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Abstract Urban traffic management requires congestion detection. Traffic shape changes 

over time and location in which it is observed. Moreover it depends on roads, lines and 

crossroads arrangement. In addition, each congestion event has its own peculiarities (e.g. 

duration, extension, flow). Therefore, to give correct responses any detection model needs 

some kind of parametric adjustment. In this paper, we present an adaptive biologically-

inspired technique for swarm aggregation of on-vehicle GPS devices positions, able to 

detect traffic congestion. The aggregation principle of the position samples is based on a 

digital mark, released at each sample in a digital space mapping the physical one, and 

evaporated over time. Consequently, marks aggregation occurs and stays spontaneously 

while many stationary vehicles are crowded into a road. In order to identify actually 

relevant traffic events, marks aggregation has to be correctly configured. This is achieved 

by tuning the mark’s structural parameters. Considering that each urban area has a specific 

traffic flow and density, determining a proper set of parameters is not trivial. Here, we 

approach the issue using different differential evolution variants, showing their impact on 

performance. 
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Differential evolution 

1 Introduction and motivation 

Urban life issues are gaining more and more attention thanks to the rise of the Smart City 

paradigm. One of the main topics in this field is the traffic congestion management [1]. The 

main technologies employed in this field can be grouped in two categories: roadside 

infrastructure and on-vehicle devices. The former examines the traffic state via specific 

equipment (e.g. camera, loop detectors) installed on the roadside, while the latter refers to 

on board Global Position System (GPS) to portray traffic condition using vehicle 

distribution. Moreover, on board GPS offers widespread traffic observation in urban 

scenario with respect to roadside infrastructure, since the latter is mostly applied to 

highways and primary arteries. For this reason, we consider on-vehicle GPS a requirement 

in our approach as it will be used as data sources. 

In this paper we rely on stigmergy to aggregate and analyze vehicles’ positional data 

[2],[3]. More in depth, to exploit both spatial and temporal dynamics that characterize urban 

traffic, we use marker-based stigmergy as a computing paradigm. In the virtual space, 

digital marks are periodically released in correspondence of each monitored vehicle’s 

position. Marks aggregate and strengthen when superimpose, otherwise they evaporate 

losing intensity. Marks agglomeration, referred to as track, pops up and stays spontaneously 

while high density roads and stationary vehicles occur. In addition, input/output activation 

interfaces are used before/after the stigmergic processing layer, in order to enhance 

scalability and distinction of congestion events. In this context “activation” (term that 

comes from neural network domain) refers to a function which triggers an output signal for 

the next layer only if the input signal reaches a certain level. 

The processing layers are parameterized. For example, the mark extension is a parameter 

of the stigmergic layer. Since each application context has specific traffic flow and density, 
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determining suitable parameters is not trivial [4]. For this reason we adopt Differential 

Evolution (DE) as tuning mechanism. 

In this paper, the problem statement, its formal characterization, as well as the proposed 

solving approach and experimental settings are covered. More specifically, Section 2 

focuses on related work. Section 3 provides the analysis and the design of the processing 

layers. Section 4 is devoted to the analysis and the design of the parameters adaptation. 

Experimental studies are detailed in Section 5. Section 6 covers conclusions and future 

work. 

 

2 Related work 

Taking into account the technology involved in traffic state estimation, a number of 

methods have been developed. In [5] probe-vehicle data is used to determine kernel-based 

traffic density estimation. The method first models the traffic data with Gaussian density 

(centered in the sample position with predefined mean and variance) to extract the kernel 

parameters. Then, distance between their localized cumulative distributions is measured and 

optimized, in order to extract the weights of Gaussian kernels in the estimated distribution 

function. The approximation density function by optimized kernels’ weights is finally used 

to estimate the mobile vehicles density in a specific time and space. In [6] the traffic flow is 

analyzed by means of GPS and GIS integrated system. In this approach roads are split up 

into segments, and mean car speed in it is estimated using loop detectors and taxi as probe 

vehicles, therefrom an approach based on Federated Kalman Filter and D-S Evidence 

Theory is used, to join such data. Finally, authors propose a curve-fitting method aimed to 

estimate mean speed in a urban road. It uses least-square method in order to fit data coming 

from GPS. In [7] the authors pursue a road-segment average traffic velocity estimation, 

achieved through two different approaches: vehicle tracking and curve-fitting. Experiments 
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show how a tracking-based method usually bears higher estimate accuracy but slower 

operational speed with respect to a model-fitting method. In [8] two subsequent GPS 

samples are used to define a vehicle track by means of the A* algorithm. The combination 

of tracks velocities passing through the road segment determines the average velocity of the 

current segment. In [9] an algorithm is proposed to estimate the traffic flow state by using 

the minimum GPS samples via a curve fitting method. The algorithm takes into account 

sample frequency, the road type, and the road section length. A spatial and temporal 

classification of road traffic state based on GPS data is proposed in [10]. Spatial 

classification aims to represent steady traffic, while temporal classification reflects traffic 

speed. Authors use GPS samples to calculate vehicles delay distribution over a road 

segment in order to classify the traffic. Time-location data is converted to spatiotemporal 

data and then classified using threshold-based quadrant clustering. Authors compare 

quadrant classifier with maximum likelihood and maximum a priori classifiers.  

Traffic management systems are characterized by huge volumes of data that need to be 

timely analyzed (Big data) for detecting unfolding congestion. Multi-Agents-Systems 

(MASs) are a promising architecture that decompose the computation among several sub-

systems, each operating with partial autonomy and local awareness in decentralized manner. 

More specifically, Swarm Intelligence is a biologically-inspired paradigm according to 

which self-organization and complex behavior can be realized by MASs composed by 

agents characterized by simple behavior [11]. In MASs, coordination between agents can 

occur in direct or indirect manner. The former is less scalable due to the overload of 

communication, while the latter works better with massive amount of agents. In the 

literature, stigmergy is a biologically-inspired pattern of indirect coordination. With 

stigmergy, each agent leaves a sign in a shared environment and stimulates the performance 

of a subsequent agent’s action. In [12] traffic congestion forecast is realized via stigmergy. 



 5  

Here vehicle flow is measured via fixed on-road sensors and traffic-density is processed via 

digital pheromone. 

Another type of service is the recommendation of a path to avoid congestion. In [13] the 

authors proposed the DSATJ system, which computes alternative optimum path to avoid 

traffic jam. Here, digital pheromone evaporation and deposit on a virtual space mapping the 

roads is managed. The traffic jam is detected via upper bound on the pheromone value. 

Moreover, diversion of traffic on the roads which had been jammed was represented by 

normalization of pheromone. While this approach takes advantage from distributed 

computation that characterizes MAS, it requires that every vehicle involved in the analysis 

declares its destination and starting point.     

In [14] a traffic lights control system based on swarm intelligence is presented. Here, 

control methods are divided into macroscopic and microscopic levels, and are based on 

stigmergic evaluation of traffic flow, by using pheromones deposits characterized by 

evaporation/diffusion dynamics. 

In [15] the authors assume the following types of stigmergy: long term, short term, and 

anticipatory. The main differences lie in how and when the vehicles’ position information is 

stored. Long term stigmergy is archived in a central storage, and provides stochastic traffic 

congestion information to vehicles. Short term stigmergy occurs while vehicles are sharing 

current data, and drivers can choose their routes more dynamically, on the basis of such real 

time information. Anticipatory stigmergy implies that vehicles can declare their destination, 

in order to distribute pheromones in advance and use them during routing task. Here, 

aprioristic knowledge on the phenomena is then required. The authors conducted several 

simulations on traffic analysis to compare the effectiveness of the different kinds of 

stigmergy. The results demonstrate that only if the traffic network is static, the combination 

of long term and short term stigmergy overcome the other kinds of stigmergy. 
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While in [15] the road is considered as a monolithic structure, in [16] roads are divided 

into segments. Here, congestion evasion strategies based on digital pheromone are 

investigated. More specifically, every vehicle deposits digital pheromone in the virtual 

environments, and takes into account the pheromone state to decide upon its subsequent 

route. The authors propose an algorithm for decentralized, self-organizing, traffic flow 

improvements adapting the mechanisms of the ant pheromone.   

 

3 Analysis and design of the processing layers 

The problem statement and the specification of the proposed system are detailed in this 

section. As a first insight, the ontology diagram of Fig. 1 shows an overview of the main 

concepts of our approach. Here, concepts are enclosed in gray ovals and connected by 

properties, represented by black directed edges. The core concepts are summarized by the 

following sentences. Vehicle creates a Road Congestion Event, which is detected by a 

Monitoring System. The Monitoring System controls a Stigmergic Environment, containing 

marks and its aggregate, i.e., tracks, as well as an output activation of the stigmergy, to 

signal the congestion event. A Mark is enabled by a hypothetical track, i.e., a preprocessing 

mechanism of space-time position samples released by vehicles. The performance of the 

Monitoring System is evaluated by a Differential Evolution, which accordingly adapts the 

Stigmergic Environment. More specifically, the adaptation is carried out on four 

fundamental parameters: mark extension, mark intensity, track evaporation, and activation 

inflection.  
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Fig. 1. Domain ontology of the proposed approach. 

 

3.1 The problem statement 

Let us model a given urban street network as a directed graph. Fig. 2 shows an example 

of the Pisa center urban street network (Italy). Here, two paths of the network are also 

shown. In the dynamic view of the system, each path can be modeled as a linear segment, 

because the position of each vehicle in the path can be measured by the on-road position 

from the initial point of the directed path. 

The input of the monitoring system is made by periodical samples of the geo-position 

gv,t, of each vehicle ν at the time t in the given urban area. An occurred traffic congestion 

event Ek, is characterized by spatial and temporal coordinates, which correspond to 

congestion begin and end. Let us denote them as begin instant   kt  and end instant kt . In 

each sampling instant   [ , ]k kt t t∈ , the on-road positions of the queue head and tail can be 

denoted as 
t

k
s  and 

  

t

k
s .  
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Fig. 2. The Pisa center urban area with two sample paths  

 

With this characterization, the system output is made by a series of traffic congestion 

occurring events: 

      {[ , ],[ , ],...,[ , ]}DETECTED t t t t

k k k k k k k
E t t s s s s≡     (1) 

We measure the similarity between actual and detected events in order to design a fitness 

function which evaluate the system output quality. Real and detected event share the same 

representation format, but their values could be different because of detection error: 

 {[ , ],[ , ],...,[ , ]}ACTUAL

K k k k k k k
E

τ τ τ ττ τ σ σ σ σ≡     (2) 

Given the above definitions, a fitness function of the monitoring system is determined: 

max( , )
     

min( , ) [ , ]

i i i ii t
k k k kk k k k

k i i
i tk k k k

s st t
f

i i

τ

τ

σ στ τ

τ τ σ σ

≡

≡

− + −− + −
= +

− −
∑    (3) 

 More precisely, Fig. 3 represents the main elements of the fitness function. The absolute 

differences between start and end times, normalized with respect to the time interval, is 

represented in the left addend, while the average absolute differences on the head and tail of 
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the queues, normalized with respect to the queues length and the number of samples is 

represented in the right addend. 

 

 

Fig. 3. Representation of the main elements of the fitness in Formula (3). 

 

It is worth noting that fk=0 for a perfectly detected event and that in general fk is a 

positive real number. With this definition, the overall quality of the model is defined as the 

averaged fitness of all events: 

1
kk

Fit f
K

= ⋅∑      (4) 

Indeed the system may: (i) detect an event although a real counterpart does not occur 

(false positive); (ii) do not detect an actually occurred event (false negative). It follows that 

to find good match between actual and detected events corresponds to minimize Fit. The 

contributions of unmatched events are also entirely considered. 

The overall problem is to detect all the traffic congestion events with the lowest fitness. 

 

3.2 The input activation interface 

The input activation interface aims to take vehicle positions pv,t (generated from gv,t via 
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projection on a linear path) and to establish whether they should be processed by the 

stigmergic layer or not. For this reason, we introduce the concept of hypothetical track, 

which is represented by an isosceles trapezoid placed on current vehicle position. If two 

hypothetical tracks generated by the same vehicle on two consecutive position samples 

overlap, then a mark is released in the stigmergic layer, and its intensity is proportional to 

the overlaps itself (5). In Fig. 4 a scenario of two overlapping hypothetical tracks centered 

on the vehicle positions is depicted. Here 1, β and 2β, are respectively height, upper and 

lower bases of the hypothetical track. Moreover, δ is the distance covered by the vehicle 

between pv,t-1  and pv,t. It can be demonstrated that, when the two hypothetical tracks 

overlap, the ordinate of the cross point of their diagonal edges, called intensity coefficient γ, 

is: 

{ } [ ],  min 1,   2 /  0,1
v t

γ δ β= − ∈     (5)  

 

Fig. 4. A scenario of input activation interface with two hypothetical tracks. 

 

The input activation interface activates the stigmergic layer and provides the pair (pv,t, 

γv,t) when two consecutive hypothetical tracks overlap. 
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3.3 The stigmergic layer 

 

Fig. 5 represents a mark (the overlying triangular shape), and the same mark after one 

step of evaporation (the underlying triangular shape). The mark is released by the vehicle ν1 

in the path Pk, at the position pv1,k, which is characterized by a central (maximum) intensity 

γv,t ⋅I, an extension ε > 0, and an evaporation θ ∈[0,1]. More precisely, θ corresponds to a 

percentage of the mark intensity that is kept step by step, until in practice the mark 

disappears. The decay time is longer than a marking step. Thus, if the vehicle is still, the 

new mark and the old one superimpose with each other, creating a track, and so on, up to 

reach a stationary level of the intensity. In contrast, if the vehicle speed is sufficiently high, 

the mark will not be reinforced and its intensity will decrease in time. 

 

Fig. 5. A single mark released in the marking space (the overlying triangular shape) 

together with the same mark after a step of decay (the underlying triangular shape). 

 

Similarly, marks generated by two vehicles sufficiently close will superimpose with each 

other. An example of track is shown in Fig. 6, by the overlying solid-line shape. It is 

generated by two vehicles releasing two marks, represented by the two underlying 

triangular shapes, at different instants of time. More precisely: vehicle ν1 released, at the 

previous time, t-1, a mark which accordingly evaporated by a factor θ, whereas vehicle ν2 
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released a mark at the current time, t, close to the mark of the vehicle ν1. 

 

Fig. 6. Two marks released by two close vehicles (triangular shapes), with the 

corresponding track (overlying non-triangular shape). 

 

It is apparent from Fig. 5 and Fig. 6 that mark extension and evaporation can serve as a 

means to detect mobility and proximity patterns of vehicles. In the context of road 

congestion detection, the overall purpose of the monitoring system is to control the mark 

aggregation process so as to maximize the intensity of marks when it is produced by a 

queue of vehicles, while minimizing such intensity when caused by other situations (e.g., a 

single and stationary parking vehicle, a short queue of vehicles at a traffic light). To this 

aim, the system does not represent explicitly the behavior of queues of vehicles. Its design 

is not a top-down process whereby a human observer abstracts and represents in a 

symbolic or statistic manner the situations of interest. Rather, it is tuned by an algorithm to 

achieve a certain level of adaptation to the local situation via examples of road congestion. 

Such adaptation is a bottom-up process: it consists in finding the right parameters at the 

micro-level (marks of a single vehicle) to produce a coherent emergent behavior at the 

macro-level (swarm of marks of multiple vehicles). To this aim, we will adopt an 

evolutionary computation technique, which improves the parameters with regard to a 

given measure of quality over the tuning examples. Evolutionary computation has the 
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advantage of making no assumptions about the problem being optimized, thus avoiding to 

bias the underlying emergent mechanism of aggregation. It is based on a population of 

candidate solutions, called agents, iteratively improved via operators inspired by natural 

evolution, such as inheritance, mutation, selection, and crossover. The adaptation process 

will be detailed in Section 4.  

The next subsection is devoted to the problem of transferring the stigmergic potential 

achieved by the track intensity to a performance indicator with a clear interpretation, i.e., 

stable, meaning that it has to retain its identity in spite of some small fluctuations 

occurring in real-world data, and distinguishable, meaning that its identity should be 

distinct enough from each other. 

 

3.4 The output activation interface 

The information aggregation process based on stigmergy handles micro-fluctuations and 

leads to abstraction and emergence of high-level concepts. Significant phenomena of traffic 

congestion are better distinguished thanks to the output activation interface, which enhances 

the estimation of the congestion progressing levels. To this aim, a sigmoidal activation 

function is applied to the track intensity: 

( )
( )  1/(1+e )kI

k
I

α φ− −Σ =      (6)  

In Fig. 7 an example of activation function with inflection point φ = 120 and different 

values of α is shown. In essence, the activation function amplifies values of the intensity 

higher than φ, while decreases values lower than φ. As a consequence, major congestions 

are highlighted, while minor queues are hidden, and the micro fluctuations are smoothed. 

The sigmoidal inflection slope is determined by the value of the parameter α, which 

controls the width of the “gray zone”, useful to deal with uncertainty in data: a high value 

makes the activation Boolean (suitable for stable events) whereas a low value enhances the 
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multi-class or “fuzzy” character of the output, which is useful to reduce information hiding 

when upper processing layer are available.  

 

Fig. 7. Sigmoidal activation function with φ = 120 and different values of α. 

 

As an example, Fig. 8 shows vehicle positions, track intensity and congestion degree for 

the road highlighted with an oval in Fig. 2. 

 

Fig. 8. Vehicles positions, track intensity (thick line), congestion degree (thin line), for 

the road highlighted with an oval in Fig. 1. 

 

Overall, several structural parameters are involved in the swarm aggregation so far 

designed. Finding correct setting for such parameters is not trivial, since traffic flow and 

density vary with respect to the observed urban areas. Manual tuning is very time-

consuming, human-intensive and error-prone. Furthermore, it depends on the intuition and 

experience, which are typically undocumented and therefore non-reproducible. Therefore, 

an automated parameter adaptation mechanism is needed [4]. Fig. 9 shows the overall 
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system architecture, inclusive of the adaptation module. In essence, at every instant 

considered the input activation interface takes as an input a set of vehicles’ positions 

{P(tk)}, and provides to the stigmergic layer a set of positions and intensities for related 

marks {M(tk)}. The stigmergic layer provides a track, T(tk), to the output activation 

interface, which in turn provides a congestion degree, C(tk). This input-output flow is 

represented as a solid arrow in figure. In contrast the input-output of the adaptation 

subsystem is represented by a dotted arrow. More precisely, the adaptation is based on the 

evaluation of the fitness over a tuning set. In figure, the tuning set is denoted by asterisks: it 

is a sequence of (input, desired output) pairs, on the left side, together with a corresponding 

sequence of actual output values, on the right side. In a fitting solution, the desired and the 

actual output values corresponding to the same input are very close to each other. The next 

section is devoted to the adaptation subsystem.  

 

Fig. 9. Overall system architecture. 

 

4 Analysis and design of the parameters adaptation 

In this section, we first report on the role of each parameter in biasing the processing, 

and then we adopt a supervised data-driven parametric optimization based on DE. 
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In the literature, the approaches aimed to set up a group of parameters can be 

distinguished into model-free and model-based procedures [17]. Model-based procedures 

build a model upon the relation between the algorithm and the values of its parameters 

provided by human experience. On the other side, model-free procedures are faster in 

execution, but have no extrapolation potential (black-box approach). In general, the no-free-

lunch theorem of optimization states that a general-purpose universal optimization strategy 

is impossible, and the only way one strategy can outperform another is by specializing it to 

the structure of the specific problem under consideration [18]. Specialization can be 

achieved applying constraints to the search space. A common solution to cope with a 

complex search space consists in applying a population-based method, such as Evolutionary 

Algorithms (EA) [17],[19]. We adopt a specific subclass of EA, namely DE. Since EAs are 

meta-heuristics, they have parameters to be tuned. However their effectiveness is already 

provided with default values.  

 

4.1 Model Based Analysis 

In Table 1, the structural parameters of the system are summarized. The hypothetical 

track extension (β) depends on statistics about specific road traffic. For instance, let us 

consider a road with a speed limit of 80 km/h and a sustainable average speed of 50 km/h = 

833.2 meters/min. Two consecutive hypothetical tracks will not overlap if β = 416.6 meters 

while car speed is higher than 50 km/h. The mark intensity (I) represents the maximum 

intensity of the released mark. The intensity of the track generated from marks aggregation 

is directly influenced by value of I as well as the mark lifetime and the triggering of the 

output activation interface. For example, with an evaporation θ =0.4 and I=8, after 5 steps 

the mark intensity falls under 1, and then in practice disappears. 
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Table 1  Structural parameters of the system. 

Parameter Description  Section 

β > 0 hypothetical track 3.2 
I > 0 mark intensity 3.3 

ε > 0 mark extension 3.3 

0 <θ < 1  mark evaporation 3.3 

φ > 0 inflection point 3.4 

α > 0 inflection slope 3.4 

 

The mark extension (ε) is measured in unit and implies the distance within which marks 

interact with each other. The mark of a vehicle in a unit should interact with both the next 

and the previous occupied units. Thus, 1 unit = 10 meters can be used as lower bound. In 

addition, considering a 100 meters congestion, vehicle marks in the head and in the tail have 

to interact at most with the mark produced by the vehicle in the middle of the queue. A 

range of 5 units = 50 meters allows this interaction. Hence, taking ε between 1 and 5 will 

allow marks aggregation between close vehicles, while preventing interaction between 

vehicles too far from each other in any urban context, thus increasing the system error on 

the start and the end positions of a queue. The mark lifetime is strictly related to the mark 

evaporation (θ). Short-life marks prevent marks aggregation, whereas long-life marks lead 

to track saturation. Both behaviors increase system error: the former affects detection of the 

temporal start of the event, while the latter affects detection of the temporal end of the 

event. Therefore, considering a sampling period of 1 minute, mark lifetime should be higher 

than 2 minute (θ = 0.5) and lower than 5 minutes (θ = 0.75). The inflection point (φ) is in 

the domain of the mark intensity, and the inflection slope (α) is a multiplicative factor of the 

transient dynamics, and can be set according to the structural mark parameters. As shown in 

Fig. 7, the maximum value for α is 10. Indeed it provides an almost-Boolean transition.  
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4.2 The model-free parametric tuning 

The parametric adaptation subsystem is based on the DE algorithm, which optimize the 

system parameters with respect to the fitness defined in (4). In our context, an n-

dimensional vector represents a solution of the optimization problem delegated to DE, 

where n is the number of parameters to tune. At the begin of its execution, if solutions to 

inject are unavailable, DE generate randomly a population of N candidate solutions. For 

each step and member (target), some population members are selected for mutation, 

obtaining a mutant vector, and a trial vector is generated applying the crossover to the 

mutant vector and the target. Finally, the target is replaced by the trial if the latter provides a 

lower fitness value.  

Different population sizes are suggested in the literature [21]. Generally, a larger 

population size corresponds to a higher probability to find a global optimum. On the 

contrary, a smaller population size increases the convergence rate, and reduces the number 

of needed function evaluations. Smaller populations are suitable to separable and unimodal 

fitness functions, while larger populations are appropriate to multi-modal function in order 

to avoid premature convergence. Population size can vary in a range of [2n, 40n]. Based on 

studies in [22] we set the population size to 20 members. The scaling factor F ϵ [0,2] 

mediates the generation of the mutant vector. F is usually set in [0.4-1) with an initial value 

in [0.5-0.9] [23]. To choose the best value for our application, we performed trials with 

F∈{0.4, 0.8, 1.2, 1.6, 2.0}. About the crossover probability, larger values generate a vector 

which is more similar to the mutant vector, while the opposite favors the target vector. In 

general, large CR speeds up the convergence. A good value for CR is between 0.2 and 0.9 

[21]. To choose the best value, we performed trials with CR∈{0.2, 0.4, 0.6, 0.8} to compare 

the results. 

Many variants of the DE algorithm have been designed, by combining different structure 
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and parameterization of mutation and crossover operators [23],[24]. Any specific DE 

strategy is formally described as DE / x / y / z, where: 

• x defines the base choice (v1) of the mutant vector (vmutant) between: 

- rand, random vector, which explores more, but requires more generations to converge; 

- best, the best population individual, which converges faster, but risks to be trapped in 

local minima; 

- rand-to-best, a combination of the above strategies (weighted sum of F). 

• y is the number of differences in mutation carriers: 

- 1: vmutant = v1 + F ⋅ (v2 – v3) 

- 2: vmutant = v1 + F ⋅ (v2 + v3 – v4 – v5), where v2 , ..., v5 are always random 

 

• z is the type of crossover: 

- bin (binomial), in which CR is the probability that an element of the vector is taken from 

the target or from the mutant vector; 

- exp (exponential), in which, starting from a random element of the vector, the mutation 

proceeds sequentially in a circular manner. It stops with probability CR after each 

item, or if you changed all the elements; 

 

Clearly DE variants vary in the terms of vector choice, recombination operator used and 

also in the way in which the mutation is computed. Our aim is to identify which variant of 

them is more suitable with respect to our application. The next Section presents the 

experimental studies. 
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5 Experimental studies 

To prove the effectiveness of the proposed approach we developed a Java-based system 

architecture. More specifically, the stigmergic environment and the adaptation subsystem 

have been developed under the Repast1 and the Matlab2 frameworks, respectively. A traffic 

simulator based on Java and the Google Maps API has been developed to feed the system. 

To generate traffic data, as a pilot urban area we considered about 8 km of the network of 

Fig. 2. In two hours of simulation, 116 congestion events occurred. 

For the setting of CR and F, and the comparison between strategies, we took into account 

the model-based analysis of Section 4.2 [22], thus using human experience. We refer to this 

approach as the “HU+DE”. Differently from “HU+DE”, we relaxed the constraints earlier 

identified in order to better investigate the behavior of DE. In fact, relaxing the constraints 

increase the search space, i.e., the difficulty of the task. This is important also to distinguish 

between the performances of each setting. More exactly, increasing the maximum mark 

extension allows the marks more spatial interaction; enlarging the evaporation constraints 

permits temporal flexibility; we consequently adjusted the inflection point according to 

Section 4.2; finally we relaxed the slope to permit the system resiliency to previous 

changes. To sum up, we constrained the parameters to the following parameters bounds: ε ∈ 

[1, 10], θ ∈ [0.35, 0.9], φ ∈ [1, 500], α ∈ (0, 20]. We refer to this approach as “DE”. We 

ran DE for 30 generations, and for each setting we repeated the experiment for 5 times. We 

also determined that the resulting fitness values are well-modeled by a normal distribution, 

using a graphical normality test. Hence, we calculated the 95% confidence intervals. 

Table 2 shows the fitness, in the form “mean ± confidence interval”, for each strategy, 

together with the considered values of the parameters CR and F. We remark that the 

confidence interval is slightly wider than in [22], because we considered a larger search 

                                                             
1 http://repast.sourceforge.net/ 
2 http://www.mathworks.com  
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space for DE. DE achieves the best performance in term of fitness with a greater population 

(N=20) independently of the strategy, CR and F. However, the time to compute a solution 

increases almost linearly with the population: respectively to set N=10, N=15 needs 50% 

more time, and to set N=20 100% more. 

Table 2 Settings of the optimization parameters: (a) DE/1/best/bin, (b) DE/1/rand/bin, and 

(c) DE/1/rand-to-best/bin 

N=20 
CR 

0.2 0.4 0.6 0.8 

F 

0.4 37.11±1.66 36.24±1.32 35.26±1.13 34.98±1.24 

0.8 40.71±3.35 36.78±0.79 37.17±1.54 34.89±1.04 

1.2 46.27±2.09 44.36±2.65 38.75±2.37 37.86±1.27 

1.6 43.66±7.05 43.36±4.07 42.09±2.10 39.97±2.99 

2.0 43.35±6.31 43.83±3.16 46.61±6.27 43.38±2.50 

 (a) 

N=20 
CR 

0.2 0.4 0.6 0.8 

F 

0.4 40.81±1.92 38.43±1.61 37.22±1.18 36.73±1.00 

0.8 44.02±5.14 40.76±2.50 38.29±1.95 37.05±2.31 

1.2 45.25±4.40 41.38±1.68 40.84±3.97 40.22±3.68 

1.6 43.72±4.75 42.94±4.13 44.69±5.31 42.56±2.12 

2.0 45.39±6.29 45.86±6.12 46.86±2.58 42.81±3.67 

(b) 

N=20 
CR 

0.2 0.4 0.6 0.8 

F 

0.4 40.20±4.12 35.94±0.90 37.01±1.68 35.49±1.03 

0.8 38.03±1.09 38.20±1.04 35.98±0.89 35.55±1.23 

1.2 41.30±2.94 39.69±1.60 37.70±2.03 39.46±0.95 

1.6 49.41±6.99 41.77±5.60 40.75±2.49 41.35±4.61 

2.0 53.58±4.71 46.22±3.29 48.48±9.30 47.73±4.91 

(c) 

In Table 2, we present the results with the used combinations of CR and F, and the three 

evaluated strategies. In all strategies, DE performance improves for higher CR and lower F. 

When CR is low (0.2 and 0.4), very few elements of the mutant vector enter the trial vector. 

This implies the trial vector to be very similar to the target vector (which is already a 

member of the population). Therefore the crossover is pretty inefficient. The scaling factor 
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F seems to affect negatively the performance of DE when higher than 1 (1.2, 1.6, and 2.0). 

The mutation process with lower values of F performs small modifications of the mutant 

vector, especially with the DE/1/best/bin, and this positively affects the performance of DE. 

To sum up, DE operates very well with high CR (0.6 and 0.8) and low F (0.4 and 0.8). With 

this setting, there is a small mutation of the mutant vector, but it is more likely that during 

the crossover an element of the trial is picked from the mutant than the target vector. In 

general the DE/1/best/bin strategy performs better than both the DE/1/rand/bin and 

DE/1/rand-to-best/bin. For values of F = 1.6 and 2.0, the strategy DE/1/rand-to-best/bin has 

the lowest performance, while for lower values of F (0.4 and 0.6) is better than 

DE/1/rand/bin and almost as good as DE/1/best/bin. Finally, we repeated the experiment for 

all the strategies with the promising combination of CR=0.9 and F=0.2. However, no 

improvement of the performance has been detected. 

Table 3 presents the optimal parameters setting and the related best fitness of each 

experiment. To provide an absolute quality measure, the table also shows separately the 

average absolute errors on the start/end times, and the average absolute errors on the 

head/tail of the queues. It can be observed that the model-free approach (“DE”) significantly 

improved the quality of the detection with respect to the model-based (“HU”), from 65.5 to 

33.8, and that the hybrid approach (“HU+DE”) provided further improvements. The 

experiments confirm the solution found by [22] with the model-based approach to be the 

one with the best fitness value. In fact, most of the final solutions identified by “DE” 

converge close to that same value, but without any improvement. The best solution has been 

identified by DE/1/best/bin with CR = 0.8 and F = 0.8. The fitness is 33.8, which is very 

close to the fitness value of 33.6 provided in [22]. It is worth noting that the two solutions 

differ from the structural parameters of the mark. The “DE” solution has wider mark and 

lower evaporation. This implies that marks interact at greater distance but for shorter time. 
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Due to that, the system is able to better identify the spatial extension of the traffic 

congestion (average error of 17.3 meters) at the expense of the temporal duration (average 

error of 20.8 minutes). Table 3 also shows that the major impact of the parametric 

adaptation by [22] is on the temporal error (from 28.4 to 9.5 minutes), whereas the impact 

on the spatial error is not significant (about one meter).   

Table 3 Human-driven vs. DE-driven parameterization 

Approach 

Parameterization Performance 

εεεε θθθθ αααα φφφφ Fit 
Avg Time 

 Err (min.) 

Avg Position 

Err (mt.) 

HU+DE 4 0.579 8.5 25 33.6 9.5 36.4 

DE 10 0.469 13.8 82 33.8 20.8 17.3 

HU 3 0.675 1 23 65.5 28.4 35.7 

 

Fig. 10 shows the fitness versus the number of generations for the three strategies: 

DE/1/best/bin with CR = 0.8 and F = 0.8; DE/1/rand/bin with CR = 0.8 and F = 0.4; 

DE/1/rand-to-best/bin with CR = 0.8 and F = 0.4. We observe that for all the strategies the 

fitness function gets stable under a value of 40 after a small number of generations (about 

15). It is worth noting that DE/1/best/bin improves the solution with subsequent drops and 

plateaus (generation 7 and 13) of the fitness, and finally small adjustments are made to the 

best member; differently, the DE/1/rand/bin, has a softer decrease of the fitness with small 

improvements over all the generations; the hybrid strategy DE/1/rand-to-best/bin shows 

both patterns: drops and plateaus occurred in the first generations (6 and 9), and then the 

fitness slowly decreases for the remaining generations. 
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Fig. 10. Fitness function versus generation, for DE/1/best/bin, DE/1/rand/bin and 

DE/1/rand-to-best/bin strategies. 

 

6 Conclusions 

This paper proposes a novel approach for traffic congestion estimation, based on swarm 

aggregation of vehicle positions. At the core of the system is the marker-based stigmergy, 

properly interfaced with two input and output activation mechanisms, and adapted to 

different application contexts. For this purpose, we designed a fitness function and adopted 

the differential evolution as an optimization strategy. We explored DE with three strategies 

and different combination of both the crossover rate and the differential weight. The 

experiments shows that lower values of the differential weight (F≤0.8) and higher values of 

the crossover rate (CR≥0.6) produce better solutions. This parameterization has been 

effective with all the three strategies: best, rand and rand-to-best. However, the best 

strategy performs better and produces solutions with lower fitness than rand and rand-to-

best strategies. In comparison with [22], the best solution has better accuracy in the spatial 

detection of the traffic congestion, at the expense of the temporal accuracy. This result 

indicates that the parameterization of the system can be oriented for different purposes, 
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according to the user needs. As a future work, we plan to reduce the human knowledge in 

the parametric adaptation, i.e., to relax the constraints of the search space. 
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