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Abstract—Urban road congestion estimation is a challenge in 

traffic management. City traffic state can vary temporally and 

spatially between road links, depending on crossroads and lanes. 

In addition, congestion estimation requires some sort of tuning to 

“what is around” to trigger appropriate reactions. An adaptive 

aggregation mechanism of position data is therefore crucial for 

traffic control. We present a biologically-inspired technique to 

aggregate position samples coming from on-vehicle devices. In 

essence, each vehicle position sample is spatially and temporally 

augmented with digital mark, locally deposited and evaporated. 

As a consequence, a marks concentration appears and stays 

spontaneously while many stationary vehicles and high density 

roads occur. Marks concentration is then sharpened to achieve a 

better distinction of critical phenomena to be triggered as 

detected traffic events. The overall mechanism can be actually 

enabled if structural parameters are correctly tuned for the given 

application context. Determining such correct parameters is not a 

simple task since different urban areas have different traffic flux 

and density. Thus, an appropriate tuning to adapt parameters to 

the specific urban area is desirable to make the estimation 

effective. In this paper, we show how this objective can be 

achieved by using differential evolution. 

Keywords—urban traffic estimation; swarm intelligence; 

stigmergy; parametric adaptation; differential evolution 

I.  INTRODUCTION AND MOTIVATION 

To reduce traffic congestion is one of the main issues in the 
Smart City strategy [1]. Recently more and more advanced 
sensor techniques for traffic measurement have attracted a 
number of researchers. The available technology can be 
basically grouped into two categories: on-vehicle devices and 
roadside infrastructures. The former mainly employs the 
Global Positioning System (GPS) and its variants to report 
real-time information on a vehicle position, whereas the latter 
typically involves dedicated equipment, such as loop detectors 
and cameras. Actually, any use of roadside infrastructures is 
essentially constrained to highways, freeways and primary 
arteries, and then cannot be used for urban traffic estimation. 
For this reason, the on-vehicle positioning device is considered 
as the reference data source in this paper. Hence, the 
availability of vehicle position data is supposed to be a 
requirement in our approach. 

In this paper we present a new design of swarm aggregation 

of vehicle positions based on marker-based stigmergy [2]. We 
use marker-based stigmergy as a computing paradigm for 
exploiting both spatial and temporal dynamics that characterize 
urban traffic. Basically, in our approach each vehicle of a 
monitored urban network releases periodical marks in a 
computational environment, according to its position. Marks 
may aggregate in the environment reinforcing in strength, 
whereas lose intensity evaporating over time. As a 
consequence a marks concentration, called track hereafter, 
appears and stays spontaneously while many stationary 
vehicles and high density roads occur. For a better scalability 
and a better distinction of unfolding congestion events, we 
adopt activation interfaces at the input-output of the stigmergic 
layer. Here, the term “activation” is taken from neural sciences 
and it is related to the requirement that a signal must reach a 
certain level before a processing layer fires to the next layer. 

The proposed mechanism works if structural parameters, as 
mark extension, for example, are correctly tuned for the given 
application context [3]. Determining such correct parameters is 
not a simple task since different urban areas have different 
traffic flux and density. For this purpose, we adopt a tuning 
mechanism based on differential evolution for adapting 
parameters to the specific urban area. 

The paper includes the problem statement and its formal 
characterization, as well as the proposed solving approach and 
experimental settings. More specifically, Section II focuses on 
related work. Section III provides the problem statement and 
discusses the design of the aggregation subsystem. Section IV 
is devoted to the design of the parametric adaptation. 
Experimental studies are detailed in Section V. Section VI 
covers conclusion and future works. 

II. RELATED WORK 

A number of methods to estimate traffic state on the basis 
of both categories have been developed for urban traffic. In [4] 
a kernel-based density estimation method based on probe-
vehicle data has been proposed. The method first models the 
traffic data with Gaussian density centered in the sample 
position with predefined mean and variance to extract the 
kernel parameters. Then, distance between their localized 
cumulative distributions is measured and optimized to extract 
the weights of Gaussian kernels in the estimated distribution 
function. The approximation density function by optimized 
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kernels’ weights can be used to estimate the mobile vehicles 
density in a specific time and space. In [5] a GPS and GIS 
integrated system for urban traffic flow analysis is presented. 
The authors use loop detectors and taxi as probe vehicles to 
estimate mean speed in road segment, then they integrate the 
two kinds of data using Federated Kalman Filter and D-S 
Evidence Theory. Moreover, they proposed a curve-fitting 
method to analyze GPS data for the mean-speed estimation in 
the urban road network. The least-square method is used to fit 
the data. In [6] a curve-fitting method and a vehicle tracking 
method have been compared for estimating spatiotemporal 
average velocity, i.e., the mean speed of vehicles on a road 
segment during a period of time. Result showed that the 
tracking-based method usually bears higher estimate accuracy 
but slower operation speed compared with the model-fitting 
method. In [7] a vehicle tracking method is proposed. Authors 
use the A* algorithm to determine the track of a vehicle 
between two following GPS samples. Then, the average 
velocity of each road segment is obtained by combining the 
velocities of the tracks that pass through the road segment. In 
[8] authors proposed an algorithm to calculate the minimum 
sample size for curve fitting methods. In the algorithm, the 
road type, the length of road section, and sample frequency are 
taken into account. The result showed that the errors of the 
estimated speeds become smaller with increasing number of 
the GPS samples. In [9] GPS data has been used to classify 
road conditions as “good” or “bad,” both spatially and 
temporally. The first reflects the steadiness, the latter the speed 
of traffic. They take GPS samples and calculate the car delay 
distribution over the road segment. This “cumulative time-
location” data is converted to spatiotemporal data and then 
classified using threshold-based quadrant clustering. Authors 
confront quadrant classifier with maximum likelihood and 
maximum a priori classifiers.  

From the architectural standpoint, the deployment of traffic 
management system is characterized by huge volumes of data 
(“Big data”) that need to be timely analyzed for detecting 
unfolding congestion. A promising architecture is the so-called 
multi-agents-system (MAS), a decentralized environment made 
by sub-systems each operating with partial autonomy and local 
awareness. According to the biologically-inspired principles of 
Swarm Intelligence, MASs should be designed to manifest 
self-organization and complex behaviors, although the 
individual behavior of each agent is simple [10]. The 
coordination mechanisms of MAS can generally be divided 
into two types: direct and indirect. The former is less scalable 
due to the overload of coordination. In the literature, the 
coordination for the latter is usually called stigmergy. With 
stigmergy, the influence in the environment left by the 
behavior of one agent stimulates the performance of a 
subsequent action of this agent or a different agent. The 
stigmergic mechanism can work with massive numbers of 
agents. For instance, in [11] stigmergy is used for traffic 
congestion forecast, where fixed on-road sensors measure 
vehicle flow and use traffic-density pheromone to predict 
congestions. 

III. THE DESIGN OF THE STIGMERGIC AGGREGATION 

The architecture of the proposed aggregation technique 
consists in three sub-systems. This section is devoted to the 
problem statement and to the specification of each sub-system. 

A. Problem statement 

Given an urban street network, which can be modeled as a 

directed graph, let us consider the least number of paths such 

that every link belongs to at least one path. As an example, 

Fig.1 shows a static view with two paths of the Pisa center 

urban street network (Italy). In the dynamic view of the system, 

each path can be modeled as a linear segment, because the 

position of each vehicle in the path can be measured by the on-

road position from the initial point of the directed path. 

  

Fig. 1. The Pisa center urban area considered for pilot experiments, with two 

sample paths. 

Let us assume that the geo-position gv,t, of each vehicle ν  at 

the time t in a given urban area is periodically sampled and 

provided as input to the system. When a traffic congestion 

event Ek occurs, this is characterized by temporal begin and 

end, at the instant
  kt and 

kt , respectively. In addition, at each 

sampling instant 
  [ , ]
k k

t t t∈ , the on-road positions of the queue 

head and tail 
t

ks  and
  

t

ks are periodically detected. In 

conclusion, the output of the system is characterized by a series 

of traffic congestion occurring events: 
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k k k k k k kE t t s s s s≡  (1) 

To model the quality of the output, let us distinguish 

between the actual and the detected (estimated) congestion 

event. The real event is characterized by the same format but 

slightly different values, since the detection process is never 

perfect: 
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Given the above definitions, a fitness function of the system 
can be also determined, to evaluate how the system 
approximates the k-th event: 
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where the left addend represents the absolute differences on the 
start and end times, normalized with respect to the time 
interval, whereas the right addend represents the average 
absolute differences on the head and tail of the queues, 
normalized with respect to the queues length and the number of 
samples. It is worth noting that fk=0 for a perfectly detected 
event and that in general fk is a positive real number. The 
overall quality of the model is then measured by the average 
fitness on all events: 

1/
kk

Fit K f= ⋅∑   (4) 

Actually the system may generate: (i) detected events 
which do not correspond to actual events (false positive); (ii) 
undetected actual events (false negative). To find the match 
between actual and detected events we choose at each step the 
pair that minimizes Fit. Unmatched events are also entirely 
considered as contribution. 

Finally, given the above definitions, the problem is to 
detect all the traffic congestion events with the lowest fitness. 

B. The input activation interface 

The role of the input activation interface is to take vehicle 
positions pv,t (generated from gv,t via projection on a linear 
path) to establish whether they should be processed by the 
stigmergic layer or not and the marks intensity. For this 
purpose, the interface adopts the concept of hypothetical track, 
placed on the vehicle position to assess whether two 
hypothetical tracks generated on two consecutive positions of 
the vehicle overlap, i.e., whether a mark can be released. Fig.2 
shows a scenario of two overlapping hypothetical tracks 
centered on the vehicle positions, with the form of isosceles 

trapezoid, whose height, upper and lower bases are 1, β and 2β, 

respectively. Here, the vehicle covered the distance δ  between 
pv,t-1  and pv,t . It can be demonstrated that, when the two 
hypothetical tracks overlap, the ordinate of the cross point of 

their diagonal edges, called intensity coefficient γ, is: 

{ } [ ],  min 1,   2 /  0,1
v t

γ δ β= − ∈   (5)  

 

Fig. 2. A scenario of the input activation interface with hypothetical tracks. 

The input activation interface works according to the 
following rule: when two consecutive hypothetical tracks 
overlap, then the stigmergic layer is activated and supplied 

with the pair  (pv,t , γv,t). 

C. The stigmergic layer 

Fig. 3 shows a mark (with solid line) released by the 

vehicle ν1 in the path Pk, at the position pv1,k, which is 

characterized by a central (maximum) intensity γv,t⋅I, an 

extension ε >0, and an evaporation θ ∈[0,1]. Fig. 3 shows, with 
a gray line, the same mark after a step of marking. More 

precisely, θ  corresponds to a proportion of the intensity of the 
previous step. Hence, after a certain decay time, the single 
mark in practice disappears. The decay time is longer than the 
step of marking. Thus if the vehicle is still, a new mark 
superimpose on the old marks, creating a track, whose intensity 
will reach a stationary level. In contrast, if the vehicle speed is 
sufficiently high, the mark intensities will decrease with time 
without being reinforced. 

 

Fig. 3. A single mark released in the marking space (solid line), together with 

the same mark after a step of decay (gray line). 

Similarly, two vehicles sufficiently close and still 
superimpose their marks. Fig. 4 shows an example of track (the 
overlying non-triangular shape) generated by two vehicles 
releasing marks (the two underlying triangular shapes) at 

different instants of time. More precisely: vehicle ν1 released, 
at the previous time t-1, a mark which accordingly evaporated 

by a factor θ, whereas vehicle ν2 released a mark at the current 

time, t, close to the mark of the vehicle ν1. 

 

Fig. 4. Two marks released by two close vehicles (triangular shapes) with the 

corresponding track (overlying non-triangular shape). 

It can be realized from Fig. 3 and Fig. 4 that mark extension 
and evaporation take into account the mobility and the 
proximity of vehicles, and that the track is a kind of short term 
memory of the activities on a path. It is worth nothing that a 
single and stationary vehicle (e.g. parking) can produce a 
stationary mark with poor intensity with respect to a queue of 
vehicles, which in contrast can lead to a high aggregation of 
marks. 



D. The output activation interface 

The process of information aggregation leads to abstraction 
and emergence of high-level concepts beyond occurring micro-
fluctuations. The output activation interface allows achieving a 
better distinction of the critical phenomena during unfolding 
traffic congestion, with a better detection of the progressing 
levels. For this purpose we apply a sigmoidal activation 
function to the track intensity: 

( )
( )  1/(1+e )kI

kI
α φ− −Σ =   (6)  

Fig. 5 shows the activation function with inflection point φ 

= 120 and different values of α. As an effect of the activation, 

values of the intensity higher than φ are further amplified to 

evidence major congestion effects, whereas values lower than φ 
are further decreased to hide minor queues. In both cases, 

micro fluctuations are smoothed. The parameter α controls the 
inflection slope, and then the width of the “gray zone”, to deal 
with uncertainty in data: a high value makes the activation 
Boolean (suitable for stable events) whereas a low value 
enhances the multi-class or “fuzzy” character of the output, 
which is useful to reduce information hiding when upper 
processing layer are available. As an example, Fig. 6 shows 
vehicle positions, track intensity and congestion degree for the 
road highlighted with an oval in Fig. 1. 

 

Fig. 5. Sigmoidal activation function with φ = 120 and different values of α. 

 

Fig. 6. Vehicles positions, track intensity (thick line), congestion degree (thin 

line), for the road highlighted with an oval in Fig.1. 

IV. THE DESIGN OF THE PARAMETRIC ADAPTATION  

The swarm aggregation designed in Section II involves a 
number of structural parameters to be set appropriately for each 
given application context. Determining such correct parameters 
is not a simple task since different urban areas have different 
traffic flux and density. Manual tuning is very time-consuming, 
human-intensive and error-prone. Moreover, it depends on the 
intuition and experience, which are typically undocumented 
and therefore non-reproducible. Hence, means for automated 
parameter tuning are required [3]. In this section, we first 
report on the role of each parameter in biasing the processing, 
and then we adopt a supervised data-driven parametric 
optimization based on differential evolution. 

In the literature, the approaches for setting a set of 
parameters can roughly be divided into model-free versus 
model-based procedures [12]. The main difference is that 
model-based procedures build a model interpreting the relation 
between the algorithm and its parameter values derived from 
the human experience. Model-free procedures are more 
lightweight and faster in execution, but have no extrapolation 
potential (black-box approach). In general, the no-free-lunch 
theorem of optimization states that a general-purpose universal 
optimization strategy is impossible, and the only way one 
strategy can outperform another is by specializing it to the 
structure of the specific problem under consideration [13]. A 
well-known method of specialization is to apply constraints to 
the search space. Given the complexity of the search space, a 
population-based method, called evolutionary algorithm (EA), 
is commonly applied [12][14]. More specifically, we adopt 
Differential Evolution (DE), a method based on vector 
differences and therefore primarily suited for numerical 
optimization problems. Since EAs are meta-heuristics, they 
have parameters to be tuned. However they show effectiveness 
with default values when sufficient domain constraints are 
applied. 

A.  Model-based analysis 

Table I summarizes the main structural parameters. The 

hypothetical track extension (β) depends on the traffic statistics 
of the specific urban area. Let us consider, for instance, a speed 
limit of 50 km/h and a sustainable average speed of 25 km/h = 

416.6 meters/min. To set β = 208.3 meters implies that two 
consecutive hypothetical tracks do not overlap when car speed 
is higher than 25 km/h. The mark intensity (I) is the maximum 
intensity of a mark. The value of this parameter influences 
directly the intensity level of the track and then the triggering at 
the output activation interface, as well as the lifetime of a mark. 
For example, with an evaporation of 0.5 and I=5, after 3 steps 
the mark intensity falls under 1, and then in practice 
disappears. 

TABLE I.  STRUCTURAL PARAMETERS 

Parameter Description  Section 

β > 0 hypothetical track extension II.B 

I > 0 mark intensity II.C 

ε > 0 mark extension II.C 

0 <θ < 1  mark evaporation II.C 

φ > 0 inflection point II.D 

α > 0 inflection slope II.D 

 

The mark extension (ε) implies the distance of interaction 
between marks, and it is measured in units. The mark of a 
vehicle in a unit should interact with both the next and the 
previous occupied units. Thus, a lower bound can be 1 unit = 
10 meters. In addition, considering a 100 meters congestion, 
vehicle marks in the middle should interact at most with the 
queue head and tail. This is allowed with an extension of 5 
units = 50 meters. Hence, values lower than 1 may prevent 
mark aggregation, whereas values higher than 5 allow 
interaction between vehicles too far from each other in any 
urban context, thus increasing the system error on the start and 



the end positions of a queue. The mark evaporation (θ ) affects 
the lifetime of a mark. Short-life marks cannot aggregate, 
increasing the system error on the temporal start of the event, 
long-life marks cause saturation, increasing the error on the 
temporal end of the event. Hence, considering a sampling 
period of 1 minute, mark lifetime should be higher than 2 

minute (θ = 0.5) and lower than 5 minutes (θ = 0.75). The 

inflection point (φ) is in the domain of the mark intensity, and 

the inflection slope (α) is a multiplicative factor of the transient 
dynamics, and can be set according to the structural mark 
parameters. It is apparent from Fig. 5 that the maximum value 

for α is 10, which causes an almost-Boolean transition. 

Considering φ, a single vehicle still in a long-duration 
congestion produces a stationary mark intensity whose 

maximum value is I / (1-θ ) = 5/(1-0.5)=10 [15]. Thus, the 

minimum value of φ is 10 because the single vehicle does not 

represent a congestion event. Let us consider θ  = 0.75 and β  = 
5 to compute the track intensity with 5 overlapping triangular 

marks at the head or tail of the queue. With δ = 0 (vehicles in 
queue) the intensity coefficient (Formula 4) is 2. Thus, the 

track intensity [15] of the 5 marks is 2 ⋅ (1 + 4/5 + 3/5 + 2/5 + 

1/5) ⋅ 5 / (1 - 0.75) = 120. In practice, 120 is the maximum 

value of φ because it is the track intensity that should be 

detected at the queue extremity. In conclusion, φ ∈ [10,120]. 

B. The model-free parametric tuning 

The parametric tuning uses DE algorithm to optimize the 
parameters of the system with respect to the fitness defined in 
(4). In DE algorithm, a solution is represented by a real n-
dimensional vector, where n is the number of parameters to 
tune. DE starts with a population of N candidate solutions, 
injected or randomly generated. At each iteration and for each 
member (target) of the population, a mutant vector is created 
by mutation of selected members and then a trial vector is 
created by crossover of mutant and target. Finally, the best 
fitting among trial and target replaces the target.  

In the literature different ranges of population are suggested 
[16]. In general, the larger the population size, the larger is the 
probability to find a global optimum. However, large 
population size decreases the convergence rate and the 
algorithm needs more function evaluations. Separable and uni-
modal functions require smaller population, while multi-modal 
function requires larger population to avoid premature 
convergence. Population size spread can vary from a minimum 
of 2n to a maximum of 40n. To balance speed and reliability 
we use N=20. Many variants of the DE algorithm have been 
designed, by combining different structure and 
parameterization of mutation and crossover operators [17][18]. 
We adopted the DE/1/best/bin version, which uses the best 
individual of the population to perform the mutation. It is fast 
but it can be trapped in a local minimum when insufficiently 
constrained. The scaling factor F ϵ [0,2] mediates the 
generation of the mutant vector. F is usually set in [0.4-1) with 
an initial value in [0.5-0.9][17]. To choose the best value, we 
performed trials with F=0.7-0.8-0.9 and compared the results. 
Section IV presents this experimental study. There are different 
crossover methods in DE. Results show that a competitive 
approach can be based on binomial crossover [18]. With 
binomial crossover, a component of the offspring is taken with 

probability CR from the mutant vector and with probability 1-
CR from the target vector. A small crossover probability leads 
to a vector that is more similar to the target vector while the 
opposite favors the mutant vector. A large CR speeds up 
convergence. A good value for CR is between 0.3 and 0.9 [16]. 
To choose the best value, we performed trials with CR = 0.6-
0.7-0.8 and compared results. The next Section presents the 
experimental study. 

V. EXPERIMENTAL STUDIES 

A Java-based system architecture for the proposed 
approach has been developed and experimented, under a 
research program co-founded by a regional government. The 
stigmergic aggregation module and the tuning modules have 
been developed under the Matlab

1
 and the Repast

2
 frameworks. 

A traffic simulator based on Java and the Google Maps API 
has been developed to feed the system. To generate traffic data, 
as a pilot urban area we considered about 8 km of the network 
of Fig. 1. In two hours of simulation, 116 congestion events 
occurred. 

For the setting of CR and F we took into account the 
model-based analysis of Section III.A, thus using human 
experience. We call the approach “HU+DE”. More exactly, we 
constrained the parameters to the following values or interval-

values: β = 208.3; I = 5; ε ∈ [1, 5], θ ∈ [0.5, 0.75], φ 

∈[10,120], α ∈ (0, 10]. For each experiment, 5 trials have been 
carried out, with 30 generations. We also determined that the 
resulting fitness values are well-modeled by a normal 
distribution, using a graphical normality test. Hence, we 
calculated the 95% confidence intervals. Table II shows the 

fitness, in the form “mean ± confidence interval”, for the 
considered values of the parameters CR and F. Here it can be 
observed that the variation of both parameters does not 
significantly affect the performance of the algorithm, and that 
the best performance (represented with boldface style in Table 
II) is achieved with CR=0.7 and F=0.8. 

TABLE II.  OPTIMIZATION PARAMETERS SETTING WITH THE HU+DE 
 APPROACH:  F (WITH CR=0.7); CR (WITH F=0.8) 

F Fit 

0.7 35.16 ± 0.47 

0.8 33.72 ±±±± 0.72 

0.9 35.91 ± 0.89 

(a) 

CR Fit 

0.6 35.44 ± 0.80 

0.7 33.72 ±±±± 0.72 

0.8 34.81 ± 0.31 

(b) 

We carried out three experiments with different approaches, 
to optimize the aggregation parameters: (a) “HU+DE”, i.e., a 
DE constrained with the same model-based analysis used for 
the setting of CR and F, and then using human experience; (b) 

“DE”, with the following model-free parameters bounds: ε ∈ 

[1, 10], θ ∈ [0.35, 0.9], φ ∈ [1, 500], α ∈ (0, 20]; (c) “HU”, 
i.e., a manually-parameterized experiment, using default values 

for each parameter: ε = 3; θ = 0.675, φ = 23; α = 1. Table III 
shows the optimal parameters setting and the related best 
fitness of each experiment. To provide an absolute quality 
measure, the table also shows separately the average absolute 
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errors on the start and end times, and the average absolute 
errors on the head and tail of the queues. It can be observed 
that the model-free approach (“DE”) significantly improved the 
quality of the detection with respect to the model-based 
(“HU”), from 65.5 to 36.0, and that the hybrid approach 
(“HU+DE”) provided further improvements. Table III also 
shows that the major impact of the parametric adaptation is on 
the temporal error (from 28.4 to 9.5 minutes), whereas the 
impact on the spatial error is not significant (about one meter).   

TABLE III.  HUMAN-DRIVEN VS./WITH DE-DRIVEN PARAMETERIZATION 

Approach 

Parameterization Performance 

εεεε θθθθ αααα φφφφ Fit 
Avg Time 

Err (min.) 

Avg Position 

 Err (mt.) 

HU+DE 4 0.579 8.5 25 33.6 9.5 36.4 

DE 4 0.611 18.5 26 36.0 12.3 34.9 

HU 3 0.675 1 23 65.5 28.4 35.7 

 

Fig. 7 shows the fitness versus the number of generations 
for the HU+DE and DE approaches. We observe that the 
fitness function gets stable around a small number of 
generations (about 30). It is also apparent that DE optimization 
sensibly compensates the leverage of human knowledge.  

 

Fig. 7. Fitness function versus generation, for HU+DE and DE approaches. 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have presented a new design of swarm 
aggregation of vehicle positions applied to traffic congestion 
estimation. The design is based on marker-based stigmergy, 
properly interfaced with input-output activation mechanisms 
for a better interoperability with the sensing and the application 
layers. Since the emergent character of stigmergy depends on 
biases and scale factors that can vary for different application 
contexts, an essential component of the design is the parametric 
adaptation. For this purpose, we designed a fitness function and 
adopted the differential evolution as an optimization strategy. 
Experimental results show the effectiveness of the approach 
and relevant improvements with respect to a human 
parameterization. Other evolutionary-based strategies may be 
effective in solving the type of optimization problem tackled in 
this work. For this purpose, to use more explorative version of 

DE is considered a key investigation activity for future works, 
in the attempt to further reduce the need of human knowledge. 
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