Molecular Mechanics and Force Fields

What Kind of Modeling?

- "Molecular Mechanics" refers to the **description** of a molecular system as a mechanical body
- Molecule = collection of particles (masses) centered at the nuclei, connected by "springs" (bonds)
- MM relies on building up a potential energy *U*, function of atomic positions and tuned by empirical data (aka "force field", somehow improperly)
- **U** can be used in optimizations/simulations
- Such a description is usually appropriate to model molecular structures and processes, **but not bond-breaking events**.

Recall: Potentials

- Potential energy *U* is a **scalar field**: it's described by a single value at each point in space
- Force *F* instead is a vector quantity, related to *U*: $F = -\nabla U$

As in (non-linear) molecules with n atoms there are p=3n-6 degrees of freedom, we expect that U would depend on 3n-6 independent variables

Often, especially in quantum mechanics modeling, U is also referred to as "PES" (Potential Energy Surface)

MM: Underlying Principles

- Molecular Mechanics relies on the validity of three principles:
- 1. Thermodynamic hypothesis
 - Many macromolecules reach their native, folded state due to thermodynamic factors (energy minimization)
- 2. Additivity
 - Molecular energy can be expressed as sum of terms related to simple physical forces
- 3. Transferability of potentials
 - Developing potentials according to experimental behavior of specific chemical groups, makes such potentials applicable to macromolecules composed of such groups

Force Fields: Components

- *U* can be expressed as a sum of potentials derived from simple physical forces.
- Components of *U* can be divided into:
 - $U = U_{local} + U_{nonlocal}$
 - local (bonded, i.e. related to bonds) terms
 - Mechanical-like strains related
 - to displacements from ideal values of bond lengths/angles
 - Internal torsion flexibility
 - non-local (i.e. not related to bonds) terms
 - Van der Waals
 - Electrostatic
- Terms already present in local interactions are not counted in non-local ones.

FFs: Accuracy vs Speed

• Force fields needs not to be perfect to be useful! (T. Schlick)

Local Terms: Bond Length

$$U_{local} = U_{blen} + U_{bang} + U_{tors}$$

• The bond stretching component U_{blen} is usually taken as harmonic, so that bonds are treated as ideal springs:

$$U_{blen} = \sum_{i,j \in S_B} S_{ij} (r_{ij} - \underline{r}_{ij})^2$$

• Note that, for each term,

$$F = -dU/dr = -\frac{1}{2}S(r_{ii} - \underline{r}_{ii})$$
 (Hook's law)

- Harmonic potential can be used only for *small* deviations from reference values \underline{r}_{ij} in the set of bonds S_B
- More accurate formulations for larger deviations have been proposed (e.g. Morse Term, computationally heavier)
- Some force fields introduce explicit terms also for H-bonds

Local Terms: Bond Angle

$$U_{local} = U_{blen} + U_{bang} + U_{tors}$$

i oon i

• The angle bending component U_{bang} is usually taken as harmonic in deviations from $\underline{\theta}_r$ or their corresponding cosines:

$$\begin{array}{l} U_{bang-harm} = \sum_{i,j,\ k \in S_{BA}} K_{(H)ijk} (\theta_{ijk} - \underline{\theta}_{ijk})^2 \\ U_{bang-trig} = \sum_{i,j,\ k \in S_{BA}} K_{(T)ijk} (\cos \theta_{ijk} - \cos \underline{\theta}_{ijk})^2 \end{array}$$

- The trigonometric form (bounded) is deemed more convenient in numeric treatment; By expanding $U_{bang-trig}$ by a Taylor series, we get $K_{(T)} \approx K_{(H)} sin^2(\underline{\theta})$
- Determination of reference angles is often a challenging task
- For more accurate formulations, as in U_{blen} , functions with odd powers should be avoided, as U can assume negative values during computations (nonsensical!)

 $U_{local} = U_{blen} + U_{bang} + U_{tors}$

- Taking into account rotational flexibility of atomic sequences is particularly important for biological reactivity
- Each component in U_{tors} is necessarily periodic, repeating for sure every 2π radiants.
 So it can be expressed as a n-truncated series of Fourier terms like

$$U_{tors} = \sum_{ijkl \in S_{DA}} \sum_{n} \left(\frac{1}{2} V_{n_{ijkl}} \left[1 + \cos(n \tau_{ijkl} - \underline{\tau}_{ijkl}) \right] \right)$$

- Typically, *n* is taken in [1 ... 6]. The most common values are 1, 2, 3.
- Sometimes, other harmonic terms are added, named "improper torsion terms", to account for enforcing planarity/chirality in particular groups. Improper torsion terms are adopted also in protein force fields.

Local "Cross Terms"

- Cross terms (i.e. involving simultaneously different molecular variables) are of primary importance only in force fields developed for small molecular systems (not proteins!).
- Cross terms are aimed at modeling correlations between bondlength/bond-angle potentials, as well as between dihedral/bondangle and improper/improper-dihedral terms
- Cross terms typically show the following aspect:
- $U_{rr'} = S(r-\underline{r})(r'-\underline{r'})$
- $U_{\theta\theta'} = K \left(\theta \underline{\theta}\right) \left(\theta' \underline{\theta}'\right)$
- $U_{r\theta} = SK(r \underline{r})(\theta \underline{\theta})$
- $U_{\tau\theta} = KV_{\tau\theta} \left(\theta \underline{\theta}\right) \cos(\tau \underline{\tau})$

Non-local: Van der Waals

- For macromolecules, the Van der Waals potential is taken in the common 6/12 Lennard-Jones form, with attractive (6) and a repulsive (12) portions:
- $U_{LJ} = -A_{ij}/r_{ij}^{6} + B_{ij}/r_{ij}^{12}$ (between atoms i and j)

Non-local: Coulombic

- Coulomb's law: $F(r_{ij}) \propto -q_i q_{ij} / r_{ij}^2$
- So, $U_{coul} = K_{coul} q_i q_j / \varepsilon r_{ij}$ with $K_{coul} = 1/(4\pi\varepsilon_0)$
- As $r_{ij} \rightarrow \infty$, $U_{coul} \rightarrow 0$ very slowly (unlike U_{LJ}), and this fact:
 - becomes essential in stabilizing macromolecules in solvent
 - creates computational problems, because evaluation of all pairwise terms takes $O(N^2)$ (anyway, O(N) methods have been found)
- Further issues come from the expression of the (distancedependent) dielectric function $\varepsilon = \varepsilon(r)$, as in a medium like water charges becomes somehow screened.

Parameterization

- One defined, a force field contains a lot of parameters, whose values must be properly chosen.
- Theoretically, each energy term could be calibrated according to specific experimental data from small molecules; in practice, approximation is unavoidable because of:
 - Scaling the system from small to large chemical groups
 - Interactions with solvent and counterions
- In summary, many different parameterizations are possible: anyway, only correct ones lead to reliable structural predictions

Oobatake-Crippen FF (1981)

- Example of 1st gen. FFs; operates on a "virtual bonds model"
- It considers the positions of C^αs: x_i is the position of the i-th C^α and the "virtual" bond length r₀ is 3.8 Å

•
$$U = U_b + U_{nb}$$

 $U_b = \frac{k_b}{2} \sum_{i=1}^{N-1} (r_{i,i+1} - r_0)^2$

• $U_{nb} = U_1 + U_2 + U_3$ one 4/6 LJ pot. + two **gaussian** pot.

$$U_{1} = \frac{e_{1}}{n-m} \left[-m \left(\frac{r_{1}}{r}\right)^{n} + n \left(\frac{r_{1}}{r}\right)^{m} \right] \quad m = 6, n = 4$$

$$U_{2} = e_{2} e^{-\frac{1}{2} \left(\frac{r-r_{2}}{d_{2}}\right)^{2}}$$

$$U_{3} = e_{3} e^{-\frac{1}{2} \left(\frac{r-r_{3}}{d_{3}}\right)^{2}}$$

Constants $r_1, r_2, r_3, e_1, e_2, e_3, d_2$ and d_3 depends on the residue types.

- CHARMM www.charmm.org
 - a set of FFs for many-particle systems (mainly biomolecules) from Harvard
- AMBER www.ambermd.org
 - a set of FFs for the simulation of biomolecules, developed at UCSF
- GROMACS www.gromacs.org
 - FF used in the efficient molecular dynamics tool developed at University of Groningen, addressing biochemical molecules (proteins and also polymers)

U to Explore Vibrations (I)

- U depends on p= 3n-6 independent variables; so far, for them we have used internal coordinates: let's call them collectively as vector q; so we have U = U(q)
- Internal coordinates q can be related to the 3n Cartesian coordinates by the Wilson matrix B:

q=BX

• Given an equilibrium point q_e for the molecule, there U(q) will present a minimum, so $\nabla U(q)|_{q=qe} = 0$. Usually, $\nabla U(q)$ is called g

U to Explore Vibrations (II)

• Calling $\xi \equiv (q_1 - q_{e1} \dots q_{(3p-6)} - q_{e(3p-6)})^T$, the Taylor expansion of U(q) about the point q_e is

 $U(q)-U(q_e) = \xi^T \nabla U(q)|_{q=qe} + \frac{1}{2} \xi^T H(q)|_{q=qe} \xi + \dots$

H is the Hessian matrix of U: $H_{ij} = \partial^2 U / \partial q_i \partial q_j$

- Usually, matrix $H(q)|_{q=qe}$ is called F
- At minima, eigenvalues of H are all positive.