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Abstract. The spatio-temporal parameters of gait can reveal early signs
of medical conditions affecting motor ability, including the frailty syn-
drome and neurodegenerative diseases. This has brought increasing in-
terest into the development of wearable-based systems to automatically
estimate the most relevant gait parameters, such as stride time and the
duration of gait phases. The aim of this paper is to investigate the use
of body-worn accelerometers at different positions as a means to contin-
uously analyze gait. We relied on a smart shoe to provide the ground
truth in terms of reliable gait phase measurements, so as to achieve a
better understanding of the signal captured by body-worn sensors even
during longer walks. A preliminary experiment shows that both trunk
and thigh positions achieve accurate results, with a mean absolute error
in the estimation of gait phases of ∼ 12 ms and ∼ 31 ms, respectively.
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1 Introduction and related work

A person’s manner of walking can reveal important information related to health
and well-being. For instance, some studies have shown that abnormal gait is
linked with a higher risk of falling, and gait analysis has been proposed for
automated fall-risk assessment [13]. Other works have shown that a deviation
in gait patterns can be an early indicator of cognitive impairment caused by a
neurodegenerative disease [3]. Furthermore, it has been demonstrated that some
gait parameters are highly sensitive for the identification of the frailty syndrome,
which is characterized by reduced strength and motor ability [10].

A gait cycle is defined as the interval between two consecutive heel-strike
(HS) events of the same foot. The duration of a gait interval is known as stride
time. Gait is further characterized by the instants at which a foot leaves the
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ground and starts “swinging” forward: this is known as a toe-off (TO) event3.
For each foot, there are two phases: stance (ground support) and swing. When
both feet are in the stance phase, the subject is said to be in the double support
(DS) phase. The ratio between DS and swing is particularly important, as a
relatively longer DS phase has been linked with the frailty syndrome [10].

The typical approach to gait analysis is observational: the patient is required
to frequently visit an equipped lab, where a trained clinician visually inspects
the patient’s gait during predefined tests. In the last years, there has been a
significant effort for the development of automated techniques for gait analysis.
Particular attention has been devoted to wearable sensor-based systems, as they
enable the continuous monitoring of gait and other daily activities in uncon-
trolled environments [1, 2, 5]. To foster user acceptance, it is key to obtain an
unobtrusive solution, possibly based on just one wearable device.

A commonly adopted trade-off between accuracy and usability is represented
by placing a single wearable accelerometer over the lower trunk. In this context,
an interesting evaluation of five different methods for the estimation of gait
parameters is presented in [12]. Among the considered methods, a particularly
relevant work is represented by [14], where the body’s center of mass trajectory
during walk is modeled as an inverted pendulum. This model is then exploited
to estimate some gait parameters, including the detection of HS events based
on a simple analysis of antero-posterior acceleration. More recent works, like [7],
attempted to also detect TO events by analyzing the vertical component of
acceleration.

In this paper, we study the detection of foot contact events (HS and TO)
with accelerometers placed at two different body positions: over the lower trunk
(approximately near the L3 vertebra) and inside a front trouser pocket. The
works described above used an optical system or an instrumented platform with
force sensors for their experimental evaluation. Consequently, HS and TO events
were measured only for a limited number of consecutive steps. In the experiment
proposed in this paper, the ground truth is provided by a sensorized shoe, hence
foot contact evaluation becomes possible even during longer and unconstrained
walks. A similar approach was proposed by [8], which exploited instrumented
insoles to validate gait analysis with an ear-worn sensor.

The technique that we used for gait analysis with the trunk sensor is inspired
by the techniques presented in previous works [14, 7]. Differently, to the best
of our knowledge, this is the first time that a pocket-worn device is used to
detect foot contacts. This positioning could be exploited by smartphones, which
are often carried in trouser pockets. Indeed some works, like the one recently
presented in [9], have already evaluated the use of a smartphone’s accelerometer
for gait analysis, but the smartphone was placed over the subject’s trunk.
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Fig. 1. Sensor placement (trunk, pocket, shoe) and reference anatomical directions.

2 Method

The sensor configuration used in this work is shown in Figure 1. The user wears
a single sensorized shoe and two Shimmer3 devices [11], one over the trunk
(lower back) and one in a front trouser pocket (thigh). Hereafter, we refer to
the two Shimmer devices as trunk and pocket sensors, respectively. Figure 1 also
shows the anatomical directional references (vertical, antero-posterior AP, and
medial-lateral directions).

In the following subsections, we first show the algorithm used to detect gait
phases (i.e., stance and swing) using the sensorized shoe. Then, we describe the
algorithms used to detect gait phases with the trunk and pocket sensors.

2.1 Sensorized shoe

Previous works have shown that gait phases (i.e., stance and swing) can be
estimated with high accuracy by means of a sensorized shoe. An example is
represented by [4], where acceleration and force sensors were exploited to detect
foot contacts. The force sensors recognize heel and toes contact times, whereas
the accelerometer is used mainly to avoid wrong detections of steps when the
user is not walking.

In this work we used a single sensorized shoe, hence stance and swing times
are calculated only with respect to the foot wearing the sensors. The shoe is
a FootMoov 2.0, which is a new version of the smart shoe produced by Car-
los S.p.A. and described in [4]. As in the first version, sensors and electronics
are fully integrated below the insole. However, the full set of sensors has been
significantly upgraded. A 9-axis inertial measurement unit (IMU) is positioned
under the heel to enable the assessment of foot spatial orientation. Five pressure
sensors are available to monitor the mechanical interaction of the foot with the

3 Some other works refer to heel-strike and toe-off as initial foot contact (IC) and final
foot contact (FC) gait events, respectively.
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Fig. 2. Detection of gait phases with the sensorized shoe.

ground. Three of the pressure sensors are positioned under the forefoot, while
the remaining two are under the heel. These sensors are custom-made piezore-
sistive transducers produced by using ink-jet printing of a conductive material
on a flexible substrate. The Bluetooth 4.0 transmission module, fully integrated
with the rest of the electronic unit in the heel of the shoe, enables low energy
data transmission to a mobile device (smartphone, tablet).

The algorithm used in this study only required the analysis of four force
sensors, two under the heel and two under the forefoot. HS events are detected by
using the two sensors in the posterior part of the shoe, whereas the two anterior
sensors were used to detect TO events. The detection algorithm is described by
the finite state machine in Figure 2. Initially, the user is in the stance state. When
all force sensor values are below a threshold (TOTH), a TO event is detected
and the user is in the swing state. Swing terminates when both of the posterior
sensors measure a force above a threshold (HSTH). As mentioned before, stance
time is the interval between HS and TO, whereas swing time is the interval
between TO and the following HS.

The foot contact times provided by the shoe are used as ground truth to
validate the following methods based on body-worn accelerometers.

2.2 Trunk (lower back) sensor

Shimmer3 devices include an ST Micro LSM303DLHC tri-axial accelerometer,
which was set to operate within ±8 g range. The reference frame of the trunk
sensor is supposed to be approximately aligned with the anatomical directional
references.

Figure 3 shows the acceleration during two consecutive gait cycles. More
precisely, the thin line shows the acceleration magnitude signal (Euclidean norm
of the three acceleration signals), whereas the thick line shows the acceleration
on the AP direction.

The method to detect HS and TO events proceeds as follows. First, gait
cycles are identified by using the walking detection algorithm presented in [6],
which exploits the groups of acceleration magnitude peaks produced at each
step. For each detected step, a region including the group of peaks (gray bands
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Fig. 3. Detection of gait phases with the trunk sensor.

in Figure 3) is considered to search for HS and TO events. More precisely, foot
contacts are found by analyzing the AP signal: HS events correspond to a local
maximum in the AP signal, as suggested in [14], whereas TO events correspond
to a local minimum. The approach used to detect TO events differs from what
we found in the literature, as typically vertical acceleration is used to detect TO
events [7]. Detected HS and TO events are shown in Figure 3 using squares and
circles, respectively.

2.3 Pocket sensor

A novel method is proposed to detect HS and TO events with an accelerometer
carried in a front trouser pocket. The method enables the detection of the foot
contacts produced by the leg that is carrying the sensor.

Figure 4 shows the same gait cycles as in the trunk example, this time mea-
sured with the pocket sensor. The thin line is the acceleration magnitude signal,
whereas the thick line is the acceleration measured on the axis approximately
aligned with the AP direction when the user is standing still. We use the letter
z to refer to this axis: this corresponds to the reference frame typically adopted
in smartphones (z is the axis orthogonal to the screen, and is approximately
aligned with AP when the device is in a front trouser pocket). Differently from
the trunk scenario, the pocket sensor “swings” during gait cycles because of leg
movements, hence the orientation of the accelerometer with respect to gravity
is not fixed.

Despite the significantly different pattern, the walking detection algorithm
in [6] can still be used to detect steps and gait cycles by processing the accelera-
tion magnitude signal. All the steps are highlighted with gray vertical bands. The
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Fig. 4. Detection of gait phases with the pocket sensor.

proposed algorithm first needs to discriminate between the steps made with the
leg carrying the sensor (dominant steps) and the ones made with the contralat-
eral leg. To discriminate between dominant and contralateral steps the average
value on the z axis is used: as shown in Figure 4, during dominant steps there
is a significant positive acceleration. Dominants are used to detect HS events by
finding the local maximum value on z. Instead, contralateral steps are used to
find TO events, by finding the local minimum on z. Detected HS and TO events
are shown in Figure 4 using squares and circles, respectively.

3 Evaluation and Discussion

For this preliminary experiment we recruited a healthy volunteer, who wore the
three devices (sensorized shoe, pocket and trunk sensors) as in Figure 1. The
experiment consisted in walking two times through a straight corridor. In total,
44 gait cycles were performed. The shoe is capable of sampling force sensor data
at ∼ 50 Hz, whereas the Shimmer’s accelerometers were sampled at ∼ 200 Hz
and then downsampled to 50 Hz. All the collected samples were stored into
persistent memory to ensure repeatable evaluation.

The force sensor signals on the shoe were used to find the following parame-
ters for each gait cycle: stride time (i.e., the duration of a gait cycle), swing and
stance time relative to the left foot (the one wearing the instrumented shoe).
In our approach, these parameters represent the ground truth. The methods for
gait phase detection at trunk and pocket position were applied to the respective
acceleration samples. As a result, we obtained estimations of stride, swing, and
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Table 1. Temporal gait parameters estimation results [s]

Position Stride Stance Swing

Shoe 1.085 0.670 0.415

Trunk 1.084 0.665 0.419

Pocket 1.086 0.675 0.411

Table 2. Mean absolute error (MAE) in the estimation of gait parameters [s]

Position Stride Stance Swing

Trunk 0.011 0.012 0.014

Pocket 0.029 0.033 0.031

stance time for each gait cycle, which can be compared with the ground truth
provided by the shoe.

Table 1 shows the average gait parameters found with the three sensors.
Interestingly, both trunk and pocket are able to estimate the three parameters
with a maximum average error of 5 ms. More detail on the estimation error
committed on each gait cycle is provided in Table 2, where it is shown the
mean absolute error (MAE). The trunk sensor achieves higher accuracy, with a
MAE between 11 and 14 ms. Notably, the error is significantly lower than the
sampling period used (20 ms). This result confirms the accuracy reported by [12]
for different approaches based on a single sensor placed over the trunk.

The results of the pocket experiment are promising. Despite the more chal-
lenging positioning (the orientation of the sensor changes during the swing
phase), the average error is similar to the trunk experiment (Table 1), whereas
the MAE is slightly higher (between 29 and 33 ms). The proposed technique is
based on the assumption that one of the reference axes of the pocket sensor is
approximately aligned with the AP direction. This is a reasonable assumption
if we consider a smartphone carried in a front trouser pocket: due to the form
factor of the device, the axis orthogonal to the screen is typically aligned with
AP while the user walks. These results suggest that a smartphone could be used
as a novel means to perform continuous gait analysis during everyday activi-
ties. In particular, the ratio between stance and swing times could be used to
automatically detect early signs of motor ability issues.

In future work we plan to perform extensive experiments to further investi-
gate the use of a pocket-worn device for gait analysis. Future experiments will
take advantage of a higher sampling rate, and will include older adults with gait
pathologies in the experiments. In fact, the results presented in this work, as
well as in most of the works from the literature, have been obtained on healthy
subjects. Specific experiments are required to prove that the methods can be
used with (or adapted to) pathologic gait. Another important aspect that needs
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further investigation is the possibility of using a pocket-worn sensor to detect
gait parameters relative to the contralateral leg (i.e., the leg that is not carrying
the sensor). Finally, we plan to perform similar tests with a wrist-worn device,
which could represent a further step towards unobtrusiveness and ease of use.
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