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Abstract. We use the marker-based stigmergy, a mechanism that me-
diates animal-animal interactions, to perform context-aware information
aggregation. In contrast with conventional knowledge-based models of
aggregation, our model is data-driven and based on self-organization of
information. This means that a functional structure called track appears
and stays spontaneous at runtime when local dynamism in data occurs.
The track is then processed by using similarity between current and ref-
erence tracks. Subsequently, the similarity value is handled by domain-
dependent analytics, to discover meaningful events. Given the change-
ability of human-centered scenarios, the overall process is also adaptive,
thanks to parametric optimization performed via differential evolution.
The paper illustrates the proposed approach and discusses its character-
istics through two real-world case studies.
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1 Introduction and Motivation

Context-awareness is a computing paradigm by which software systems can sense
the user’s context in order to provide personalized services. This paradigm relies
on the context, that is, all information helping to understand what is happening
in the user’s physical or logical environment. Context-aware information can be
supplied through different channels: data repositories, web applications, mobile
applications, embedded systems, and so on [1]. To properly support service per-
sonalization, context-aware information should be adequately aggregated so as
to detect human-centric events in a number of domains: financial transactions,
health care needs, traffic jam, territorial emergency, and so on [2].

In the literature of context-awareness, at the core of aggregation of human-
centric data is the construction of two possible types of model: (i) knowledge-
based models, explicitly designed at the business level in terms of logical or
mathematical rules, determined by a domain expert; (ii) data-driven models, i.e.,
systems that can learn from prototypical data via machine learning or statistical
algorithm. Nevertheless, modeling and reusing application contexts remains a
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difficult task. An important lesson learned is that the algorithms performing
the parametric data aggregation must use a limited number of states, be highly
adaptable and handle variability [3,4].

Generally speaking, knowledge-based models belong to the cognitivist
paradigm [5]. In this paradigm, the system is a descriptive product of a human
designer, whose knowledge has to be explicitly formulated for a representational
system of symbolic information processing. It is well known that knowledge-
based systems are highly context-dependent, neither scalable nor manageable.
With respect to knowledge-based models, data-driven models are more robust
in the face of noisy and unexpected inputs, allowing broader coverage and being
more adaptive. The data-driven approach discussed in this paper takes inspira-
tion from the emergent paradigm [5], in which context information is augmented
with locally encapsulated structure and behavior. Emergent paradigms are based
on the principle of self-organization of data, which means that a functional struc-
ture appears and stays spontaneous at runtime when local dynamism in data
occurs [6].

In this paper we propose to use the principles of the marker-based stigmergy to
perform context-aware information aggregation. In biology, stigmergy is a class
of mechanisms that mediate animal-animal interactions. It consists of indirect
communication between individuals of an insect society by local modifications
induced by these insects on their environment. Social insect colonies employ
chemical markers (pheromones) that the insects deposit on the ground in specific
situations. Pheromone concentrations in the environment disperse in space and
evaporate over time, because pheromones are highly volatile substances. Multiple
deposits at the same location aggregate in strength. Members of the colony who
perceive pheromones of a particular flavor may change their behavior.

In computer science, marker-based stigmergy occurs when marks are left in
an environment to enable self-coordination [7]. Marker-based stigmergy can be
employed as a powerful computing paradigm exploiting both spatial and tempo-
ral dynamics, because it intrinsically embodies the time domain. Moreover, the
mapping provided is not explicitly modeled at design-time and then not directly
interpretable. This provides a kind of information blurring of the human data,
and can be exploited to solve privacy issues.

In this work the main goal of data aggregation is to distinguish different spatio-
temporal patterns occurring over time. For this purpose, we use stigmergic tracks
for assessing similarity between context-aware data. Similarity is computed be-
tween a reference and a current track, and over different time periods, in order to
measure the differences. Since context-data source is application-dependent, we
have included an adaptive scheme on the marking and detection sub-processes.
The setting of different applications consisting in different parameterizations can
be automatically performed via a biologically-inspired optimization algorithm.

More specifically, the system architecture proposed in this paper is made of
four subsystems: (i) the marking subsystem takes context information samples
and releases marks in a computational environment; here, marks interact with
each other at micro level generating a collective mark distribution. Collective
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mark can be considered as a short-term and a short-size memory which ab-
stracts the complexity and the variability in the information sources; (ii) the
perception subsystem compares the collective mark with a reference mark by
similarity function; (iii) the detection subsystem connects similarity to specific
application domain analytics; (iv) finally, the adaptation subsystem consists in
the parametric optimization of the other subsystems. We used differential evo-
lution among the other optimization methods [8].

The paper is structured as follows. Section 2 details on the first three sub-
systems, whereas Section 3 covers the adaptation subsystem. Both sections are
based on two real-world pilot case studies. Finally, Section 4 draws some con-
clusions.

2 Processing with Stigmergy: A Three-Level Architecture

This section is focused on the marking, perception, and detection subsystems,
described by considering a pilot real-world case study in the field of ambient
assisted living (AAL): to monitor elderly people living alone in their own homes
with the purpose of detecting possible disease situations. In the pilot case study,
the context-aware input information is the x, y position of the elderly at home,
periodically sampled, whereas the binary output is the detection of unusual
behavior, with respect to a reference behavior sampled in a healthy period. The
case study of the vendor rating is also presented.

2.1 The Marking Subsystem

The marking subsystem periodically takes as an input the position of the user
at home and releases a mark in a computer-simulated spatial environment, thus
allowing the accumulation of marks. A mark has four attributes: position (x, y),
maximum intensity IMAX , width ε, and evaporation θ. Fig. 1a-d shows some
mark sample of the pilot scenario. The position of the elderly is represented by
a dot, in Fig. 1a and Fig. 1c.

The levels of mark intensity are represented by different gray gradations: the
darker the gradation is, the higher the intensity of the mark. In Fig. 1a the
highest intensity of the mark IMAX is in the middle, which corresponds to the
position of the person where the mark is left. Mark intensity proportionally
decreases with the number of squares from the position of the person, reaching
its minimum at distance ε. Further, mark intensity has a temporal decay, i.e.,
a percentage θ of decrease after a step of time (tick). Hence, an isolated mark
after a certain time tends to disappear, as shown in Fig. 1b sampled after a
tick with respect to Fig. 1a. The time that a mark takes to disappear is longer
than the period used by the marking subsystem to release a new mark. Hence,
if the user is still in a specific position, new marks at the end of each period will
superimpose on the old marks, thus increasing the intensity up to a stationary
level. If the person moves to other locations, consecutive marks will be partially
superimposed and intensities will decrease with the passage of time without
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being reinforced. Fig. 1c shows two consecutive and overlapping marks, and
Fig. 1d shows the same track after a step of evaporation. The stigmergic track
can then be considered as a short-term and a short-size action memory. The
marking subsystem allows capturing a coarse spatiotemporal structure in the
domain space, which hides the complexity and the variability in data.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. (a) example of a two-dimensional mark; (b) the mark after a step of evaporation;
(c), the aggregation of two consecutive marks; (d) the aggregated marks after a step
of evaporation; (e) aggregated mark generated by an elderly moving in his apartment
on a Friday at 19:20; (f) aggregated mark on the next Friday at 19:20; (g) the union
of the marks of Fig. 1e and Fig. 1f; (h) the intersection of the marks of Fig. 1e and
Fig. 1f.

2.2 The Perception Subsystem

At the second level there is the perception subsystem, consisting in the sensing
of the track accumulated in the environment at the macro-level. Here, we take
advantage of stigmergy (computed at the first level) as a means of information
aggregation of the spatiotemporal tracks. Indeed, the process of information
aggregation is a vehicle of abstraction, leading to the emergence of high-level
behavior. The perception subsystem performs a comparison, called similarity,
which aims at sensing the variation of the current behavior with respect to what
was judged a normal behavior.



Improving the Analysis of Context-Aware Information 345

More specifically, given an accumulated mark, i.e., a track, the perception
subsystem performs a similarity computation between the current track, Ti, and
a reference track, TREF

i , at the i-th step. A reference track is generated offline,
by averaging the marks collected during healthy periods. Indeed in the case study
the objective is to detect unusual behavior, and reference tracks were created
when the elderly was healthy, for each day of week. Thus, the similarity with the
current track and the reference track, S(Ti, T

REF
i ), in the same day of a week

provides information about unusual behavior.
Fig. 1e shows a two-dimensional representation of the track generated by

an elderly moving in his apartment on a Friday at 19:20. Fig. 1f shows the
track on the next Friday at 19:20. Fig. 1g shows the union of the tracks of
Fig. 1e and Fig. 1f, whereas Fig. 1h shows the intersection of the same tracks. In
general, given two marks, their similarity is a real value calculated as the volume
covered by their intersection divided by the total volume (the union of them).
The lowest similarity is zero (tracks with no intersection), whereas the highest
is one (identical tracks).

2.3 The Detection Subsystem

The detection subsystem enhances and discovers relevant variation of the cur-
rent distribution through sharpening and domain-dependent analytics. For this
purpose, to achieve a better distinction of the critical phenomena, the s-shaped
activation function is applied to the similarity output. As an effect, at each
tick values lower than a lower threshold α are further decreased, whereas val-
ues higher than an upper threshold β are further amplified, to evidence major
dissimilarity.

Fig. 2a shows the similarity values between current and reference track, in a
sampling period of 14 hours and 35 minutes (175 total ticks, 1 tick corresponding
to 5 minutes). A similarity value close to 1 means that there are no behavior
differences, while a similarity close to 0 means that there are significant modifi-
cation in behavior. Here, two horizontal dotted lines are also shown, representing
sample values of the lower (α=0.4) and the upper (β=0.8) thresholds of the s-
shape. In Fig. 2b, the thick line represents the s-shaped similarity, whereas the
thin line represents actual behavioral changes, annotated by a human observer
who analyzed video tracks of the elderly. From Fig. 2a and Fig. 2b it is apparent
that three actual behavioral changes occurred, but only the third one is detected
by the system. To improve the system quality, the system parameters can be bet-
ter adjusted. In Fig. 2c a quality indicator is shown, by using the third event
of Fig. 2b. More specifically, let ẗ = [t, t] be the duration of an actual event,
and τ̈ = [τ , τ ] = [min{i|S(Ti, T

REF
i ) = 0},max{i|S(Ti, T

REF
i ) = 0}] be the

duration of an event detected by the system. To assess the error between the ac-
tual and the detected event we compute the one-dimensional similarity between
the two time intervals: S(ẗ, τ̈ ) = (ẗ ∩ τ̈ )/(ẗ ∪ τ̈). From the interval arithmetic:
S(ẗ, τ̈) = max{0,min(τ , t)−max(τ , t)}/{max(τ , t)−min(τ , t)} = (t− τ )/(τ − t).
To assess the global error, the average similarity is calculated considering each
j-th event.
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(a) (b) (c)

Fig. 2. (a) Similarity between current and reference tracks, in a sampling period of
14 hours and 35 minutes; (b) s-shaped similarity (thick line) with α=0.4 and β=0.8,
against actual behavioral changes of the elderly (thin line); (c) start and end of an
actual (thin line) and a detected (thick line) behavioral event

In order to show the generality of the approach, in the next section we briefly
present a second real-world case study, concerning a vendor rating problem.

2.4 Application of the Approach to Another Case Study: Vendor
Rating

Let us consider four manufacturing competitor firms, with the role of buyers with
respect to a community of vendors. Context-aware information is provided by a
community system for supplier relationship management, to carry out a vendor
rating (VR). An important problem in the field is that, usually, a buyer is not
willing to share the performance of his vendors, to keep a competitive advantage
over its rivals. However, without information sharing each buyer can analyze only
his subset of vendors. A solution to this problem is to use marker-based stigmergy
for analyzing vendors context-aware information, so as to maximize its usability
without violating its market value. Indeed, stigmergy preserves privacy since it
controls the level of perturbation of information, which means that information is
scrambled to be partially hidden but up to preserve its utility. Stigmergy allows
masking plain information by replacing it with a mark, as a surrogate keeping
some piece of the original information. The perturbation level can be controlled
via mark’s structural parameters. More specifically to increase the mark’s width
ε implies a higher uncertainty, whereas to decrease the evaporation θ implies
a higher merging of past and new marks. A very large width (ε → ∞) and a
very small evaporation rate (θ → 0) may cause growing collective marks with
no stationary level, because of a too expansive and long-term memory effect. A
very small width (ε → 0) and a very small evaporation rate (θ → 0) may cause
the plain real values to appear for long time.

Fig. 3a-c shows three stigmergic perturbation levels applied to vendors’ pro-
ductivity values, calculated as output divided by labor, with increasing values of
ε. We used information of publicly available dataset [9]. More specifically, in the
marking subsystem, each k-th buyer locally produces a track Tk (represented as
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(a) (b) (c)

Fig. 3. Different stigmergic perturbation levels, in a community of four buyers, repre-
sented by individual track (thin line) and aggregated track (thick line). (a) low pertur-
bation with ε=5: comparable but interpretable performance; (b) medium perturbation
with ε=60: comparable and non-interpretable performance; (c) high perturbation with
ε=200: non-comparable and non-interpretable performance.

a thin line in figure) by aggregating marks on the productivity of his vendors.
In the perception subsystem, the tracks of the four buyers are aggregated and
averaged online to create a reference track, TREF (represented as a thick line

in the figure), together with its average level, TREF , both shared between the
buyers. The similarity value Sk between Tk and TREF is then calculated. In
the detection subsystem, such similarity is used as a performance indicator, to
compare the buyer track with respect to the reference track. Moreover, to assess
the utility of the information against its privacy, a quality indicator has been
also defined as the product between (TREF ) and the variance of Sk, to take into
account two factors:

(a) low perturbation (ε = 5): a high variance of Sk and a low (TREF ) makes the
individual tracks easily interpretable from the aggregated track; as an example,
Fig. 3a shows a bad scenario where an individual track in the interval [120,180]
is not overlapped to other individual tracks and then it is transparent to the
other buyers;

(b) average perturbation (ε = 60): an average variance of Sk and an average

(TREF ) makes the individual tracks totally overlapped, as shown in the good
scenario of Fig. 3b;

(c) high perturbation (ε = 200): a low variance of Sk and a high (TREF ) makes
the buyers performance non-comparable, as shown in the bad scenario of Fig. 3c.
In addition to ε, other structural parameters may also affect the perturbation
level. As shown for both scenarios presented in this paper, to choose the param-
eters corresponding to the best quality of the performance indicators is crucial
in the proposed approach. The next section is devoted to the adaptation subsys-
tem, which traverses all levels of processing since it may affect all parameters to
find the best setting.
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3 Adapting the Stigmergic Process via a Cross-Level
Subsystem

Table 1 summarizes, for each case study, the structural parameters set by a do-
main expert, and the corresponding quality metrics with their values. To adapt
the structural parameters maximizing a quality metric is an optimization prob-
lem. The next subsection covers the design of the adaptation subsystem, which
performs the optimization.

Table 1. Structural parameters set by a domain expert and quality metrics for each
case study

Case width (ε) evap.(θ) thr.(α, β) Quality metric

AAL 10 0.9 0.4, 0.4 Q = avg{S(ẗj , τ̈j)}=0.63

VR 60 0.9 0.0, 1.0 Q = var{S(Tk, T
REF )} · avg{TREF}=4.57

3.1 The Adaptation Subsystem

Many optimization problems may be solved by search methods, i.e., procedures
that look for a solution by trying out many attempts until a satisfactory result is
obtained. Biologically inspired algorithms (BIAs) implement search mechanisms
applicable to problems that cannot be efficiently solved using exact and analyt-
ical techniques [8]. Indeed, it is apparent from Table 1 that each case employs a
different quality metrics. Then, an optimization method using a “black box” ap-
proach, i.e., which is not based on formal properties of the quality function, may
be effective. Due to their random nature, BIAs can find near-optimal solutions
rather the optimal solution.

BIAs optimize a problem by iteratively trying to improve a population of
candidate solutions with regard to a given measure of quality, or fitness. Solu-
tions are improved by means of stochastic transformation mechanisms inspired
by biology, such as reproduction, mutation, recombination, selection, survival,
swarm, movement, in an environment whose dynamics are represented by the
quality measure.

Since the mid-sixties many BIAs have been proposed, and many efforts have
also been devoted to compare them. In the last decade, most notably the fol-
lowing three classes of methods attracted attention: Genetic Algorithm (GA),
Differential Evolution (DE), and Particle Swarm Optimization (PSO) [8]. A
quantitative comparison of GA, DE, and PSO is beyond the scope of this paper.
For the sake of brevity, an excerpt of their qualitative properties is summarized
in Table 2 [8]. The interested reader is referred to the specialized literature for
further details. It is apparent from Table 2 that DE is a simple and efficient
adaptive scheme for global optimization. For this reason, it was selected to de-
sign the adaptation subsystem. Next subsection is devoted to DE and its different
variants.
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Table 2. An excerpt of the properties of the algorithms GA, PSO, and DE [8]

Property GA PSO DE

Require ranking of solution Yes No No
Influence of population size on solution time Exponential Linear Linear
Influence of best solution on population Medium Most Less
Average fitness cannot get worse False False True
Tendency for premature convergence Medium High Low
Density of search space Less More More
Ability to reach good solution without local search Less More More

3.2 The Differential Evolution

In DE algorithm, a solution is represented by a real D-dimensional vector, where
D is the number of parameters to tune. DE starts with a population of N can-
didate solutions, injected or randomly generated. At each iteration and for each
member (target) of the population, a mutant vector is created by mutation of
randomly selected members and then a trial vector is created by crossover of
mutant and target. Finally, the best fitting among trial and target replaces the
target. More formally:

DifferentialEvolution()
P (0) ← InitializePopulation()
f ← ComputeFitness(P (0))
t ← 0
while !stopCondition {
for each p(t) ∈ P (t) {
p′ ← GenerateMutant(P (t), p(t))
q ← Crossover(p(t), p′)
if f(q) < f(p(t))
then p(t+ 1) ← q
else p(t+ 1) ← p(t)

}
t ← t+ 1
f ← ComputeF itness(P (t))

}

In the literature, many variants of the DE algorithm have been designed, by
combining different structure and parameterization of mutation and crossover
operators [10]. Mutant vector is usually generated by combining three randomly
selected vectors from the population excluding the target vector. More formally:

GenerateMutant(P , p)
p1, p2, p3 ← randomExtraction(P − p)
return p1 + F · (p2 − p3)
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The scaling factor F ∈ [0, 2] is a parameter of the DE algorithm. We used a
commonly set value, i.e., F = 0.8.

There are different crossover methods. Results show that a competitive ap-
proach can be based on binomial crossover [11]. With binomial crossover, a
component of the offspring is taken with probability CR from the mutant vector
and with probability 1− CR from the target vector. More formally:

BinomialCrossover(p, q)
k ← randomInteger(1, n)
for i = 1 to n {
if randomReal(0,1)< CR or i = k
then zi ← pi
else zi ← qi

}
return z

A small crossover probability leads to a vector that is more similar to the
target vector while the opposite favors the mutant vector. We used a commonly
set value, i.e., CR = 0.7, with the population size N equals to 15.

3.3 Experimental Studies

The aim of this section is to illustrate the possibilities offered by our approach,
rather than to focus on a systematic optimization spectrum. For this purpose,
we experimented the optimization offered by DE on both AAL and VR case
studies. We used the parameters values found by domain experts as an initial
(injected) solution, and the quality metrics already summarized in Table 1.

Fig. 4 shows the fitness versus number of generations for both cases. Here, it is
apparent that the parametric optimization sensibly improved the initial setting,
after a small number of generations (about 10) and with a very fast convergence:
the quality metric has been highly improved, up to 44% and 62%, for AAL
and VR, respectively. The parameters and the quality metrics (fitness) values

(a) (b)

Fig. 4. Fitness versus number of generations for two case studies: (a) AAL; (b) VR
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Table 3. Best solution provided by the adaptation module for each case study

Case width (ε) evap.(θ) thr.(α, β) Quality metric

AAL 37 0.51 0.52, 0.52 0.91

VR 42 0.94 0.00, 1.00 7.40

provided at the end of the optimization processes are summarized in Table 3,
to be easily compared with the values set by domain experts (Table 1). In the
AAL case ε has been sensibly increased and θ has been considerably reduced,
whereas in the VR case ε has been strongly reduced keeping θ about constant.
To focus the analysis on the marking structure, α and β were constrained to be
equal (AAL) or fixed to constant values (VR).

4 Conclusions

We have presented a novel approach to analyze context-aware information. The
approach is based on representing the context datum as a mark, to enable self-
organization between data. An architecture exploiting the mechanisms of the
marker-based stigmergy have been designed and discussed on two real-world do-
mains. An adaptation subsystem based on differential evolution has been also
designed and experimented to enable a self-parameterization of the architec-
ture. Experimental results show the effectiveness of the approach. However, to
ensure high-quality design, the system should be cross-validated against more
dynamic context data series. Indeed, one of the problems to solve when optimiz-
ing parameters is that optimization encompasses all available scenarios at once
and may include different contexts, spread across the entire search space. This
global tuning leads to increasing difficulties from the practical perspective, due
to fitting different scaled spatiotemporal data. An alternative is local modeling,
which requires an architecture based on sub-models that focus predominantly on
some selected regions of the entire domain. An overall model is then formed by
combining such local models. This modular layer may provide a topology offer-
ing a considerable level of flexibility, as the resulting sub-models can be highly
diversified according to the distribution of the local data. For this reason, future
work will be focused on using more dynamic context data series, to assess the
fitting properties of the current system and to enable the design of a composite
architecture.
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