
Localization and Inhibition of Malicious Behaviors
through a Model Checking based methodology

Mario Cimino and Gigliola Vaglini
Department of Information Engineering, University of Pisa, Pisa, Italy

{mario.cimino, gigliola.vaglini}@unipi.it

Keywords: Malware; Android; Security; Formal Methods; Process Algebras.

Abstract: Mobile malware is increasing more and more in complexity; current signature based antimalware mechanisms
are not able to detect attacks, since trivial code transformations may evade detection. Furthermore, antimal-
ware, when correctly label an application as malicious, are able to quarantine or delete the application, but not
to allow the user to install and safely use it. Here we present a model checking based approach to locate and
inhibit malicious behaviors: we suppose the specification of programs in terms of process algebra language
LOTOS, malicious behaviors specified by temporal logic formulae, and define a method to retrieve, from the
specifications, the description of the infected part of the program. We refer as example to some Android mal-
ware and derive LOTOS specification automatically from the Java Bytecode corresponding to Android’s app.
The method consists of a set of rules building the LOTOS processes mirroring the behavior of the malware
possibly contained in the app; besides the description of the infected part of the code, we give also a way to
block the malware attack, putting the basis to disinfect the application. The method can be applied at any level
of complexity, so allowing the precise location of malicious behaviors.

1 INTRODUCTION

Malware, in order to evade the detection by antimal-
ware, evolves and the majority of newly detected ones
are simple variants of well-known code (Bailey et al.,
2009; Hu et al., 2009; Jang et al., 2011) that maintain
the typical behavior of the initial malware. As a mat-
ter of fact, attackers use to modify existing malicious
code, by adding new behaviors or merging together
parts of different existing malware’s codes. Existing
Android malware, for example, can be embedded in
apparently benign programs (usually popular apps)
with repackaging (Zhou and Jiang, 2012): malware
authors locate and download popular apps, disassem-
ble them, enclose malicious payloads, re-assemble
and then submit the new apps to official and/or alter-
native Android markets. For this reason the repack-
aged malware applications are legitimate application
with a small portion of malicious behaviors injected
by the attacker. Usually the malicious payload ex-
ploits the same permissions used by the legitimate ap-
plication in order to act in a silent way. Researchers
(Zhou and Jiang, 2012) grouped malware in so called
f amilies, where a family defines a set of behaviors
common to all its members.

Current literature provides several approaches to

detect Android malware (Canfora et al., 2013; Arp
et al., 2014), but malware that is well recognized by
detectors turns it in a version that is not anymore
recognized by the most detectors after simple code
transformations (Canfora et al., 2015). Starting from
these considerations, new techniques are due which
are able to effectively recognize the fundamental ma-
licious behavior common to all malware codes of a
given family. In particular static techniques are useful
since they do not require the code execution (Schmidt
et al., 2009).

In this paper we investigate whether model check-
ing could help to properly locate malicious payload,
where each payload can be individuated by a tempo-
ral logic specification of the basic family malicious
behaviors. This specification could help also in defin-
ing the way in which the malware can be inactivate
thus making the code safely usable. The method we
present applies to LOTOS (Bolognesi and Brinksma,
1987) specifications and to formulae of the tempo-
ral logic selective mu-calculus (Barbuti et al., 1999b;
Barbuti et al., 2005); the outcome of the method is
a new LOTOS specification satisfying those formu-
lae. Then it is required a translation from Java Byte-
code, in the case of Android’s app: to LOTOS, this
translation is really very easy when not considering

Paper draft - please export an up-to-date reference from
http://www.iet.unipi.it/m.cimino/pub

values, but only the method calls. The use of the se-
lective mu-calculus, which is an equi-expressive vari-
ant of mu-calculus (Stirling, 1989), helps in obtaining
a description of the affected behavior of the system
containing only the dangerous events. We take ex-
amples of formulae describing Android malware from
(Battista et al., 2016) and here we use their negation.
More precisely, given a LOTOS component P and a
malware temporal logic specification, described by a
selective mu-calculus formula ψ, the technique con-
structs a LOTOS component X and a set of events B
such that the parallel composition of P and X with
synchronization on the events in B satisfies ϕ= not ψ.
At the end X contains the description of the events of
P potentially dangerous; actually, X shows also a way
to block the effect of the malware, in fact the compo-
sition of P and X verifies ϕ = not ψ, i.e. the absence
of the malware.

The technique can be applied in a component-
based program development at various level of com-
plexity of the system: for each level the description
of the contained malware is obtained. In fact, dis-
tributed systems are typically too large and complex
to perform verification after construction as a mono-
lithic, one-time process. The scale of these systems
demands the development of methods for security as-
surance that are more modular, compositional, and in-
cremental. Modularity is needed so that formal meth-
ods can be applied to individual system components
rather than requiring that the verifier confronts the
entire complexity of the system at once. Modular-
ity also demands compositionality: if separately ver-
ified components are combined to form a larger sys-
tem, the desired security properties of the larger sys-
tem should follow from the formally verified proper-
ties of the individual component modules, rather than
requiring that modules be verified again for their new
context. In this regards, the presented method guaran-
tees that the properties of the code independent from
the malware are maintained by the modifications. In
fact, the new process (P |[B]| X) preserves the prop-
erties of P, but only if they do not “contrast” with ϕ:
roughly speaking, if χ is the property that P verifies,
(P |[B]| X) verifies χ∧ϕ only if χ and ϕ do not con-
tain existential and universal conditions on the same
event. In this case, we say that the formulae are not in-
terfering. The class of non-interfering formulae takes
into account many properties that can be interesting in
practice, such as “safety” and “liveness” properties.
Intuitively, a safety property (like for example “be-
tween two successive events a no event b is allowed”)
expresses the fact that nothing bad will ever hap-
pen, while a liveness property (like for example “if
a ever happens then eventually b will happen later”)

expresses the fact that something good must eventu-
ally happen. However, the non-interference criterion
can rule out some mixture of safety and liveness for-
mulae.

The paper proceeds as follows: comparisons with
related work are made in Section 2. Section 3 is a re-
view of the basic concepts of formal methods, while
Section 4 describes our methodology. In Section 5 re-
sults are discussed and conclusions are drawn, while
Section 6 concludes and gives some hints on future
work.

2 RELATED WORK

Some works about malware detection exist where for-
mal methods and static analysis are used. Authors
in (Kinder et al., 2005) introduce the specification
language CTPL (Computation Tree Predicate Logic)
which extends the logic CTL, and describe an efficient
model checking algorithm.

Song et al. (Song and Touili, 2001) present an ap-
proach to model Microsoft Windows XP binary pro-
grams as a PushDown System (PDS). In particular,
the tool PoMMaDe (Song and Touili, 2013) uses PDS
to track the stack of the program; while Song et al.
(Song and Touili, 2014) model mobile applications by
a PDS to discovery private data leaking.

In (Jacob et al., 2010) a basis for a malware
model is provided founded on the Join-Calculus: the
process-based model supports the notions interaction,
concurrency and non-termination to cover evolved
malware. They consider the system call sequences to
build the model.

An approach aiming at the derivation of algebraic
specifications from the Java code of an Android’s
app can be found in (Battista et al., 2016; Mercaldo
et al., 2016c; Mercaldo et al., 2016a; Mercaldo et al.,
2016b): the result is a CCS (Milner, 1989) specifica-
tion.

The problem we are trying to solve can be reduced
to that of the synthesis of concurrent programs from
temporal logic specifications; in particular, in (Pnueli
and Rosner, 1989) the new program is obtained as
side-effect of the proof of the logic formula by a the-
orem prover. The time complexity of such algorithms
is exponential in the size of the old and the new pro-
cess.

In (Santone and Vaglini, 2003) a tableau-based
method is proposed to integrate a LOTOS process
with a new concurrent one, so that it became able
to satisfy a given temporal logic formulae; in this
case all potentialities of the existing module are ex-
ploited, and in the new process only the actions (or

sequence of actions) not included in it, or differently
specified, are added. The method requires exponen-
tiality but only in the nesting recursion level of the
formula when different recursive operators are inter-
wined; while, the use of alternation free formulae
leads to a polynomial cost of the construction. More-
over the method exploits the potentialities of existing
process to reduce the dimension of the part newly de-
signed. In the present context, this is a very valuable
characteristic, since we try to describe and locate ex-
actly the malware present in the code and not other
not dangerous actions.

3 PRELIMINARIES ON FORMAL
METHODS

In this section we introduce the basic concepts of for-
mal methods. For applying formal methods, we need
two things:
1. A precise notation for defining systems: For this
purpose we can use directly the notion of automaton
describing the state transitions of the system, or, al-
ternatively, we can represent that automaton in the
more compact form of a process in some algebraic
language.
2. A language for defining properties: We consider
concurrent and distributed systems, then a suitable
language is temporal logic.

3.1 The specification language LOTOS

Basic LOTOS is the version of LOTOS without
value-passing widely used in the specification of
concurrent and distributed systems to describe the
synchronization aspects of the system. We assume
the reader familiar with Basic LOTOS, and so we
recall only some main concepts. The reader can
refer to (Bolognesi and Brinksma, 1987) for further
details. From now on we write LOTOS instead of
Basic LOTOS. A LOTOS program is defined as:

process ProcName := P
where E

endproc

where P is a process, ProcName := P is a process
declaration and E is a process environment, i.e. a
set of process declarations. A process is the com-
position, by means of a set of operators, of a finite
set A = {i,a,b, ...} of atomic actions. The action i
is called the unobservable action. Only the operators

useful for our purpose are presented in the following
syntax for LOTOS processes:

P ::= stop | α;P | P[]P | P|[S]|P | X

where X ranges over a set of process names, α ranges
over A , S ⊆ A −{i} . stop denotes a process that
cannot show any action. The other operators are ac-
tion prefix (a;P), choice (P1[]P2), parallel composi-
tion (P1|[S]|P2), process instantiation (X). P denotes
the set of all possible processes. By means of the
function L below, a process can be associated with
the set of the actions it can perform.

Definition 3.1. Let P be a LOTOS process and E a
set of process declarations, LE (P) ⊆ A is the set of
actions obtained as the least solution of the following
recursive definition:

LE (stop) = /0

LE (α.P) =

{
LE (P)∪{α} if α 6= i
LE (P) if α = i

LE (P[]Q) = LE (P|[S]|Q) = LE (P)∪LE (Q)
LE (X) = LE (P) if X := P ∈ E

When clear from the context, L(P) is used instead of
LE (P); moreover, the process P |[L(P)∩L(Q)]| Q is
denoted by P |/ Q, and the process P |[/0]| Q by P|||Q.

Given a set E of process declarations, the standard
operational semantics of a process is given through a
relation−→E ⊆ P ×A×P (−→ for short), that is the
least relation defined by the rules in Table 1, where,
for the sake of simplicity, the symmetric rules for
choice and parallel composition are not shown; this
fact does not alter the completeness of the method,
which exploits the definition of −→. For each P,Q ∈
P , it holds that P λ−→P, while, if γ = α1 . . .αn,n≥ 1,
P

γ−→Q means P
α1−→·· · αn−→Q; γ is also called a finite

computation of P. If P
γ−→Q, the process Q is called

a derivative of P; when P has a finite number of syn-
tactically different derivatives, P is called finite state,
or simply finite. We consider only finite LOTOS pro-
cesses.

The operational semantics of a process is a labelled
transition system, i.e., an automaton whose states
correspond to processes (the initial state corresponds
to P) and whose transitions are labelled by actions
in A .

3.2 The language to define properties

Temporal logic presents constructs allowing to state
in a formal way that, for instance, all scenarios will

pre
α;P α−→P

choice
P1

α−→P′1
P1 [] P2

α−→P′1

inst
P α−→P′

X α−→P′
X := P ∈ E

par
P1

α−→P′1
P1 |[S]| P2

α−→P′1 |[S]| P2
α 6∈ S

com
P1

α−→P′1, P2
α−→P′2

P1 |[S]| P2
α−→P′1 |[S]| P′2

α ∈ S

Table 1: Standard operational semantics

respect some property at every step, or that some par-
ticular event will eventually happen, and so on. Here
we use the logic called selective mu-calculus (Bar-
buti et al., 1999b) that is a variant of the mu-calculus
(Stirling, 1989) with a slight different definition of the
modal operators. It was defined with the goal of re-
ducing the number of states of the transition system
corresponding to a pocess P in such a way that the re-
duction is driven by the formulae to be checked, and
in particular by the syntactic structure of the formu-
lae.

The syntax of the selective mu-calculus is the fol-
lowing, where K and R range over sets of actions,
while Z ranges over a set of variables:

φ ::= tt | ff | Z | φ∨φ | φ∧φ |

[K]R φ | 〈K〉R φ | νZ.φ | µZ.φ

As in standard mu-calculus, a fixed point formula has
the form µZ.ϕ (νZ.ϕ) where µZ (νZ) binds free oc-
currences of Z in ϕ. An occurrence of Z is free if it is
not within the scope of a binder µZ (νZ). A formula
is closed if it contains no free variables. µZ.ϕ is the
least fix-point of the recursive equation Z = ϕ, while
νZ.ϕ is the greatest one. The precise definition of the
satisfaction of a closed formula ϕ by a finite LOTOS
process P, written P |= ϕ, is in Table 2 and relies on
the transition relation =⇒I , parametric with respect
to I ⊆ A , with the following meaning.

Definition 3.2. Given I ⊆A , the relation =⇒I ⊆ P ×
I×P is such that, for each α ∈ I and P,Q ∈ P

P α
=⇒I Q iff P

γα−→Q, where γ ∈ (A− I)∗

By P α
=⇒I Q we express the fact that it is possible

to pass from P to Q by performing a (possibly empty)

P 6|= ff
P |= tt
P |= ϕ∧ψ iff P |= ϕ and P |= ψ

P |= ϕ∨ψ iff P |= ϕ or P |= ψ

P |= [K]R ϕ iff ∀P′.∀α ∈ K.P α
=⇒K∪R P′

implies P′ |= ϕ

P |= 〈K〉R ϕ iff ∃P′.∃α ∈ K.P α
=⇒K∪R P′

and P′ |= ϕ

P |= νZ.ϕ iff P |= νZn.ϕ for all n
P |= µZ.ϕ iff P |= µZn.ϕ for some n

for each n, νZn.ϕ and µZn.ϕ are defined as:

νZ0.ϕ = tt µZ0.ϕ = ff

νZn+1.ϕ = ϕ[νZn.ϕ/Z] µZn+1.ϕ = ϕ[µZn.ϕ/Z]

where the notation ϕ[ψ/Z] indicates the substitution
of ψ for every free occurrence of the variable Z in ϕ.

Table 2: Satisfaction of a closed formula by a process

sequence of actions not belonging to I and then the
action α in I. Note that =⇒A =−→.

Informally, [K]R ϕ is satisfied by a process which, af-
ter each finite computation γα, where γ∈A−(R∪K)∗

and α ∈ K, evolves into a process satisfying ϕ.
〈K〉R ϕ is satisfied by a process P having at least one
finite computation γα, where γ ∈ A − (R∪K)∗ and
α ∈ K, after which P evolves into a process satisfy-
ing ϕ.

As shown in (Barbuti et al., 1999b), selective mu-
calculus is equi-expressive to mu-calculus, in partic-
ular, it is possible to give a correspondence between
each modal selective operator and a mu-calculus for-
mula as follows:

[K]R ϕ = νZ.[K]ϕ∧ [A− (K∪R)]Z

〈K〉R ϕ = µZ.〈K〉ϕ∨〈A− (K∪R)〉Z

In the following, to give an easy description of the
presented method, we will consider only selective for-
mulae without explicit recursive operators: the lim-
itation is made less meaningful by the presence of
the implicit recursion inside the selective operators.
Without loss of generality, we shall assume that a
selective mu-calculus formula contains only modal
operators of the form 〈α〉R and [α]R, with α ∈ A
and R ⊆ A : in fact, 〈{α1, . . . ,αn}〉R ϕ = 〈α1〉R ϕ ∨
·· · ∨ 〈αn〉R ϕ and [{α1, . . . ,αn}]R ϕ = [α1]R ϕ ∧ ·· · ∧
[αn]R ϕ. The following definition is useful to express
the notion of non-interference between formulae.

Definition 3.3. Let ϕ be a selective mu-calculus for-

Table 3: Families Description and Corresponding Logic Rules.

DroidKungFu Rule (selective mu-calculus formulae)

device ID

IMEI
device rooting

ϕ = ϕ1∨ϕ2∨ϕ3 where:

ϕ1 =〈pushphone〉 /0 〈invokegetSystemService〉 /0
〈checkcastandroidtelephonyTelephonyManager〉 /0
〈invokegetDeviceId〉 /0 tt

ϕ2 =〈pushIMEI〉 /0 〈load〉 /0 〈invokeinit〉 /0 〈invokeadd〉 /0 tt
ϕ3 =〈pushchmod〉 /0 〈invokeinit〉 /0 〈store〉 /0 〈load〉 /0 tt

Opfake Rule (selective mu-calculus formulae)

SMS sending
download file

SMS sending by reflection

ψ = ψ1∨ψ2∨ψ3 where:

ψ1 =〈load〉 /0 〈invokesendTextMessage〉 /0 tt
ψ2 =〈push〉 /0 〈anewarray〉 /0 〈invokegetMethod〉 /0 tt
ψ3 =〈pushsendTextMessage〉 /0 〈load〉 /0 〈invokegetMethod〉 /0 tt

mula.
box(ϕ) = {α | [α]R occurs in ϕ}
diamond(ϕ) = {α | 〈α〉R occurs in ϕ}
act(ϕ) = box(ϕ)∪diamond(ϕ)

The property of non-interference is of relevance when
managing conjunctions of sub-formulae, such as ϕ1∧
ϕ2.
Definition 3.4. Let ϕ be a selective mu-calculus for-
mula, non-interference holds if N (ϕ) = true, where
N is inductively defined as follows.

N (tt) = N (ff) = true
N (〈α〉R ϕ) = N ([α]R ϕ) = N (ϕ)
N (ϕ1∨ϕ2) = N (ϕ1) and N (ϕ2)

N (ϕ1∧ϕ2) =

N (ϕ1) and N (ϕ2)

if box(ϕ1)∩act(ϕ2) = /0 and
box(ϕ2)∩act(ϕ1) = /0

f alse
otherwise

Intuitively, a formula is interfering if it contains a sub-
formula ϕ1 ∧ϕ2 such that ϕi, i = 1,2 contains an op-
erator [α]R and ϕ j, j 6= i contains either [α]R′ or 〈α〉R′ .

It is possible to apply the not operator, as usual
for dual operators, to selective formulae without re-
cursive operators with the following meaning:
not(〈α〉R ϕ) = [α]R(not ϕ)
not(ϕ1∧ϕ2) = (not ϕ1)∨ (not ϕ2)

One of the most popular environments for ver-
ifying concurrent systems through model checking
of temporal logic formulae is CADP (Garavel et al.,
2013), which supports several different specification
languages, among which LOTOS, and different tem-
poral logics, among which mu-calculus.

4 THE METHODOLOGY

In this section we present the steps of our method-
ology for the localization of Android malware: it is
based on the concepts of the model checking and de-
fines some constructive rules able to obtain a descrip-
tion of the wrong behavior of the system in terms of
a LOTOS process. While efficient model checking
techniques (Barbuti et al., 2005; Barbuti et al., 1999a)
have been proposed to verify the correct behavior of a
system, recently they have been also applied in other
disciplines such as clone detection (Santone, 2011),
biology (Ruvo et al., 2015), secure information flow
(Barbuti et al., 2002), among others. In this paper,
model checking technique has been applied in the se-
curity field.

Step 1: Java Bytecode-to-LOTOS

The first step generates a LOTOS specification from
the Java Bytecode of the .class files derived by the
analysed apps. This is obtained by defining a Java
Bytecode-to-LOTOS transform operator T . The
function T directly applies to the Java Bytecode (T
is defined for each instruction of the Java Bytecode)
and translates it into LOTOS process specifications.
A Java Bytecode program P is seen as a sequence
s of instructions, numbered starting from address 0;
∀i ∈ {0, . . . ,]s} s[i] is the instruction at address i,
where]s denotes the length of s. The translation is
very similar to that sketched in (Battista et al., 2016)
for CCS: in essence, each bytecode instruction is
translated into a process performing only the action
representing that instruction (i.e. assignment, goto
and so on) and then transforming into the process cor-

responding to the next executable instruction.

Step 2: Android malware as temporal logic
formulae

The second step aims at expressing android malware
by temporal logic formulae. The processes obtained
in the first step can be model checked against the for-
mulae describing the malware. LOTOS processes are
mapped into labelled transition systems by the CADP,
and, if the result of the verification is false, we have
the need of a precise localization of the malware. We
shall see in the next section that our methodology can
actually substitute the model checking since, when
the malware is not present in the code, we obtain an
empty process X .

Table 3, taken from (Battista et al., 2016), elicits
the malicious behaviors for some malware families
and shows the resulting translation into logic rules.
The meaning of the table is the following:
For the rules characterizing DroidKungFU:
ϕ1 = device ID, it represents, the malware ability
to retrieve the specific alpha-numeric Identification
code associated with the mobile device, employed by
Google to identify the user when she/he logs on the
Google Play in order to download and/or buy applica-
tions;
ϕ2 = IMEI, i.e., the ability of the malicious payload
to stealthy gather the International Mobile Equipment
Identity (IMEI), a numeric code that uniquely identi-
fies a mobile terminal;
ϕ3 = device rooting, the use of tricks in order to try
to obtain root privileges, in this case the payload tries
to change permissions to files and/or folders using the
chmod (change mode) command derived by Unix op-
erating systems.
While for the rules characterizing Opfake:
ψ1 = SMS sending, this behavior represents the ability
to send SMS messages to premium-rate numbers. In
this case the payload is also able to parse the incom-
ing SMS for a sender’s number containing 088011
or 000100 (considering that malware variants usually
encrypt hard-coded phone numbers, in the rule we do
not consider the specified phone numbers but the ma-
licious behaviour able to parse the incoming SMS),
if this condition is satisfied the SMS body is parsed
through a regular expression. If the sequence is iden-
tified, the group matching it is set as the secret code
and the sms is hidden from the user’s eyes;
ψ2 = download file, this behavior is one of the most
representative of Opfake family: it adds an Opera
browser icon on the menu and displays a fake down-
load progress bar to make it appear that the applica-
tion (with a fake license) is actually downloading, but
in the meanwhile the malware downloads the mali-

cious payload;
ψ3 = SMS sending by reflection, i.e. the ability to
invoke at run-time a method (contained in a jar o
dex file) able to send SMS messages using the reflec-
tion mechanism provided by Java environment. This
mechanism is usually involved to update application
without shutdown and restart the app, but in this case
it is used to evade the static detection by antimalware.

Here we consider only formulae, as those shown
in Table 3, containing the selective operator 〈α〉R and
the logical operator ∨; anyway, it is worth noting that
any formula describing malware contains as terminal
a sub-formula of the kind 〈α〉R tt, since any malware
requires that an action is executed. Then any for-
mula expressing the absence of malware will termi-
nates with the sub-formula like as [α]R ff.

Step 3: Localization and description of malware

The third step defines a set of rules to build the inte-
gration needed by a finite state LOTOS process P, so
that the resulting process (P |[B]| X), for some set of
actions B, satisfies a selective mu-calculus formula.
For the sake of simplicity, the rules in Table 4 build
X taking into account only formulae having the struc-
ture of those in Table 3. When considering the mal-
ware families described in Table 3, the rules will ap-
ply to the formulae not ϕ and not ψ expressing the
absence of malware. The set B to start the construc-
tion is box(not ϕ) (or box(notψ)).

The method applies successive transformations to
the original process and to the formula, building a
set of integrations with the related environments and
composing them into the final process X with its en-
vironment. Each rule is of the form:

P |[B]| X `E ϕ

P1 |[B]| X1 `E1 ϕ1 · · · Pn |[B]| Xn `En ϕn

where n > 0 and side conditions may exist. More-
over, it is B⊆ A , P a finite LOTOS proces, P1, . . . ,Pn
derivates of P, E a set of declarations {X1 :=
P1, . . . ,Xm := Pm}, such that Xi 6= X j, if i 6= j, X does
not occur in E and, moreover, E includes a pro-
cess environment for P. The premise is the goal to
be achieved, the consequents are the sub-goals deter-
mined by the structure of the formula, by the environ-
ment and the possible derivatives of P.

At a point we will obtain a set of terms as that
below, for i ∈ [i1..im], for which no rule can be more
applied

Pi |[B]| Xi `Ei ϕi

and thus a final environment must be given for each
Xi. The possible situations in which no rule can be
applied are listed in Table 5.

box
P |[B]| X `E [α]R ϕ

P1 |[B]| Y1 `E ′ ϕ · · ·Pn |[B]| Yn `E ′ ϕ

ϕ 6= ff

{P1, . . . ,Pn}= {P′ | P
α

=⇒{α}∪R P′}
E ′ = E ∪{X := α;(· · ·(Y1 |/ Y2) · · ·) |/ Yn)}

and
P |[B]| X `E ,∆ ϕ1∧ϕ2

P |[B]| Y1 `E ′,∆ ϕ1 P |[B]| Y2 `E ′,∆ ϕ2
E ′ = E ∪{X := Y1 ||| Y2}

Table 4: Rules

1. ϕi = tt.

2. ϕi = [α]R ϕ and ϕ is logically equivalent to ff.

3. ϕi = [α]R ϕ and {P′ | Pi
α

=⇒{α}∪R P′}= /0.

Table 5: Possible terminations

The final process produced through the procedure is
the following

process PF := (P |[B]| X)
where E0∪E1∪·· ·∪En∪Estop

endproc

Where E0 is the environment of P, E1 · · ·En are the
environments built by successive rule applications,
and, for i ∈ [i1..im],

Estop = {Xi := stop |
for each Pi |[B]| Xi `E1 ϕi
matching one situation of Table 5 }

5 RESULTS AND DISCUSSION

Now we show a simple system P possibly affected
by malware represented by the formula ψ of Table 3.
The formula ψ′ = not ψ is as follows (we consider a
shorthand of the names of the events in ψ taking the
initial letter or the initial letter followed by the capital
letters in the name of the action),

ψ
′ = [l] /0 [iT M] /0 ff∧ [p] /0 [a] /0 [iM] /0 ff

∧ [pT M] /0 [l] /0 [iM] /0 ff

while the process P is as below:

process P := (P1|[f]|P2)
where P1 := d; l;b;stop[]g; l;h; f ; iT M;P1

P2 := f ; p;c;a; iM;P2
endproc

Starting with E0 = {P1,P2} and B =
{l, iT M, p,a, iM}, we apply the rules of Table 4
obtaining

process PF := (P |[B]| X)
where P1 := d; l;b;stop[]g; l;h; f ; iT M;P1

P2 := f ; p;c;a; iM;P2
X := (Y1|||Y2|||Y3)
Y1 := l;(Y4|/Y7)
Y2 := p;Y5
Y3 := stop
Y5 := a;Y6
Y4 := stop
Y6 := stop
Y7 := stop

endproc

We can note that the complexity of X depends on the
formula, and on the complexity of the process only
for what regards the number of possible derivatives
(operator |/) following a same action (but not on the
complexity of the derivatives). X contains a set of
synchronizations with all the actions contained in the
malware, apart the actions iT M and iM that do not
occur in X ; so, in some sense, the malicious behavior
is inactivated in PF and cannot completely obtain its
purpose since P is blocked on a synchronization not
performed by X . On the other hand, also the action
pT M does not occur in X , since the behavior specified
by the formula ψ3 of Table 3 cannot start when pT M
is not present in P; the actions l and iM are present
in P, but their occurrence alone does not indicate the
presence of malware.

If the procedure is applied separately to P1 and
P2, we will obtain
process PF := (PF1|[f]|PF2)
. . . endproc

and X1 and X2 will describe different infections
process PF1 := (P1 |[B]| X1)

where X1 := (Y ′1|||Y ′2|||Y ′3)
Y ′1 = Y1
Y ′2 := stop
Y ′3 := stop

endproc
process PF2 := (P2 |[B]| X2)

where X2 := (Y ′′1 |||Y ′′2 |||Y ′′3)
Y ′1 = stop
Y ′2 := Y2

Y ′3 := stop
endproc

It is possible to note that, at any level the method-
ology is applied, the actions iT M and iM are not al-
lowed and this knowledge can be an useful suggestion
for modifying the Java bytecode to make the mali-
cious behavior ineffective. In fact, we can transfer the
behavior of X in a bytecode component to be associ-
ated to the bytecode described by P to avoid the effect
of the malware.

Finally, as proved in (Santone and Vaglini, 2003),
we recall that all properties of P, not interfering with
ψ′, are maintained in the resulting processes.

6 CONCLUDING REMARKS AND
FUTURE WORK

Considering that current antimalware and prototypes
proposed by researchers try to discriminate a mobile
malware application from a legitimate one, we pro-
pose a methodology to localize the malicious pay-
load with the aim to make it ineffective, to permit
to the user to install and to run the disinfected appli-
cation. We use model checking concepts in order to
apply our methodology against two of most diffused
malware family in Android environment: the Droid-
KungFu and the Opfake families.

As future work we are going to extend this prelim-
inary methodology to include all selective operators
and other formulae specifying malware; moreover, we
intend to implement our rules and obtain a deep evalu-
ation of the capability of using the result to inactivate
the malware beside to precisely localize it.

REFERENCES

Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., and
Rieck, K. (2014). Drebin: Efficient and explainable
detection of android malware in your pocket. In Pro-
ceedings of 21th Annual Network and Distributed Sys-
tem Security Symposium (NDSS). IEEE.

Bailey, U., Comparetti, P., Hlauschek, C., Kruegel, C., and
Kirda, E. (2009). Scalable, behavior-based malware
clustering. In Network and Distributed System Secu-
rity Symposium. IEEE.

Barbuti, R., De Francesco, N., Santone, A., and Tesei,
L. (2002). A notion of non-interference for timed
automata. Fundamenta Informaticae, 51(1-2):1–11.
cited By 6.

Barbuti, R., De Francesco, N., Santone, A., and Vaglini, G.
(1999a). Loreto: A tool for reducing state explosion

in verification of lotos programs. Software - Practice
and Experience, 29(12):1123–1147. cited By 12.

Barbuti, R., Francesco, N. D., Santone, A., and Vaglini,
G. (1999b). Selective mu-calculus and formula-based
equivalence of transition systems. J. Comput. Syst.
Sci., 59(3):537–556.

Barbuti, R., Francesco, N. D., Santone, A., and Vaglini, G.
(2005). Reduced models for efficient CCS verifica-
tion. Formal Methods in System Design, 26(3):319–
350.

Battista, P., Mercaldo, F., Nardone, V., Santone, A., and
Visaggio, C. A. (2016). Identification of android mal-
ware families with model checking. In Proceedings of
the 2nd International Conference on Information Sys-
tems Security and Privacy (ICISSP 2016), Rome, Italy,
February 19-21, 2016., pages 542–547. SciTePress.

Bolognesi, T. and Brinksma, E. (1987). Introduction to the
ISO specification language LOTOS. Computer Net-
works, 14:25–59.

Canfora, G., Di Sorbo, A., Mercaldo, F., and Visaggio,
C. (2015). Obfuscation techniques against signature-
based detection: a case study. In Proceedings of Work-
shop on Mobile System Technologies. IEEE.

Canfora, G., Mercaldo, F., and Visaggio, C. A. (2013). A
classifier of malicious android applications. In Pro-
ceedings of the 2nd International Workshop on Secu-
rity of Mobile Applications, in conjunction with the In-
ternational Conference on Availability, Reliability and
Security. IEEE.

Garavel, H., Lang, F., Mateescu, R., and Serwe, W. (2013).
CADP 2011: a toolbox for the construction and anal-
ysis of distributed processes. STTT, 15(2):89–107.

Hu, X., Chiueh, T., Shin, K., Kruegel, C., and Kirda, E.
(2009). Large-scale malware indexing using function
call graphs. In ACM Conference on Computer and
Communications Security. ACM.

Jacob, G., Filiol, E., and Debar, H. (2010). Formalization of
viruses and malware through process algebras. In In-
ternational Conference on Availability, Reliability and
Security (ARES 2010). IEEE.

Jang, J., Brumley, D., and Venkataraman, S. (2011). Bit-
shred: feature hashing malware for scalable triage and
semantic analysis. In ACM Conference on Computer
and Communications Security. ACM.

Kinder, J., Katzenbeisser, S., Schallhart, C., and Veith, H.
(2005). Detecting malicious code by model checking.
Springer.

Mercaldo, F., Nardone, V., Santone, A., and Visaggio, C. A.
(2016a). Download malware? no, thanks: how formal
methods can block update attacks. In Proceedings of
the 4th FME Workshop on Formal Methods in Soft-
ware Engineering, FormaliSE@ICSE 2016, Austin,
Texas, USA, May 15, 2016, pages 22–28. ACM.

Mercaldo, F., Nardone, V., Santone, A., and Visaggio, C. A.
(2016b). Hey malware, I can find you! In 25th IEEE
International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WET-
ICE 2016, Paris, France, June 13-15, 2016, pages
261–262. IEEE Computer Society.

Mercaldo, F., Nardone, V., Santone, A., and Visaggio,
C. A. (2016c). Ransomware steals your phone. for-
mal methods rescue it. In Formal Techniques for
Distributed Objects, Components, and Systems - 36th
IFIP WG 6.1 International Conference, FORTE 2016,
Held as Part of the 11th International Federated Con-
ference on Distributed Computing Techniques, Dis-
CoTec 2016, Heraklion, Crete, Greece, June 6-9,
2016, Proceedings, volume 9688 of Lecture Notes in
Computer Science, pages 212–221. Springer.

Milner, R. (1989). Communication and concurrency. PHI
Series in computer science. Prentice Hall.

Pnueli, A. and Rosner, R. (1989). On the synthesis of a re-
active module. In Conference Record of the Sixteenth
Annual ACM Symposium on Principles of Program-
ming Languages, Austin, Texas, USA, January 11-13,
1989, pages 179–190. ACM Press.

Ruvo, G., Nardone, V., Santone, A., Ceccarelli, M., and
Cerulo, L. (2015). Infer gene regulatory networks
from time series data with probabilistic model check-
ing. pages 26–32. cited By 7.

Santone, A. (2011). Clone detection through process alge-
bras and java bytecode. pages 73–74. cited By 10.

Santone, A. and Vaglini, G. (2003). Modifying LOTOS
specifications by means of automatable formula-based
integrations. J. Autom. Reasoning, 30(1):33–58.

Schmidt, A., Bye, R., Schmidt, H., Clausen, J. H., Kiraz,
O., Yüksel, K. A., Çamtepe, S. A., and Albayrak,
S. (2009). Static analysis of executables for collab-
orative malware detection on android. In Proceed-
ings of IEEE International Conference on Commu-
nications, ICC 2009, Dresden, Germany, 14-18 June
2009, pages 1–5. IEEE.

Song, F. and Touili, T. (2001). Efficient malware detection
using model-checking. Springer.

Song, F. and Touili, T. (2013). Pommade: Pushdown
model-checking for malware detection. In Proceed-
ings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. ACM.

Song, F. and Touili, T. (2014). Model-checking for android
malware detection. Springer.

Stirling, C. (1989). An introduction to modal and temporal
logics for ccs. In Yonezawa, A. and Ito, T., editors,
Concurrency: Theory, Language, And Architecture,
LNCS, pages 2–20. Springer.

Zhou, Y. and Jiang, X. (2012). Dissecting android mal-
ware: Characterization and evolution. In Proceed-
ings of 33rd IEEE Symposium on Security and Privacy
(Oakland 2012). IEEE.

