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Abstract. A current research trend in neurocomputing involves the design of 

novel artificial neural networks incorporating the concept of time into their oper-

ating model. In this paper, a novel architecture that employs stigmergy is pro-

posed. Computational stigmergy is used to dynamically increase (or decrease) 

the strength of a connection, or the activation level, of an artificial neuron when 

stimulated (or released). This study lays down a basic framework for the deriva-

tion of a stigmergic NN with a related training algorithm. To show its potential, 

some pilot experiments have been reported. The XOR problem is solved by using 

only one single stigmergic neuron with one input and one output. A static NN, a 

stigmergic NN, a recurrent NN and a long short-term memory NN have been 

trained to solve the MNIST digits recognition benchmark. 

Keywords: Artificial Neural Networks, Stigmergy, Deep learning, Supervised 

learning. 

1 Introduction and background 

The use of Artificial Neural Networks (ANN) in engineering is rapidly increasing in 

pattern recognition, data classification and prediction tasks [1,2]. An important differ-

ence in recent generations of ANN is the fact that they try to incorporate the concept of 

time into their operating model. For example, in spiking NNs a temporal spike is used 

for mapping highly nonlinear dynamic models. Networks of spiking neurons are, with 

regard to the number of neurons, computationally more powerful than earlier ANN 

models [3]. Nevertheless, training such networks is difficult due to the non-differenti-

able nature of spike events [4]. Another relevant class of ANN which exhibits temporal 

dynamics is that of recurrent (cyclic) NNs (RNNs). Unlike feedforward (acyclic) NNs, 

recurrent NNs can use their internal state (memory) to process sequences of inputs, 

creating and processing memories of arbitrary sequences of input patterns [3]. A special 

class of recurrent NN is based on the Long Short-Term Memory (LSTM) unit, which is 

made of a cell, an input gate, an output gate and a forget gate. The cell remembers 

values over arbitrary time intervals and the three gates regulate the flow of information 

into and out of the cell [3]. However, the training process of recurrent NNs strongly 

depends on the set of constraints and regularizations used in the optimization process, 

resulting in a not entirely unbiased task with respect to the “how” [5]. 
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This paper focuses on a novel architecture that employs stigmergy to incorporate the 

concept of time in ANN. Stigmergy is defined as an emergent mechanism for self-co-

ordinating actions within complex systems, in which the trace left by a unit’s action on 

some medium stimulates the performance of a subsequent unit’s action [6]. It is a fun-

damental mechanism in swarm intelligence and multi-agent systems, but it also models 

individual interactions [6]. In neuroscience, Hebb studied this phenomenon in the bio-

logical brain, as a basis for modeling synaptic plasticity, i.e., the ability of synapses to 

strengthen or weaken over time, in response to increases or decreases in their coordi-

nated activity [7]. According to Hebb’s theory, synaptic plasticity is one of the im-

portant neurochemical foundations of learning and memory. Specifically, the Hebb’s 

law states that, when an axon of cell A is near enough to excite cell B and repeatedly 

or persistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A’s efficiency, as one of the cells firing B, is in-

creased. This is often paraphrased as “neurons that fire together wire together” [7]. 

Similarly, in the phenomenon of selective forgetting that characterizes memory in the 

brain, neural connections that are no longer reinforced will gradually lose their strength 

relative to recently reinforced ones. Accordingly, computational stigmergy can be used 

to increase (or decrease) the strength of a connection, or the activation level, of an arti-

ficial neuron when stimulated (or unused). 

To our knowledge, this is the first study that proposes and lays down a basic frame-

work for the derivation of stigmergic NNs. In the literature, computational intelligence 

research using stigmergy is focused on swarm and multi-agent systems coordination, 

and on computational optimization [6]. Although its high potential, demonstrated by 

the use of stigmergy in biological systems at diverse scales, the use of stigmergy for 

pattern recognition and data classification is currently poorly investigated. As an exam-

ple, in [8] a stigmergic architecture has been proposed to perform adaptive context-

aware aggregation. In [9] a multilayer architectures of stigmergic receptive fields for 

pattern recognition have been experimented for human behavioral analysis. The opti-

mization process of both systems is carried out using the Differential Evolution. 

In this paper, the dynamics of stigmergy is applied to weights, bias and activation 

threshold of a classical neural perceptron, to derive the stigmergic perceptron (SP). To 

train a NN made of SPs, each stigmergic layer can be formally transformed into an 

equivalent static MLP, by spatial multiplication of nodes, layers and progressive re-

moval of internal temporal steps. Once the network is totally unfolded, the resulting net 

is much larger, and contains a large number of weights. However, this static NN can be 

efficiently transformed in a computational graph. As a consequence, a given stigmergic 

NN can be transformed into a computational graph and trained using backpropagation. 

To appreciate the impressive computational power achieved by stigmergic neurons, 

in this paper two experiments are shown. In the first experiment, the XOR problem is 

solved by using only one single stigmergic neuron with one input and one output. In 

the second experiment a static NN, a stigmergic NN, a recurrent NN and a LSTM NN 

have been trained to solve the MNIST digits recognition benchmark. 

The remainder of the paper is organized as follows. Section 2 discusses the architec-

tural design of stigmergic NNs with respect to traditional NNs. Experiments are cov-

ered in Section 3. Finally, Section 4 summarizes conclusions and future work. 
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2 Architectural design  

This section defines formally the design of a stigmergic NN. Without loss of gener-

ality it is introduced a pilot application, with suitable input and output coding. Fig. 1a 

shows an example of static binary image, made of 4 × 5 = 20 pixels, in the spatial 

input coding. The necessary number of inputs for a static NN is � =20. Fig. 1b shows 

the same image in the temporal input coding. Considering � = 5 instants of time for 

providing the image row by row, the necessary number of inputs of a temporal NN is � =4. In essence, the image is provided in terms of chunks over 5 subsequent instants 

of time. Once provided the last chunk, the temporal NN provides the corresponding 

output class. Therefore, a NN that incorporates the concept of time is able to process 

the image as a temporal series. In the training phase, the NN learns to adjust its internal 

states to follow the chunks dynamics, according to the input coding. 

 

 

 
 

 

 

(a) 

 

 

 

 

 

(b) 

Fig. 1. (a) Spatial input coding. (b) Temporal input coding. 

More formally, the conversion from spatial to temporal input coding can be repre-

sented as a spatial-to-temporal function 	2�(∙) providing a sequence of T temporized 

chunks: ⟨�(1)| … |�(�)⟩ = �2	(�)          (1) 

 

where � = ���, … , ��∙�� and �(�) = ���(�), … , ��(�)�. 
Fig. 2a and Fig. 2b show a conventional perceptron and a Stigmergic Perceptron (SP), 

respectively. The SP contains a smaller number of input connections, fed via temporal 

input coding; the weights ��(�) and the activation threshold ℎ(�) are dynamic. Note 

that the output value is provided only at time �, unless it is connected with a further SP. 

More formally, let us assume a simple Heaviside step function in the activation gate 

without loss of generality. The conventional perceptron is modelled as follows: 

  � =  � + ∑ �� ∙�∙�� ��           (2) 

 # =  $(�) = %0 &' � < ℎ1 &' � ≥ ℎ         (3) 
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whereas the SP processing is modelled as follows:  

  �(�) =  � + ∑ ��(�) ∙�� ��(�)         (4) 

 #(�) =  $(�(�)) = %0, �(�) < ℎ(�)1, �(�) ≥ ℎ(�)         (5) 

 

 
(a) 

 
(b) 

Fig. 2. (a) Conventional Perceptron (CP); (b) Stigmergic perceptron (SP). 

The next step is to define the stigmergy dynamics ontologically and then formally in 

the operating model. Fig. 3a shows the stigmergy ontology [10], made by three concepts 

(or classes): Time, Mark and Stimulus. A Stimulus reinforces a Mark that, in turn, ad-

vances another Stimulus. The Mark can be reinforced up to a saturation level. Since the 

Time weakens the Mark, in absence of other Stimulus the Mark finishes. Fig. 3b shows 

the dynamics of a stigmergic relationship. On the bottom, a generic variable of class 

Stimulus: a binary variable generically called *(�). On the top, a generic variable of 

class Mark: a real variable generically called +(�), controlled by the stimulus variable. 

Specifically, the mark starts from +(0) and, while the stimulus value is 0, undergoes a 

weakening by ,+ per step, up to the minimum level +. While the stimulus value is 1, 

the mark is reinforced by �+ per step, up to the maximum level + of saturation. 

More formally, the stigmergic relationship is defined as follows:  

 

+(�) = -max1+, +(� − 1) − ,+3 ,              *(�, � − 1, … ) = 0min6+, +(� − 1) − ,+ + �+7 , *(�, � − 1, … ) = 1   (6) 

 

The mark dynamics can depend on current and previous values of the stimulus. 

According to Formula (6) the stigmergic relationships of the SP are: 

 

��(�) = -max 8�� , ��(� − 1) − ,��9,              ��(� − 1) = 0min6�� , ��(� − 1) − ,�� + ���7 , ��(� − 1) = 1    (7) 

 

ℎ(�) = -max1ℎ, ℎ(� − 1) − ,ℎ3 ,              #(� − 1) = 0min1ℎ, ℎ(� − 1) − ,ℎ + �ℎ3 , #(� − 1) = 1       (8) 
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In essence, the weight dynamics depends on the previous value of the input on the 

connection. The activation threshold depends on the previous value of the perceptron’s 

output. The overall dynamics are parameterized via the initial mark value, the delta 

mark weakening, and the delta mark reinforcement. Thus, the training procedure will 

tune +(0), ,+, and �+, i.e., 6��(0)}, {,��7, 6���7, ℎ(0), ,ℎ, and �ℎ.

(a) (b) 

Fig. 3. (a) Ontology of stigmergy; (b) Dynamics of a stigmergic relationship. 

Fig. 4a shows a fully-connected layer of SPs. It can be demonstrated that this 

stigmergic NN can be represented as the standard static NN shown in Fig. 4b, called 

unfolded equivalent NN. Specifically, in the unfolded NN each multilayer perceptron :;<� is the static equivalent of the 	<�, and receives all input values from 1 to T. The

unfolding of a stigmergic NN is based on the progressive addition of nodes, layers for 

progressive removal of internal temporal steps, up to a completely static NN. Once the 

network is totally unfolded, the resulting net is much larger, and contains a large num-

ber of weights and layers.  

The next step is to make the unfolded network differentiable. For this purpose, the 

step activation function can be approximated by a sigmoid function: # = 1/(1 +>?(@?A)), where the midpoint h corresponds to the soft threshold. Moreover, the mark

variable can be modelled as a linear function with respect to the stimulus variable. Fi-

nally, the saturation/finishing constraints can be approximated by a sigmoidal clamping 

function applied to the mark variable. 

At this step, the NN is then a static differentiable mathematical function, B = f(�),

which can be efficiently represented in a computation graph (CG), the descriptive lan-

guage of deep learning models [10]. 

When training a NN, the error is a function of the parameters. A CG is a functional 

description of the required computation, where to compute error derivatives with re-

spect to all the parameters, for use in gradient descent, is very efficient. A CG can be 
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instantiated for forward or backward computation. Specifically, reverse-mode differen-

tiation, i.e. is the backpropagation, is carried out very efficiently. 

As a consequence of the equivalence between a stigmergic NN and an unfolded NN, 

a given stigmergic NN can be transformed into a computational graph and efficiently 

trained using backpropagation. 

 

(a) (b) 

Fig. 4. (a) A fully-connected layer of SPs; (b) The unfolded equivalent NN. 

3 Experimental studies  

In order to appreciate the computational power of stigmergic neurons, in the first 

experiment the XOR problem is solved by using only one single stigmergic neuron, 

with one input and one output. 

Assuming � = 0 in Formula (4), and according to Formula (5): 

 #(0) = %0, �(0) ∙ �(0) < ℎ(0)1, �(0) ∙ �(0) ≥ ℎ(0)       (9) 

 

Assuming  � = −∞, and � = ∞,  Formula (7) and Formula (8) become: 

 �(�) = �(� − 1) − ,� + �(� − 1)��      (10) ℎ(�) = ℎ(� − 1) − ,ℎ + #(� − 1)�ℎ      (11) 

 

Thus, from Formula (5): 
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#(1) = E1, (�(0) − ,� + �(0)��)�(1) ≥ ℎ(0) − ,ℎ and y(0) = 0          1, (�(0) − ,� + �(0)��)�(1) ≥ ℎ(0) − ,ℎ + �ℎ and y(0) = 10, else                                                                                                             (12) 

 

Fig. 5a shows a representation of y(0) and y(1), according to Formula (9) and For-

mula (12), in the (x(1), x(t+1)) space. Here, Formula (9) is represented by the dashed 

vertical line, whereas Formula (12) is represented by the two hyperbolas. In particular, 

four points are highlighted, and specified in Fig. 5b, where it is apparent that the XOR 

problem is solved: #(1) = �(0) ⊕ �(1). 

 

 
(a) 

 

 

x(0) x(1) y(1) 

0 0 1 

β 0 0 

0 α 0 

α  β 1 
 

(b) 

Fig. 5. The XOR problem with a single stigmergic neuron in the (x(1), x(t+1)) space.  

 

In the second experiment, a static NN, a stigmergic NN, a recurrent NN and a LSTM 

NN have been trained to solve the MNIST digits recognition benchmark [10]. The pur-

pose is twofold: to measure the computational power added by stigmergy to static per-

ceptrons, and to compare the performances of existing temporal NN. First, the static 

NN and the stigmergic NN have been dimensioned to achieve the best classification 

performance. Subsequently, the other temporal NNs have been dimensioned to have a 

similar number of parameters with respect to the stigmergic NN. 

Fig. 6 shows the architecture of the stigmergic NN. Here, the hourglass icon high-

lights the stigmergic relationships in the layer. Precisely, the 1st layer is a space-to-time 

coder (S2T); the 2nd layer is a set of fully connected perceptrons with stigmergic acti-

vation thresholds (ShLP); the 3rd layer is a set of fully connected perceptrons with 

stigmergic weights and stigmergic activation thresholds SwhLP; the 4th layer is a time-

to-space decoder (T2S), which is the inverse transformation with respect to S2T; the 5th 

layer is a set of fully connected static perceptrons (MLP). The architecture of the static 

NN is made by two hidden layers of static perceptrons, and the output layer of 10 per-

ceptrons. 

The software has been developed with the PyTorch framework [13] and made pub-

licly available on GitHub [14]. 

Precisely, an input image of the MNIST is made by 28×28 = 784 pixels, and the 

output is made by 10 classes corresponding to decimal digits. Overall, the data set is 

made of 70,000 images. At each run, the training set is generated by random extraction 

of 60,000 images; the remaining 10,000 images makes the testing set. 
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The static NN is made by 784 inputs connected to 300 perceptrons (235,200 weights 

and 300 biases) that, in turn, are connected to other 300 perceptrons (90,000 weights 

and 300 biases), that, in turn, are connected to 10 perceptrons (3000 weights and 10 

biases), for a total number of parameters equals to 328,810 parameters. 

 

 

Fig. 6. A deep stigmergic NN for the MNIST digits recognition benchmark. 

The stigmergic NN is made by 28 inputs connected to 10 perceptrons with stigmergic 

activation (280 weights, 10 biases, 10 initial activation thresholds, 10 delta thresholds 

weakening, and 10 delta thresholds reinforcement) that, in turn, are connected to 10 

stigmergic perceptrons with weights and stigmergic activations (100 initial weights, 

100 delta weight weakening, 100 delta weight reinforcement, 10 initial activation 

thresholds, 10 delta thresholds weakening, 10 delta thresholds reinforcement, and 10 

biases), that become 280 output after the time-to-space decoder, which, in turn, are 

connected to 10 static perceptrons (2800 weights and 10 biases), for a total number of 

parameters equals to 3,470 parameters. 

The Recurrent NN is fed by 28 inputs, organized identically to the stigmergic NN 

inputs. Such inputs are fully connected to two parallel feed forward layers (2⋅28⋅28 

weights and 2⋅28 biases); in one of these layers, each output neuron has a backward 

connection to the inputs of both layers (28⋅56 weights); in the other layer, the outputs 

are connected to a further feed forward layer with 10 outputs (28⋅10 weights and 10 

biases). The total number of parameters is 3,482. 

 The LSTM NN is fed by 28 inputs, organized identically to the stigmergic NN in-

puts. For each LSTM layer, the number of parameters is calculated according to the 

well-known formula 4⋅o⋅(i+o+1), where o and i is the number of outputs and inputs, 

respectively. 

The topology is made by a 28×10 LSTM layer, a 10×10 LSTM layer, a 10×10 LSTM 

layer, and a final 10×10 Feed Forward layer. Thus, the overall number of parameters is  

4[10(28+10+1)) + 2⋅10(10+10+1)] + (10⋅10+10+10)=3,360. 

Table 1 shows the overall performance and complexity. The performance evalua-

tions are based on the 99% confidence interval of the classification rate (i.e., the ratio 

of correctly classified inputs to the total number of inputs), calculated over 10 runs. The 

complexity values correspond to the total number of parameters. The Adaptive Moment 

Estimation (Adam) method [12] has been used to compute adaptive learning rates for 

each parameter of the gradient descent optimization algorithms, carried out with batch 

method. 
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It is worth nothing that the MNIST benchmark is a spatial dataset, used to favor static 

NN and to show the concept of space-time mapping that can be exploited with temporal 

NNs. As a such, chunks sequences in each image are not inherently related in time. 

Nevertheless, the static NN employs a very large number of parameters, about two or-

der of magnitude larger with respect to the temporal NNs. 

On the other hand, Static NN, LSTM NN and Stigmergic NN have similar classifi-

cation performances (differing only by 2% at the most). Comparing the classification 

rates of temporal NNs, which have been dimensioned to have a similar complexity, 

recurrent NN is largely outperformed by static NN and LSTM NN. 

In consideration of the relative scientific maturity of the other comparative networks, 

the experimental results with the novel stigmergic NN looks very promising, and en-

courage further investigation activities for future work. 

Table 1. Performance and complexity of different ANN solving the MNIST digits recognition 

benchmark. 

NN type Complexity Classification rate 

Static NN 328,810 .951 ± 0.0026 

LSTM NN 3,360 .943 ± 0.011 

Stigmergic NN 3,470 .927 ± 0.016 

Recurrent NN 3,482 .766 ± 0.033 

4 Conclusions 

In this paper, the dynamics of computational stigmergy is applied to weights, bias and 

activation threshold of a classical neural perceptron, to derive the stigmergic perceptron 

(SP). An efficient methodology is proposed for training a multilayered NN made of SP. 

The methodology is based on the equivalence with static computational graphs, which 

can be trained using backpropagation optimization algorithms. 

 The effectiveness of the approach is shown via pilot experiments. Stigmergic per-

ceptrons can be appreciated for their impressive computational power with respect to 

conventional perceptron. Moreover, stigmergic layers can be easily employed in deep 

NN architectures, and can provide performances similar to other relatively mature tem-

poral NN, such as Recurrent NN and LSTM NN, on equal complexity. 
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