have been already obtained,
a StopException is raised.

• An iterator over an “iterable” object obj
can be obtained by calling iter(obj)

for x in it_obj:

statement(s)

temp = iter(it_obj)

while True:

try: temp.next()

except StopIteration:
break

statement(s)

FunctionsFunctions

62

Functions: How to Define and CallFunctions: How to Define and Call

• Functions are reusable portions of programs.
• Functions have to be defined,

and later they can be called
(function call corresponds to an expression evaluation).

• Defined using the def keyword, followed by a function
name and possible parameters (in parentheses);
a block of statements implements the function body.
– Example:

def printHW():

print 'Hello World!' # function body

for x in range(10):

printHW() # function call

no params

63

Functions are ObjectsFunctions are Objects

• In Python functions are objects as well.
• Thus, any variable (name) can be bound to a function

>>> def printHW():

print 'Hello World!' # function body

>>> phw = printHW

>>> for x in range(3):

printHW()

phw()

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

Hello World!

64

Argument Passing: By ValueArgument Passing: By Value

• At a function call, each parameter becomes a local variable
in the execution context (i.e. in the temporary execution namespace),
bound to the object passed as actual parameter.

• Modifications performed in the function body
to the object bounded to an argument
would be seen after the function execution only in case
all such modifications have been done in-place
(so, only for instances of mutable types)

>>> def double(x):

print 'as passed: ', x

x = x*2

print 'as modified:', x

>>> a = 10

>>> double(a)

as passed: 10

as modified: 20

>>> a

10

10a

Exec_cntx

x

20

Exec_cntx

x

65

More on Argument PassingMore on Argument Passing

• Exclusive or not-exclusive use of in-place operations on mutable
parameters may affect (or not) the original object

>>> def append_one(x):

x.append(1)

print 'as modified: ', x

>>> a=[3, 5]

>>> id(a)

13381584

>>> append_one(a)

as modified: [3, 5, 1]

>>> a

[3, 5, 1]

>>> id(a)

13381584

>>> def append_two(x):

x = x+[1]

print 'as mod.: ', x, 'at ', id(x)

>>> a=[3, 5]

>>> id(a)

13398144

>>> append_two(a)

as modified: [3, 5, 1] at 13042232

>>> a

[3, 5]

>>> id(a)

13398144

in-place op.
NOT in-place op.

66

Default & Keywords ArgumentsDefault & Keywords Arguments

• A default value for a parameter can be specified

>>> def myprint(msg1='Hello ', msg2='World !', time s=1):

print (msg1+msg2) * times

>>> myprint('Good', ' Bye! ', 2)

Good Bye! Good Bye!

>>> myprint()

Hello World !

>>> myprint(msg2='Alice! ', times = 3)

Hello Alice! Hello Alice! Hello Alice!

• Keyword args are used to specify parameter-value bindings
whenever needed

keyword args

67

Functions: Returned ValuesFunctions: Returned Values

• Functions can return back a result from their invocation
by means of the return statement

>>> def mymax(x,y):

if x>=y:

return x

return y

>>> mymax(2,-5)

2

>>> c = mymax('foo', 'bar')

>>> c

'foo'

68

Documentation Strings in FunctionsDocumentation Strings in Functions

• To provide documentation for a function,
a string can be placed on the first logical line of the function.

• DocStrings: also in other contexts (Modules and Classes)
• By convention, a docstring is a multi-line string composed this way:

– The first line starts with a capital letter and ends with a dot
– The second line is blank
– Any detailed explanation starts from the third line.

def myMax(x, y):

'''Returns the maximum of two numbers.

The two values are supposed to be integers.'''

if x > y:

return x

return y

myMax(2, 22)

print myMax.__doc__ #docstring is accessible via __ doc__

ExceptionsExceptions

70

What Exceptions are?What Exceptions are?

• An exception in Python is an object that represents
an error or an anomalous/unexpected/special condition.

• Whenever an error/anomalous condition takes place,
an exception is raised and passed to
the exception-propagation mechanism.

• The raised exception can be caught
from the propagation mechanism
and some specific code can be executed
in response to this event (Exception Handling)

71

A Motivating ExampleA Motivating Example

>>> def show_n(list, n):

print(list[n])

>>> show_n([1,3,5,7], 2)

5

>>> show_n([1,3,5,7], 4)

Traceback (most recent call last):

File "<pyshell#4>", line 1, in <module>

show_n([1,3,5,7], 4)

File "<pyshell#2>", line 2, in show_n

print(list[n])

IndexError: list index out of range

72

The try StatementThe try Statement

• The try statement is aimed at delimiting a block
where exceptions may occur.

• If some exceptions actually occur there,
it’s possible to specify what to do in the except /else clauses

• One try block may have multiple except clauses

try:

statement(s)

except [expression [, target]]:

statement(s)

[else:

statement(s)]

• The exception handler is executed in case the expression in the except
clause would match the raised exception object.

Exception Handler
Opt. “ else” clause

73

The Example RevisitedThe Example Revisited

>>> def show_n(list, n):

print(list[n])

>>> show_n([1,3,5,7], 2)

5

>>> show_n([1,3,5,7], 4)

>>> def show_n(list, n):

try:

print(list[n])

except IndexError:

print('OUT!')

>>> show_n([1,3,5,7], 2)

5

>>> show_n([1,3,5,7], 4)

OUT!

>>>

74

The Exception Propagation MechanismThe Exception Propagation Mechanism

• If no expression in the except clauses
matches the raised exception object,
this will be propagated up to the calling function.

• The same applies in case the exception occurs
out of a try block.

• This back-propagation mechanism comes to an end
as one applicable handler is found;
if it is not found, the program terminates.

• The program resumes just after the executed handler.

75

The try/except/finally StatementThe try/except/finally Statement

• A more sophisticated version of the try statement is the following (available
in this form from Python 2.5):

try:

statement(s)

except [expression [, target]]:

statement(s)

[else:

statement(s)]

[finally:

statement(s)]

• The finally block is executed anyway ,
regardless of the occurrence of an exception.

• In case the exception is propagated,
the finally block is executed before the actual propagation.

Clean-up Handler

ModulesModules

77

Modules: GeneralitiesModules: Generalities

• As functions allow reuse of code within programs,
modules allow reuse of functions (and vars) across programs.

• Module : file containing all required functions/variables.
Its filename extension must be .py

• Each module is associated with the corresponding symbol table

• Within a module, its name is accessible via the __name__ global
variable

• A module can contain also executable statements, that are intended
to initialize the module.
They are executed only the first time the module is imported.

78

Modules: importModules: import

• A module can be used in a program by previously importing it:
this also applies to the standard library.

import sys # a module of the std.lib.function body

#here we can access names in module sys

#using the notation sys.name

import sys as mysys #import with rename

x
spam

y

•
•
•

__main__

x
spam

y

•
•
•

__main__

sys •

stdout

stdin

maxint

•
•
•

sys

import
sys

79

The from .. import StatementThe from .. import Statement

• If you want to directly import the name name1 defined in module
mod1 into your program, then you can use:

from mod1 import name1

• From now on, it can be referred to as name1 instead of mod1.name1
• To directly import all the names in mod1:

from mod1 import *

• Attention must be paid to avoid name conflicts:
Generally, the plain import statement is preferable instead of from ..
import

• All the names defined in a module x can be obtained by dir(x)

80

from ... import & Symbol Tablesfrom ... import & Symbol Tables

• What happens to symbol tables in the following case?
import sys

from sys import stdout

x
spam

y

•
•
•

__main__

sys •

stdout
stdin

maxint

•
•
•

sys

x
spam

y

•
•
•

__main__

sys •

stdout
stdin

maxint

•
•
•

sys

stdout •

81

Modules and .pyc FilesModules and .pyc Files

• To make module importing more efficient,
Python usually creates pre-compiled files
with the extension .pyc

• A .pyc file is related to the bytecode for the module
content.

• The .pyc byte-compiled files are platform-independent,
and can be used instead of the original module code.

• When the interpreter is asked to import a module,
if the corresponding .pyc is present,
part of its work has already been done.

82

How the Interpreter Looks for ModulesHow the Interpreter Looks for Modules

• When a module is imported,
the interpreter searches for the corresponding .py file
– first in the current directory
– then in the list of directories specified by the environment variable

PYTHONPATH.

• Actually, modules are searched in the list of directories
given by the variable sys.path

• sys.path is initialized from:
– the directory containing the input script (or the current directory)
– PYTHONPATH
– the installation-dependent default

83

Standard ModulesStandard Modules

• Python comes with a library of standard modules,
described in the “Python Library Reference”

• Some modules are built into the interpreter.
• Some commonly-used modules:

– sys (system interfaces)
– os (operating system interfaces)
– shutil (files/directories ordinary management)
– string (basic string operations)
– re (regular expressions)
– math (mathematical functions), random (random #s generation)
– zlib , gzip , bz2, zipfile , tarfile (data compression)
– datetime (managing dates and time data)
– …

84

Packages (I)Packages (I)

• Packages are a way of structuring Python's module namespace by
using “dotted module names”.
– E.g., the name A.B designates the "B" submodule in the "A“ package.

• A possible structure for the “Sound” package:
Sound/ Top-level package

__init__.py Initialize the sound package

Formats/ Subp. for format conversions

__init__.py

wavread.py

wavwrite.py ...

Effects/ Subp. for sound effects

__init__.py

echo.py ...

Filters/ Subpackage for filters

__init__.py

equalizer.py ...

85

Packages (II)Packages (II)

• Users of the package can import individual modules from the package, e.g.:

import Sound.Effects.echo

• Now the submodule Sound.Effects.echo must be referenced by its full name:

Sound.Effects.echo.echofilter(input, output, delay= 0.7, atten=4)

• An alternative way of importing the submodule is:

from Sound.Effects import echo

• Yet another variation is to import the desired function or variable directly:

from Sound.Effects.echo import echofilter

• This loads the submodule echo and makes its function echofilter() directly
available:

echofilter(input, output, delay=0.7, atten=4)

BlocksBlocks

87

What are Blocks?What are Blocks?

• Block: piece of Python program text executed as a unit .
• Examples of blocks:

– a module
– a function body
– a class definition
– each command typed interactively
– a script file
– etc.

• A code block is executed in an execution frame.
– A frame contains administrative info and determines

where and how execution continues
after the code block's execution has completed

88

Blocks and ScopeBlocks and Scope

• A scope defines the visibility of a name within a block.
– If a local variable is defined in a block, its scope includes that block.

– If the definition occurs in a function block, the scope extends to any
blocks contained within the defining one (unless a contained block
introduces a different binding for the name).

• The scope of a name corresponds to the set of related symbol tables
that is searched for to resolve such a name.

• When a name is used in a code block, it is resolved using the
nearest enclosing scope.
The set of all such scopes visible to a code block is called the block's
environment.

• The scope of names defined in a class block is limited to the class
block; it does not extend to the code blocks of methods.

89

Global & Local VariablesGlobal & Local Variables

• If a name is bound in a block,
it is a local variable of that block.

• If a name is bound at the module level,
it is a global variable.

• The variables of the module code block
are local and global.

• If a variable is used in a code block but not defined there,
it is a free variable.

