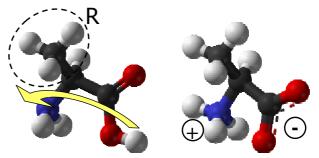
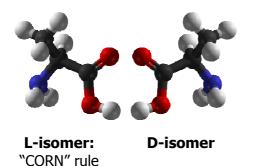

Basics on Protein Structure


Building Blocks: Amino Acids


- Proteins/polypeptides are composed of **amino** acids, linked in chains
- Each amino acid consists of a central carbon (known as C^α) attached to four units:
 - H hydrogen
 - NH_2 amino group
 - COOH carboxyl group
 - a distinguishing side-chain (known as *R* group)

More on Amino Acids...

 Actually, in usual conditions (PH≈7), amino acids show a different charge distribution (in figures, Alanine)

- Software Tools for Computational Biology -

 Because of C^α, two different mirror images for the molecule are possible: only the L-isomer is present in proteins as we know them in Nature

3

Amino Acids: How Many

- There are 20 amino acids: humans are able to synthesize about a dozen of them
- 8 amino acids must be directly provided by our food: they are named "essential amino acids"
- In most proteins (not all!), the 20 amino acids occur with similar frequencies

The Hydrophobic Effect

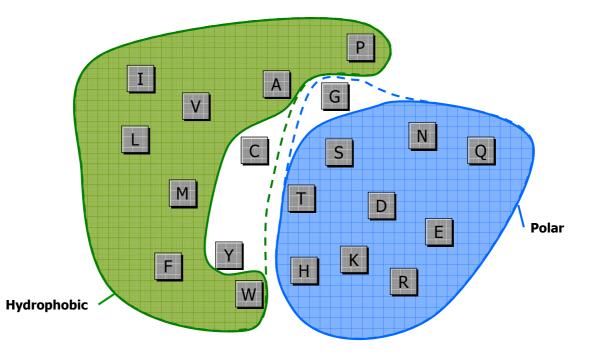
- The hydrophobic effect is the *tendency to form intermolecular aggregates in an aqueous medium*.
- At the macroscopic level, this effect shows up as an apparent repulsion between a given substance and water (e.g. oil and water cannot be mixed)
- The hydrophobic effect plays a crucial role in determining protein structure and function

- Software Tools for Computational Biology -

Amino Acids Table

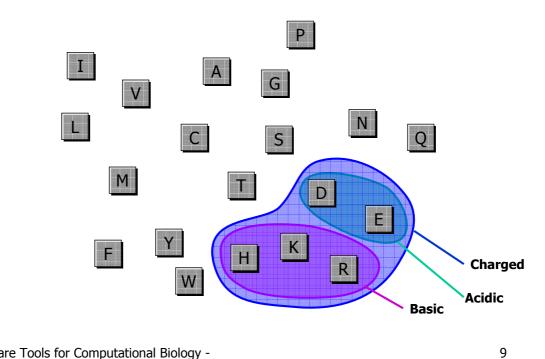
• Here amino acids are listed according to their Kyte-Doolittle index, which reflects hydrophobic/hydrophilic properties

Isoleucine	Valine	Leucine	Phenil-alanine	Cysteine
I, Ile <mark>4.5</mark>	V, Val 4.2	L, Leu <mark>3.8</mark>	F, Phe 2.8	C, Cys <mark>2.5</mark>
Methionine	Alanine	Glycine	Threonine	Serine
M, Met 1.9	A, Ala 1.8	G, Gly - <mark>0.4</mark>	T, Thr -0.7	S, Ser - <mark>0.8</mark>
Tryptophan	Tyrosine	Proline	Histidine	Glutamic Acid
W, Trp -0.9	Y, Tyr -1.3	P, Pro -1.6	H, His -3.2	E, Glu -3.5
Glutamine	Aspartic Acid	Asparagine	Lysine	Arginine
Q, Gln -3.5	D, Asp -3.5	N, Asn -3.5	K, Lys -3.9	R, Arg -4.5

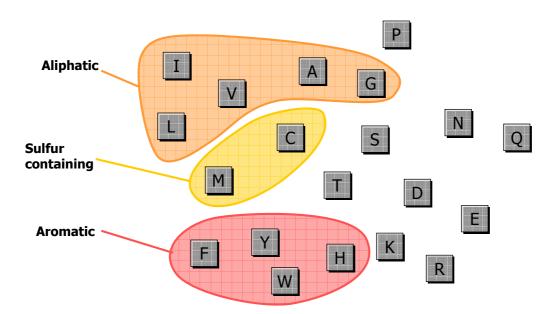

- Software Tools for Computational Biology -

Classifying Amino Acids

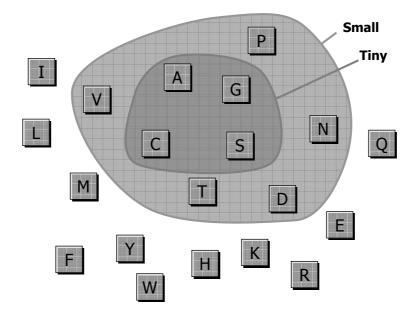
- Amino acids can me classified according to different properties, due to the specific side chain:
 - Polarity (H -nonpolar, or hydrophobic vs. P polar, or hydrophilic)
 - Aliphatic/aromatic R
 - Acidic/basic R
 - Size
 - Etc.
- Many different classifications are present in literature; in the following slides, classification roughly refers to what assumed in the *VMD* software
- See, e.g. http://www.mcb.ucdavis.edu/courses/bis102/AAProp.html


- Software Tools for Computational Biology -

A.A. Classification (I)

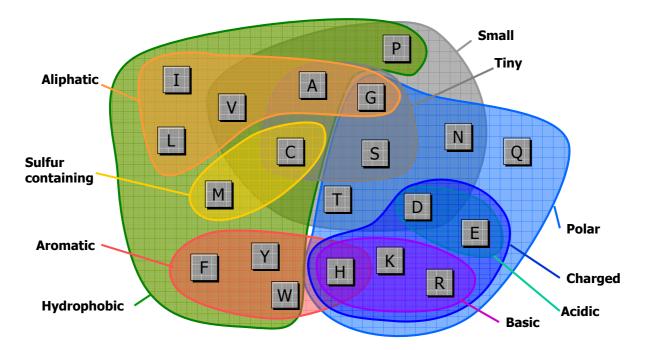

- Software Tools for Computational Biology -

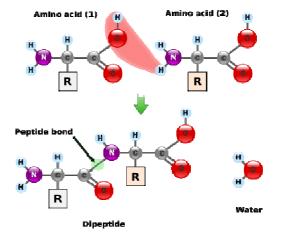
A.A. Classification (II)



- Software Tools for Computational Biology -

A.A. Classification (III)

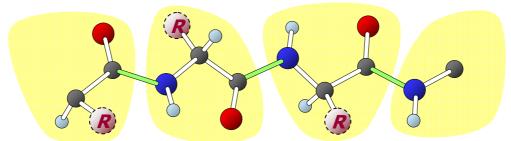



- Software Tools for Computational Biology -

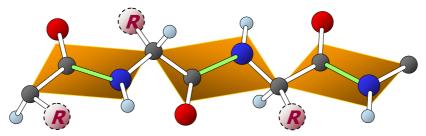
A.A. Classification Overview

Linking Amino Acids (I)

- Joining amino acids, we obtain a *polypeptide*
- The carboxyl C of one amino acid joins the amino nitrogen of another amino acid, forming the (rigid)
 peptide bond C-N and releasing one water molecule


- Software Tools for Computational Biology -

Linking Amino Acids (II)


- A peptide chain thus has a N-terminus and a C-terminus (aka as Amino/Carboxy termini); the standard orientation is from N- to C-
- The peptide chain can be viewed as a **backbone** (or main chain), connecting Alpha Carbons, and a number of **side chains**, one for each R group.
- Sometimes, other covalent bonds may occur between Sulfur atoms in different residues.
- Plenty of additional non-covalent bonds contributes to the stabilization of the whole molecule.

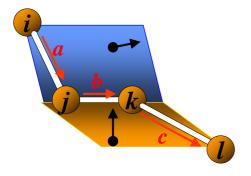
14

Pointing Out Chain Units

Units in the chain can be associated to the composing amino acids (*residues*)

Otherwise: rigid planar structures around the peptide bond (*rigid peptide units*)

- Software Tools for Computational Biology -


15

Primary Structure

- The simplest description of a protein is given by the sequence (from N- to C- terminus) of the composing residues: such a list is known as **Primary Structure**
- The primary structure can be related (often, but not always, in a straightforward way) to the DNA sequence in the corresponding gene
- Example: primary structure of *bovine plasma retinol-binding protein* (1HBQ)

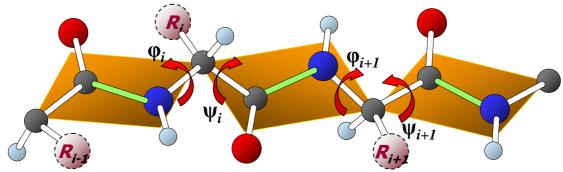
ERDCRVSSFRVKENFDKARFAGTWYAMAKKDPEGLFLQDNIVAEFSVDENGQM SATAKGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWI IDTDYETFAVQYSCRLLNLDGTCADSYSFVFARDPSGFSPEVQKIVRQRQEEL CLARQYRLIPHNGYCNGKSERNIL

Dihedral Angles

 $\cos(\boldsymbol{\tau}) = \cos(n_{ab} \bullet n_{bc})$

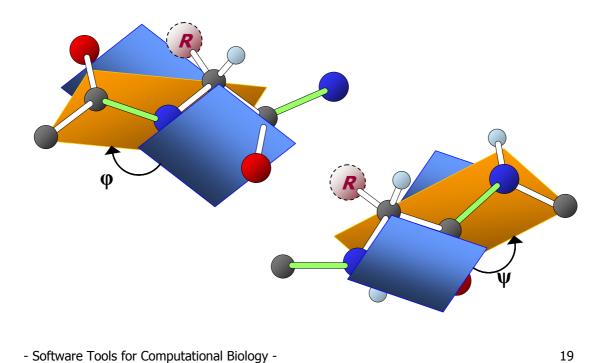
 $\operatorname{sgn}(\boldsymbol{\tau}) = \operatorname{sgn}(a \wedge b \bullet c)$

- To specify 3D arrangements of atoms, dihedral angles are often used
- Let's consider a sequence of four bonded atoms i, j, k, l in space: ijk define a plane, jkl another.
- The dihedral angle au is the angle between the vectors normal to the two planes.
- If τ=0, all the atoms are co-planar, and i al I are "on the same side" (*cis*)
- If *τ*=*π*, all the atoms are co-planar, and i al l are "on opposite sides" (*trans*)

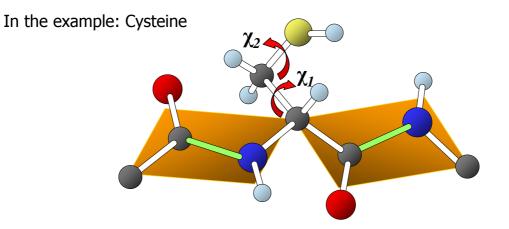

- Software Tools for Computational Biology -

17

Relative Position of Peptide Units


Each peptide unit can rotate around the two covalent bonds at their C^{α} ends.

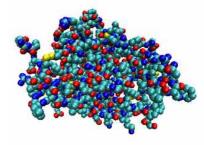
- The dihedral angle around the N-C^{α} bond is named **phi** (ϕ) (C'_{i-1}-N_i-C'_i)
- The dihedral angle around the C^{α}-C' bond is named **psi** (ψ) (N_i-C^{α}_i-C'_i-N_{i+1})
- The dihedral angle ω around the peptide bond is constant, usually $\approx \pi$ (trans)


The 3D displacement of the backbone is fully determined by the values ϕ and ψ at each C^{α}.

Phi and Psi Angles

Relative Positions in Side Chains

- The exact position of carbons in side-chains can be described by a sequence of angles (starting from C^{α}), known as χ_1 , χ_2 , χ_3 , etc.
- *Rotameric structures* of a protein are those with the same $\{\varphi, \psi\}$ but different side-chain conformations (i.e. different χ s)

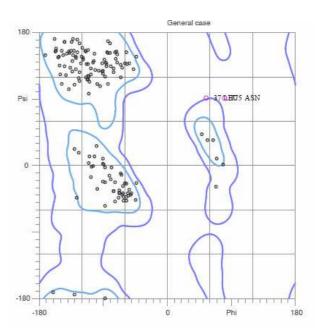


Native & Denaturated States

- Proteins chains in ordinary conditions fold into low-energy, aggregated conformations known as *native states*.
- Typical biological functions of proteins are carried out in native states.
- An "unfolded" protein, yet keeping its primary structure, is said to be in a *denaturated state*.
- Denaturation of a protein occurs by different kinds of external stress and/or heat

In fig, a representation of the native state of 1HBQ

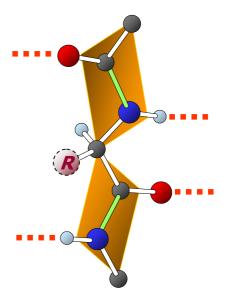
- Software Tools for Computational Biology -



Ramachandran Plot

• In native state,

 (φ, ψ) pairs do not take any possible values: their distribution can be pointed out in the *Ramachandran Plot*


- Because of steric factors, some areas in the plot cannot be populated
- In fig: (ϕ, ψ) pairs for 1HBQ

- Software Tools for Computational Biology -

Chains Hydrophobicity

- The internal part of a protein almost contains hydrophobic side chains
- (Globular) proteins usually fold packing hydrophobic side chains in the interior of the molecule, yielding a hydrophobic core and leaving a hydrophilic surface
- Conversely, the main chain is highly hydrophilic, with NH as H-bond donor and C'=O as H-bond acceptor

- Software Tools for Computational Biology -

23

Protein Structure is Hierarchical

Primary (sequence: what we have seen so far)

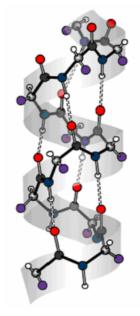
Secondary (*local* folding)

Tertiary (long-range, *global* folding)

Quaternary (multimeric assemblies)

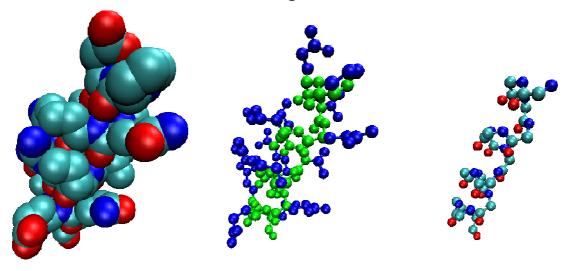
Supramolecular (large-scale assemblies)

Secondary Structure


- Residues in close positions (not necessarily adjacent) can be arranged in a few typical conformations:
 - Alpha helices
 - Beta sheets
 - (Loops)
- Such regular elements are stabilized by H bonds between N and C'=O groups in the main chain, with close values for (φ, ψ) on consecutive residues
- Secondary elements build up a stable, low flexible framework for the molecule

- Software Tools for Computational Biology -

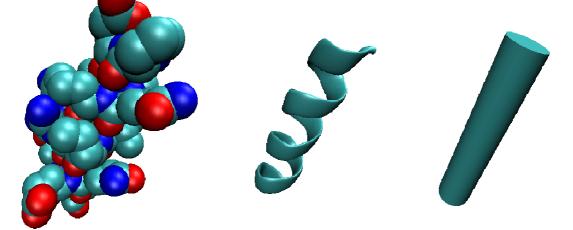
25


Alpha Helices

- In an α helix, the C'=O group of residue *n* is joined by an H bond to the NH of residue *n*+4
- All C'=O and NH are joined, except the NH of the first residue and the C'=O of the last residue
- Features:
 - 3.6 residues per turn
 - (ϕ , ψ) ≈ (-60°, -50°)
 - Length (globular proteins): from 4/5 up to >40 residues; on average, 10
 - Rise per residue: 1.5 Å

Example: a-Helix in 1HBQ

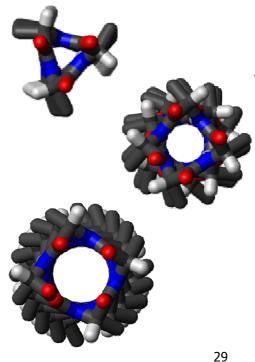
- Shown: VDW, all atoms, only backbone atoms
- Note: all side chains are arranged out of the helix atoms



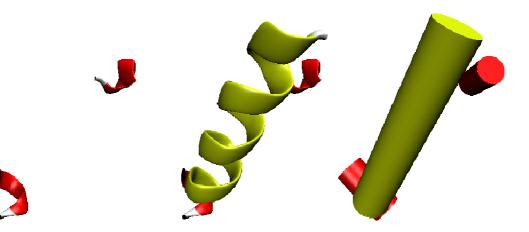
- Software Tools for Computational Biology -

Representation of a-Helices

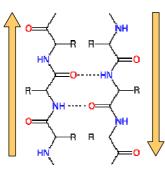
Different representations are aimed at showing different structural details

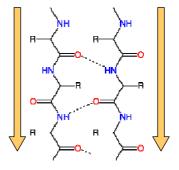

(here, 1HBQ in VDW, New Cartoon and Cartoon)

- Software Tools for Computational Biology -


Other (rare) Helices

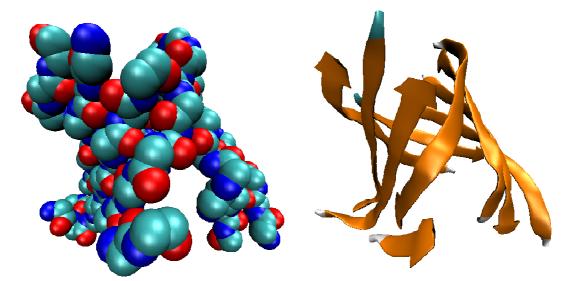
- Other two types of helices can be (rarely) found, usually as very short chunks
- In a *3₁₀ helix*, C'=O of residue *n* is joined to the NH of residue *n*+3
 - $(\varphi, \psi) \approx (-49^{\circ}, -26^{\circ})$
 - 3 residues per turn
- In a π *helix*, C'=O of residue *n* is joined to the NH of residue *n*+5
 - $-(\varphi, \psi) \approx (-55^{\circ}, -70^{\circ})$
 - 4.1 residues per turn
- Pictures: internal space of 3₁₀, α- and π helices
- Software Tools for Computational Biology -


Example: 3₁₀-Helices in 1HBQ


• Shown: 3_{10} helices, 3_{10} helices + α helix

Beta Sheets

- Beta sheets are made of (2+) stretched portions of the main chain (*beta strands*), placed side by side by H bonds
- Beta sheets usually show a pleated, twisted shape

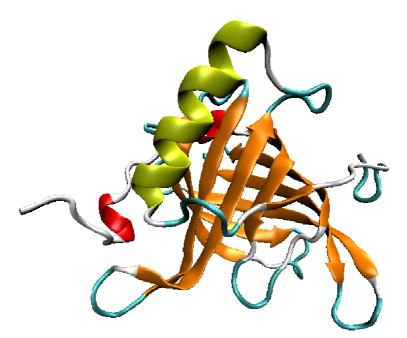

Two possible geometries: antiparallel (φ, ψ) \approx (-139°, +135°) parallel $(\varphi, \psi) \approx (-119^\circ, +113^\circ)$

- Software Tools for Computational Biology -

31

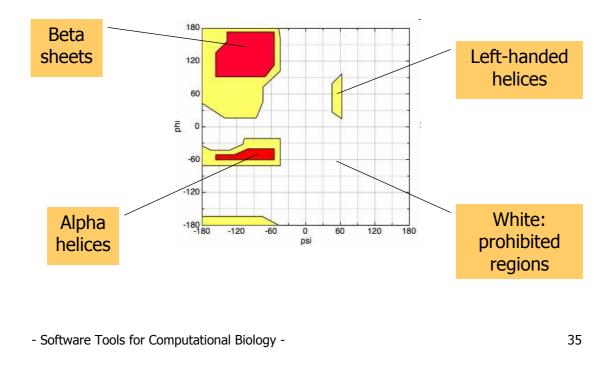
Example: β-Sheet in 1HBQ

Shown: VDW (only backbone atoms), New Cartoon •



Turns

- Apart helices and β sheets, a close approach (< 7 Å) of two C^α is known as *turn*
- A turn may be either related to H bonding or not
- Turns are classified according to the number of residues separating the involved C^{α} :
 - β -turn ($C^{\alpha}_{i} \rightarrow C^{\alpha}_{i+3}$) the most common
 - $\gamma \operatorname{-turn} \left(\mathsf{C}^{\alpha}_{i} \to \mathsf{C}^{\alpha}_{i+2} \right) \quad \alpha \operatorname{-turn} \left(\mathsf{C}^{\alpha}_{i} \to \mathsf{C}^{\alpha}_{i+4} \right) \quad \pi \operatorname{-turn} \left(\mathsf{C}^{\alpha}_{i} \to \mathsf{C}^{\alpha}_{i+5} \right)$
- In case the backbone direction reverses because of a turn, such turn is commonly called *hairpin*
- Glycine and Proline are usually common in turn regions


- Software Tools for Computational Biology -

Full Example on 1HBQ

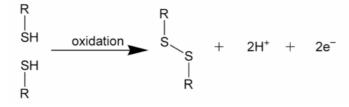
- Software Tools for Computational Biology -

2-ry Structs on Ramachandran

DPSS Code & DSSP Algorithm

- DPSS: Dictionary of Protein Secondary Structure
 - **T** (generic turn), **G** (3_{10} helix), **H** (α helix), **I** (π helix)
 - E (β sheet), B (single-pair β sheet), S (bend), '' (space: none of the previous ones; aka C coils / L loops)
- DSSP: Define Secondary Structure of Proteins (given the atomic coordinates, each residue is annotated with DPSS codes)
 Steps:
 - 1. Find H bonds (just by electrostatic definition)
 - 2. Compare hydrogen bonding pattern at each residue with known patterns

Tertiary Structure

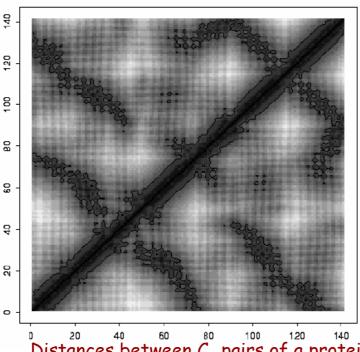

- The term "tertiary structure" refers to the actual 3D displacement of atoms in a protein, as found in its native state
- Tertiary structure often (especially in globular proteins) shows a core with packed hydrophobic residues: this contributes to the molecular stability
- 3D architecture of a protein can be *topologically* described by specific arrangements of secondary elements (and super-secondary ones, see ahead), that account for about 90% of the atom content
- Tertiary structure is often made stable also by disulfide bonds between different cysteine residues

- Software Tools for Computational Biology -

37

Disulfide Bonds

• A disulfide bridge is a covalent bond originated by the oxidation of two -SH groups belonging to different cysteine residues

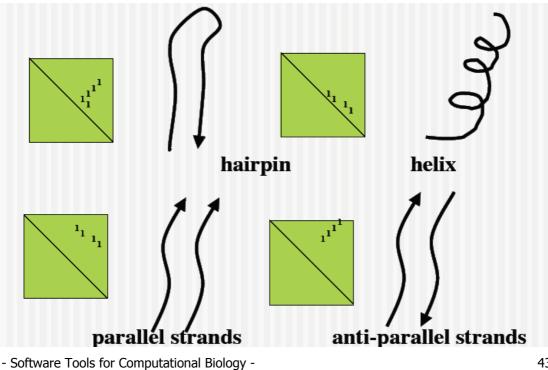

- A disulfide bond is characterized by its χ_{ss} dihedral angle $C^{\beta}-S^{\gamma}-C^{\beta}$: $\chi_{ss} \approx \pm 90^{\circ}$.
- Methionine (the other sulfur-containing amino acid) cannot form disulfide bonds
- Hair and feathers are mainly made of *keratins*, such proteins are linked together by disulfide bonds.

Distance & Contact Maps

- The distance r_{ij} between each possible pairs of atoms (a_i, a_j) can be reported onto a symmetrical *distance matrix* $\{r_{ij}\}$
- $\{r_{ii}\}$ is usually restricted to backbone C^{α}s only; in this case, *i* and *j* refer to the residue sequence number.
- Given {*r_{ii}*} and a threshold distance *t*, the *contact map* $C_m(t)$ with elements $\{c_{ii}\}$ can be plotted: it's a symmetrical matrix with binary elements, defined as $c_{ij} = 1$ if $r_{ij} < t$, 0 otherwise
- Contact maps are a synthetic tool to visualize overall tertiary arrangements in proteins.
- Secondary elements determine specific patterns on contact maps

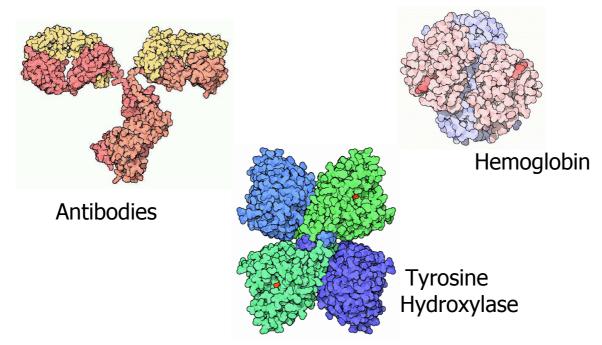
- Software Tools for Computational Biology -

39


Intra-Molecular Distance Matrix

Distances between C_{α}^{80} pairs of a protein with 142 residues. Darker squares represent shorter distances. - Software Tools for Computational Biology -

Intra-Molecular Distance Matrix


Intra-Molecular Distance Matrix

2ary-and-half Structures: Motifs

- Software Tools for Computational Biology -

4-ary Structure: Examples

- Software Tools for Computational Biology -

The Folding Process

- Software Tools for Computational Biology -

Protein Stability

- Protein stability can be evaluated with $\Delta G \approx 5 \div 15$ kcal/mol (1 cal=4.2 J)
- Gibbs free energy: G=U+pV-TS, i.e. G=H-TS

 U: internal energy; p: pressure; V: volume
 T: temperature; S: entropy; H: enthalpy
- ΔH -T $\Delta S \le 0$ (second law of thermodynamics)
- With constant T and p, $\Delta G \leq 0$

50

Structure Determination

- X-ray crystallography
- NMR spectrometry

- Software Tools for Computational Biology -