
Protein ModelsProtein Models

Geometric/Kinematic ModelsGeometric/Kinematic Models

• A geometric model just take into account how 
atoms are statically displaced within a 
molecule to form a geometric shape. 
Different models (shapes) are aimed at 
showing different features.

• Kinematics studies possible movements in a 
system, regardless of the causing forces.



Atomistic Model (ordinary…)Atomistic Model (ordinary…)

• In the atomistic model, the molecule is described 
by the coordinates of all the composing atoms.

• With p atoms, 
the model is described by 3p parameters

• Vibrational degrees of freedom: 3p-6 
(3 coord. for the center of mass, 3 for possible 
rotations around it) 
3p-5 for linear molecules

• No information about bonds is explicitly present: 
it doesn’t account for the kinematic structure

Linkage ModelLinkage Model

• Kinematics is defined through internal 
coordinates:
– Bond lengths
– Bond angles
– Torsion angles around bonds

• Internal coordinates are also commonly 
known as “curvilinear coordinates” or 
“valence coordinates”



Rotatable Bonds Model Rotatable Bonds Model 

• Each protein conformation on n residues will 
be specified as a sequence of dihedral angles

CCαααααααα TraceTrace

• Aka “Virtual Bonds Model”
• The whole protein is modeled by the sequence of 

alpha carbons
• The Cα-Cα distance is fixed at 3.8 Å
• The model is described by a sequence (N-3) of angle 

pairs (θ,τ)
• θ in [0,π] is the angle between three consecutive Cα
• τ in [- π, π] is the dihedral between four consecutive 

Cα



Further Abstraction:Further Abstraction:
Coarse Grain & Toy ModelsCoarse Grain & Toy Models

• (revise!)
• United-atom model: non-polar H atoms are incorporated into 

the heavy atoms to which they are bonded
• Lollipop model: the side-chains are approximated as single 

spheres with varying radii
• Bead model: Each residue is modeled as a single sphere

3D Moving: Rigid3D Moving: Rigid--body body 
TransformTransform



Homogeneous CoordinatesHomogeneous Coordinates

• Affinity: linear transformation A 
+ translation b

• Homogeneous coordinates allow 
all affine transformations to be 
dealt with by a matrix operation.

• In our setting, linear 
transformations of interest are 
rotations

• y = Ax+b
– A : rotation matrix 
– b : translation vector

• In matrix notation:
y = Tx

• Properties of rotation matrices:

AT= A-1

det(A)=+1 (axes’ handness is preserved)

• Combination of two 
transformations T1 and T2: 
T’ = T1T2
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2D Rotation Matrices2D Rotation Matrices

• Because of constraints (properties) 
defined before, 2x2 rotation 
matrices have the following form:

with a2+b2=1

• Considering a counterclockwise 
rotation of θ around the origin,

A =
a -b

b a

A =
cosθ -sin θ

sin θ cosθ



3D Rotation Matrices3D Rotation Matrices

• In 3D a rotation can be specified by:
– The direction of rotation axis (Euler axis), 

via the unit vector ê = (êi êj êk)T

– The counterclockwise rotation angle θ
• If ê ≡≡≡≡ k , then 

• If ê ≡≡≡≡ j , then 
General case:

• If ê ≡≡≡≡ i , then
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EulerianEulerian AnglesAngles

• Euler’s rotation theorem: Any generic rotation A can be obtained 
by the successive application of (some) 3 basic rotations:

A = A1A2A3
• A possible choice is the following:

– A1 : around z-axis of the original reference frame
– A2 : around an intermediate x-axis 

(known as line of nodes)
– A3 : around z-axis of the final reference frame

• Rotation A can thus be specified 
by the Eulerian angles α, β, and γ. Given A, angles α, β, and γ can be usually 
be determined: in some singular cases, ambiguities are possible.

Aα, β, γ =

cosα -sin α 0

sin α cosα 0

0 0 1

1 0 0

0 cosβ -sin β

0 sin β cosβ

cosγ -sin γ 0

sin γ cosγ 0

0 0 1



QuaternionsQuaternions

• A convenient representation of rotations: unit quaternions.

• A rotation A ê, θ of angle θ about ê can be described by the 4-
dimentional unit vector â = (a1 a2 a3 a4)T with
– a1= cos(θ/2)     known as scalar term

– a2= êi sin(θ/2)   a3= êj sin(θ/2)  a4= êk sin(θ/2) collectively known as vector term

– Separating scalar and vector terms, â is indicated also as 
â = cos(θ/2) + ê sin(θ/2)

• Space of rotations → 4-dimentional sphere of radius 1

• Rotation  A ê, θ can be described both by  â = ( a1 a2 a3 a4)T

and by the opposite quaternion             â’ = (-a1 -a2 -a3 -a4)T

• A point (vector) c in 3D space → quaternion ĉ = (0 ci cj ck)T
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Operations on Operations on QuaternionsQuaternions

Given two quaternions p = ps+ pv and   q = qs+ qv

• Norm of p is        ||p|| =(p1
2+p2

2+p3
2+p4

2)½ =(ps
2+|pv|2)½

• Addition – trivial, pairwise on components

• Multiplication – not commutative, based on the assumed rule   
st = s∧∧∧∧t – s⋅⋅⋅⋅t

pq= (ps+ pv)(qs + qv) = (psqs – pv⋅⋅⋅⋅qv) + (psqv + pv ∧∧∧∧qv + qspv )

• Conjugate of p is p* = ps – pv

• The (left and right) multiplicative inverse (reciprocal):
p-1 = p*/ ||p||2 = (ps – pv) / (ps

2 + |pv|2)         (for unit quat., p-1 = p*)



Using Using QuaternionsQuaternions

• To translate a vector x to the new position x’ by the vector b :
(0+x) + (0+b) → (0+x’)  with  x’ = x+b (trivial)

• To rotate a vector x to the new position x’ by the quaternion â:

â (0+x) â-1 → (0+x’) this operation is named conjugation

• How to relate rotation matrix A 
and the corresponding quaternion â = (a1 a2 a3 a4)T ?

A ê, θ =

2(a1
2+a4
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• Although the curvilinear internal coordinates 
can give a good description of the molecular 
potential, it is difficult to express the kinetic 
energy of nuclear vibrations in these 
coordinates.



Surface CharacterizationSurface Characterization



VdWVdW SurfaceSurface

• Hard-sphere model (van der Waals radii)
– Van der Waals surface
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Surface and interior of Surface and interior of 
globular proteinsglobular proteins

• solvent accessible surface
• molecular surface
• residue fractional accessibility
• pockets and cavities
• “hydrophobic core”
• ordered waters in protein structures



“Accessible Surface”

Lee & Richards, 1971
Shrake & Rupley, 1973

represent atoms as spheres w/appropriate
radii and eliminate overlapping parts...

mathematically roll a
sphere all around that
surface...

the sphere’s
center traces
out a surface
as it rolls...

Now look at a cross-section (slice) of a protein st ructure: 
Inner surfaces here are van der Waals.  Outer surface is that traced out by the 
center of the sphere as it rolls around the van der Waals’ surface.  If any part of 
the arc around a given atom is traced out, that atom is accessible to solvent.  
The solvent accessible surface of the atom is defined as the sum the arcs 
traced around an atom.

solvent
accessible
surface from

Lee &
Richards,
1971

van der Waals
surface

arc traced around atom

there’s not much solvent accessible surface 
in the middle



““Accessible surface”/“Molecular surface”Accessible surface”/“Molecular surface”

note: these are alternative ways of representing the  same reality:
the surface which is essentially in contact with solvent

• molecular and accessible surfaces are both useful 
representations, but molecular surface is more closely related to 
the actual atomic surfaces.  This makes it somewhat better for 
visualizing the texture of the outer surface, as well as for 
assessing the shape and volume of any internal cavities.

• you will hear the term Connolly surface used often, after 
Michael Connolly.  A Connolly surface is a particular way of 
calculating the molecular surface. The accessible surface is also 
occasionally called the Richards surface, after Fred Richards.



Molecular surface of proteinsMolecular surface of proteins

depiction of heavy atoms (O, 
N,C, S) in a protein as van der
Waals spheres

depiction of the corresponding
“molecular surface”--volume contained

by this surface is vdW volume plus
“interstitial volume”--spaces in between

The irregular surface of proteins: pockets and The irregular surface of proteins: pockets and 
cavitiescavities

• a pocket is an empty 
concavity on a protein 
surface which is 
accessible to solvent 
from the outside.  

• a cavity or void in a 
protein is a pocket which 
has no opening to the 
outside.  It is an interior 
empty space inside the 
protein. 

Pockets and cavities can be critical features of proteins in terms of 
their binding behavior, and identifying them is usually a first step in 

structure-based ligand design etc. 



The outer surface: water in protein structuresThe outer surface: water in protein structures

Structures of water-soluble 
proteins determined at 
reasonably high resolution 
will be decorated on their 
outer surfaces with water 
molecules (cyan balls) with 
relatively well-defined 
positions, and waters may 
also occur internally

Water is not just surrounding 
the protein--it is interacting 
with it

Water interacts with protein surfacesWater interacts with protein surfaces

second shell water :
only contacts other waters

first shell waters :
in contact with/
hydrogen bound
to protein

Most waters visible in crystal structures make hydrogen bonds 
to each other and/or to the protein, as donor/acceptor/both


