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Abstract Today, handheld devices can accommodate a

large amount of different resources. Thus, a considerable

effort is often required to mobile users in order to search

for the resources suitable for the specific circumstance.

Further, this effort rarely brings to a satisfactory result. To

ease this work, resource recommenders have been pro-

posed in the last years. Typically, the recommendation is

based on recognizing the current situations of the users and

suggesting them the appropriate resources for those situa-

tions. The recognition task is performed by exploiting

contextual information and preferably without using any

explicit input from the user. To this aim, we propose to

adopt a collaborative scheme based on an emergent para-

digm. The underlying idea is that simple individual actions

can lead to an emergent collective behavior that represents

an implicit form of contextual information. We show

how this behavior can be extracted by using a multi-

agent scheme, where agents do not directly communicate

amongst themselves, but rather through the environment.

The multi-agent scheme is structured into three levels of

information processing. The first level is based on a stig-

mergic paradigm, in which marking agents leave marks in

the environment in correspondence to the position of the

user. The accumulation of such marks enables the second

level, a fuzzy information granulation process, in which

relevant events can emerge and are captured by means of

event agents. Finally, in the third level, a fuzzy inference

process, managed by situation agents, deduces the user

situations from the underlying events. The proposed

scheme is evaluated on a set of representative real sce-

narios related to meeting events. In all the scenarios, the

collaborative situation-aware scheme promptly recognizes

the correct situations, except for one case, thus proving its

effectiveness.

Keywords Collaborative context awareness �Multi-agent

system � Emergent paradigm � Context awareness � Fuzzy

information granule � Mobile resource recommender

1 Introduction

The number of available resources for mobile devices is

continually growing. Today, mobile marketplaces host

thousands of applications for all kinds of user needs. Fur-

ther, the capability of storing applications and documents

in mobile devices is rapidly increasing, thus expanding the

personal information space of a mobile user in terms of

dimensionality and variety. For an average user, finding the

desired resource can be very time consuming.

Mobile Recommendation is a new paradigm that sensi-

bly increases the usability of mobile systems, by proac-

tively providing personalized and focused access (Ricci
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2011). A resource recommender is a software application

which aims to recommend resources when the user needs

them. The front-end of a recommender can be thought of as

an intelligent bookmark toolbar, whose items are auto-

matically updated. In general, recommenders aim to sug-

gest the most relevant items to the user, usually based

either on information about the item (content-based

approach) (Terveen and Hill 2001) or on the relationships

of the user with other users (collaborative filtering

approach) (Resnick et al. 1994; Sarwar et al. 2001), or on

both these information sources (Burke 2002). Only

recently, the recommendation process has been performed

by using situation-awareness. Situation-awareness is a

computing paradigm in which applications can sense and

explore the situation of a user in order to identify her/his

demand at a certain time (Terveen and Hill 2001; Cia-

ramella et al. 2010a). The fundamental vehicle to deter-

mine the situation of a user is the context, i.e., suitable

circumstance information captured from a physical or

logical environment. This form of autonomous perception

implies reasoning, decision, adaptation, and other features

of cognitive systems (Vernon et al. 2007), as well as

dealing with an intrinsic uncertainty in data (Ciaramella

et al. 2010a; De Maio et al. 2011).

A variety of recommender systems proposed in litera-

ture embed some kind of contextual information in order to

determine useful recommendations (Adomavicius and Tu-

zhilin 2010). One of the first papers that have acknowl-

edged the importance of context in recommendation is

(Herlocker and Konstan 2001). Here task-specific recom-

mendations have been proposed. A task is identified by a

set of sample items related to the task itself. For instance, if

the user provides a hammer as example item in a shopping

recommender, the system can recommend buying nails.

Such associations can be easily identified automatically by

the system, via association rules. The increasing need to

integrate context-awareness into identity management

within the field of ubiquitous computing has been strongly

argued in (Arabo et al. 2009, 2011). In this context, envi-

ronment contextual information may be properly exploited

in order to ensure users having reliable, fast and secure

access to resources and services in a dynamic and adaptive

manner without asking for explicit user intervention. In

(Jiang et al. 2011) the authors proposed ContextRank, a

method to recommend travel locations by exploiting dif-

ferent context information of photos such as textual tags,

geotags, visual information and user similarity. Such con-

text information is employed to predict the user preferences

for a location and, finally, a ranking algorithm is used to

combine the different preference predictions to provide

final recommendation to the user. In (Naganuma and Ku-

rakake 2005) a task-oriented service navigation system that

supports users in finding appropriate services by browsing

rich task ontology has been proposed. Such ontology

contains a variety of real-world structured tasks and related

services. In (Luther et al. 2008) the navigation system has

been extended by taking the user situation into account, in

order to suggest tasks and services actively, without the

need for initial input from the user. A system that exploits

situation awareness to provide user with the desired

information and services has been proposed in (Weißen-

berg 2006). In this approach, a situation describes a user

demand that occurs at a certain time and is formed by a

sequence of contexts defined as logical expressions. Both

situation inference and service selection are based on

ontologies for inferring, first, a set of situations and, then, a

set of services which may be relevant in such situations.

The user may be in none, one or many situations in parallel,

but no ranking is given to help the user to choose the most

suitable situation, or to list the recommended services in an

appropriate order. Recently, in (Petry et al. 2008) the

authors have proposed ICARE, a recommendation system

that returns references to experts in requested domains

using contextual information. More specifically, the system

improves its recommendations by using the contexts of

both the user and the expert, privileging those experts who

better fit current needs of the user. Examples of contextual

information employed are expert’s availability and

approachability, social distance, etc. Contextual rules are

defined to set appropriate weights in order to decide, given

the context of the user, which contextual information

should be favored. Hence, the recommendations are dif-

ferent for each user, according to her/his context.

The main weakness of all the afore-mentioned context-

aware systems is that they do not consider uncertainty that

characterize contextual data in order to infer the current

situation of the user. Fuzzy logic has proved to be a

promising approach to manage the natural uncertainty that

affects contextual data. In (Cena et al. 2006) fuzzy logic

has been employed in a context-aware tourism recom-

mender. The system exploits personalization rules to sug-

gest services (e.g., restaurants, places to visit, etc.) tailored

to the profile and context of the user. User profile is gen-

erated from: (1) explicit user data, such as age, gender,

general interests, etc.; (2) data inferred via fuzzy rules

based on domain knowledge, such as propensity to spend,

specific interests, etc.; (3) user current needs and wishes, by

observing the sequence of user interactions with the sys-

tem, such as printed pages, on-line booking, etc. Based on

the interests, stored in his/her profile, and position of the

user, the system computes an overall score for each service

and recommends services in an order depending on the

score. Thus, the context is limited mainly to the location of

the user, which acts as a filter to recommend services.

Moreover, proactivity of the recommendations is not sup-

ported, but only envisioned as future work. A context-
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aware music recommendation system that employs fuzzy

Bayesian networks and utility theory has been proposed in

(Park et al. 2006). In particular, a fuzzy system is exploited

to pre-process contextual data from various sensors and the

Internet, in order to have quantized inputs for the Bayesian

network. Based on these inputs, the network can infer the

user context and assign a probability. Finally, recommen-

dations are proposed depending on a final score, which is

computed taking the inferred context and user preferences

into account. In this approach, no semantic aspects of the

contextual information are considered. Moreover, the

inference process is entirely based on the Bayesian net-

work, resulting in a not easily accessible mechanism for

average users.

In some recent papers (Ciaramella et al. 2010a, b), we

have proposed a Situation-Aware Resource Recommender

(SARR) for mobile users. SARR is based on a cognitivist

approach (Vernon et al. 2007), i.e., it is a representational

system based on symbolic information processing. More

specifically, in SARR user data collected from mobile

devices are communicated to a server-side system that

exploits a semantic web engine to infer one or more current

situations. If multiple possible situations are inferred, a

fuzzy engine computes a certainty degree for each situa-

tion, taking the intrinsic vagueness of some conditions of

the semantic rules into account. Finally, the specific current

situation together with contextual information is used to

recommend services. Fig. 1 shows the two macro processes

of SARR, that represent the core modules of any situation

aware resource recommender. They are the Situation

Recognition (SR) process and the Resource Recommen-

dation (RR) process. According to the user’s current situ-

ation provided by the SR, the RR proposes specific

resources that are also implicitly parameterized in terms of

the context. Thus, the RR process can be considered as a

resource classifier which is modulated by both the user

context and situation, whereas the SR process is a pattern

recognizer which generates the user’s current situation as a

higher level concept, starting from context sources. While

the RR process is defined according to the specific appli-

cation domain, the SR process can be modeled as a general

purpose element for any situation aware application. For

this reason, in this work we focus on the SR process, which

is independent on the specific application. The interested

reader is referred to (Ciaramella et al. 2010a) for further

details on the RR process.

In SARR, the SR process is modeled by a rule-based

paradigm, via fuzzy and crisp logic. Indeed, context sour-

ces include vague information, such as location and time of

meetings. The structure of rules has been designed

according to a upper situation ontology which is domain-

independent. The calendar of the user acts as a reference

for the parameterization of such fuzzy rules for each user.

Hence, the current situation of the user is inferred via

(i) the dynamic instantiation of abstract fuzzy rules over

concrete location and time references coming from the

agenda of the user, and (ii) the execution of such rules with

the current location and time as values for base variables.

Thanks to fuzzy logic, SARR is able to detect events even

if they occur with shifted time and/or location. This can be

easily achieved by implementing linguistic variables over

fuzzy sets with a sufficient support to cover a broad spatial/

temporal region. However, the higher the uncertainty in

fuzzy linguistic variables is, the lower the responsiveness

of the system is. To cope with this problem, in (Ciaramella

et al. 2010b) context history is employed as a training set

for a genetic algorithm which aims to adapt fuzzy sets to

the actual behavior and habits of the user, increasing the

accuracy and responsiveness of the situation assessment.

Nevertheless, the use of a calendar to make a reference

schedule is an explicit input required to the user. On the

contrary, context information should be collected in terms

of implicit input, coming from changes in the environment.

Further, the calendar is a common tool for business and not

for personal use, and hence it cannot be guaranteed in

many real world scenarios.

To avoid using explicit inputs as context sources in

SARR, in this paper we propose an approach based on an

emergent paradigm (Vernon et al. 2007) for detecting

events and therefore recognizing situations. Emergent

paradigms are based on the principle of self-organization

(Heylighen and Gershenson 2003), which means that a

functional structure appears and keeps spontaneously. The

control needed to achieve results is distributed over all

participating entities. In the literature, the mechanisms used

to organize these types of systems and the collective

behavior that emerges from them has become also known

as swarm intelligence: a loosely structured collection of

interacting entities (Barron 2005). The fact that simple

individual behaviors can lead to a complex emergent

behavior has been known for decades. More recently, it has

been noted that this type of emergent collective behavior is

a desirable property in pervasive computing (Barron 2005;

Cimino and Marcelloni 2011). Biological paradigms have

inspired a lot of research, not only in robotics and com-

munication networks, but also in pattern detection and

classification (Barron 2005). For example, in (Rao 2010) a

Fig. 1 Macro processes of a situation-aware resource recommender
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swarming agent architecture for distributed patterns

detection and classification is presented, providing

robustness, scalability and fast convergence. In (Brueckner

and Van Dyke Parunak 2005) an agent-based distributed

data mining technique is proposed for smart space and

ambient intelligence application areas. In general, perva-

sive computing environments can easily generate enough

activity to enable a stigmergic mechanism (Park et al.

2006). Indeed, people and smart devices roam around the

environment, interact with their neighborhood and produce

some change on it, satisfying the minimal requirements set

by Holland et al. to support stigmergy (Holland and Mel-

huish 1999).

In this paper we present how this form of collaborative

situation awareness can be implemented by focusing on an

important class of events, namely social events (e.g.,

meetings, conferences, festivals, entertainment, and so on).

We discuss a collaborative multi-agent scheme for the

detection of such events, structured into three levels of

information processing. The first level is managed by a

stigmergic paradigm, in which marking agents leave marks

in the environment in correspondence to the position of the

user. The accumulation of such marks enables the second

level, a fuzzy information granulation process, in which

relevant events can emerge and are captured by means of

event agents. Finally, in the third level, a fuzzy inference

process, managed by situation agents, deduces user situa-

tions from the underlying events. The combined use of the

emergent paradigm and fuzzy logic in our context-aware

scheme offers several advantages for the development of

recommender systems. First of all, the self-organizing

mechanisms underlying the stigmergic paradigm avoid the

requirement of explicit input to the user in order to collect

contextual information. In our approach context informa-

tion emerges implicitly in the form of changes in the

environment. This alleviates the user from inputting any

kind of information, making the mobile device application

more friendly and easy to use. Using the mechanisms of

fuzzy granulation and fuzzy rule inference, the framework

detects the flow of situations without requiring any infor-

mation nor action from the user. Moreover, unlike other

approaches that require pre-processing steps (e.g., cluster-

ing) to extract and synthesize a context model from the

available contextual information, in our approach the

context model is created on the fly, with no necessity of

further elaboration, and situations are recognized in a very

simple way, without requiring time-consuming processes.

This lightweight feature is necessary for enabling a situa-

tion recognition framework to operate dynamically and

adaptively in mobile devices having limited resources (i.e.

low computing power and small memory). Also, using

fuzzy logic, the proposed scheme can take into account the

uncertainty that affects contextual data, thus detecting

situations correctly even if they occur with shifted time

and/or location. Another advantage coming from the use of

fuzzy logic is the possibility to detect many situations

simultaneously for a user by providing grades of certainty

for each situation. As a consequence, different resources

can be recommended to the user at the same time, using a

ranking based on different certainty degrees. In this way,

our scheme enables the development of proactive recom-

mender systems, that can recommend resources as soon as

a situation is detected, unlike other approaches that usually

wait for the requests of the users in order to provide the

desired recommendations.

The proposed scheme is tested on three representative

real scenarios, considering four different types of situation.

For each scenario, the scheme has proved to be able to

recognize the four types of situation just approximately at

the instants when these situations occur.

The paper is organized as follows: Sect. 2 describes the

ontological and architectural views of the proposed col-

laborative situation-aware scheme. Section 3 introduces

the three levels of information processing. Section 4 shows

some results obtained on the three different scenarios.

Finally, Sect. 5 draws some conclusions.

2 The proposed approach: ontological

and architectural views

Social events are natively based on self-organizing social

processes. The collective positioning information that arises

from people can enact spontaneously some type of stig-

mergic information process (Barron 2005). Further, the

output of this process can be subject to a fuzzy granulation

able to discover, via fuzzy inference, the situation as an

emergent phenomenon. There are some works in the litera-

ture showing that fuzzy modeling may be suitable for

addressing biomimicry, that is, the development of artificial

machines that mimic biological phenomena, in a systematic

manner (Sipper 2002). Indeed, many animal and human

actions are intrinsically ‘‘fuzzy’’, hence fuzzy modeling

seems an appropriate tool for studying such behaviors

(Margaliot 2008). Moreover, it is straightforward to describe

the behavior of simple organisms using simple fuzzy rules

(Schockaert et al. 2004; Rozin and Margaliot 2007).

Let us consider in detail the stigmergic paradigm, which

is the basis of the first processing level. Stigmergy can be

defined as an indirect communication mechanism that

allows simple entities to structure their activities through

the local environment. It is a primary ingredient in coor-

dinating a complex behavior in social insects. In computer

related problems, stigmergy is used by a number of bio-

logically inspired methods and is also an appealing para-

digm for pervasive computing (Ricci 2011; Cimino and
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Marcelloni 2011). Here, stigmergy identifies a particular

type of control: the control of the actions of a group of

agents via a shared environment. The agents do not directly

communicate amongst themselves, but only interact with

and change the environment. In the literature, various types

of stigmergy have been distinguished. Sign-based stigm-

ergy occurs when markers are left in the environment to

influence the subsequent behavior (choice and parameters)

of entities. In quantitative stigmergy, the mark varies in a

quantitative manner. In a stigmergic computing scheme,

the environment acts as a shared medium through which

agents communicate. Each agent is able to sense and to

change the state of a part of the environment. These

changes need to persist long enough to affect the sub-

sequent behavior of other agents. Hence, the environment

acts as a common shared service for all entities enabling a

robust and self-coordinating mechanism.

Figure 2 represents an ontological view of the proposed

approach. Here, base concepts are enclosed in grey oval

shapes and are connected by properties, represented with

directed edges in the figure. The core properties are User

moves into the Environment and User is in a Situation. As

these properties cannot be directly sensed (i.e., instantiated)

by the system, they are shown with a dotted edge, as abstract

properties. Indeed, the overall system is aimed at indirectly

discovering them, by observing the collective behavior of the

users starting from data provided by personal devices.

Let us consider a set of U Users. We assume that each user

owns a Device able to provide current Location and Time

(e.g., a smart phone equipped with clock and GPS reader), as

well as a number of Services. A User Agent (UA)

recommends a subset of such Services observing the current

user Situation inferred by a Situation Agent (SA). The UA is

based on an ontology which allows connecting situations to

tasks, and then to specific services. This ontology was shown

in one of our recent papers (Ciaramella et al. 2010a). We will

not further discuss on how the UA works since the main aim

of this paper is to show how a situation can be recognized by

using an emergent paradigm rather than discussing an overall

service recommender. The information that allows to identify

the occurrence of a specific situation may be indirect (such as

implicit inputs or context descriptions) and, in general,

uncertain and imprecise. As a consequence, the situation

occurrence is determined with a certainty degree. This

inferential process is based on fuzzy logic, and is shown in

italic bold style in figure. Due to the intrinsic vagueness of

fuzzy inference, it is possible to recognize more than a current

Situation with a related degree of certainty. As a set of specific

situations we considered four key typical situations related to

social events (collaboration in the following) namely, pre-

collaboration (PreC), on-going collaboration (OngC), post-

collaboration (PstC), and collaboration pause (PauC). In the

figure, edges with white arrow head, and white oval shapes

represent the classical inheritance and a specialized concept,

respectively.

The SA infers situations by observing Events. The situ-

ation inference process exploits fuzzy if–then rules defined

on the certainty degrees with which the events are detected.

There are two types of events: Grouping and Disjoining

events. The grouping event arises when two or more users

tend to be close to each other. The disjoining event occurs

when a user separates from a formed group of users. The

detection of the two events is performed by, respectively,

two types of Event Agents (EA): the Grouping Agent (GA)

and the Disjoining Agent (DA). A unique GA is associated

with the group, while a DA is connected to each user

belonging to the group. The EAs observe the intensities of

the Marks and exploit these intensities for associating a

certainty degree to the event by a fuzzy granulation pro-

cess. Marks are located in the Environment, and are pro-

duced by Marking Agents (MAs). Each user is associated

with an MA which observes Time and Location of her/his

Device in order to produce marks. Whenever the MA

leaves its mark in the environment, it receives from the

Environment the information whether the mark is going to

be superimposed on marks left by other MAs. If this

occurs, the MA generates one GA and one DA. Possibly,

GAs corresponding to the same group of users are fused.

The overall system architecture is shown in Fig. 3, by

using a UML deployment diagram. More specifically there

are four device categories, i.e., Smart phone on the client

side, Marking Server, Recommendation Server, and Situa-

tion Server on the server side. The Smart phone provides

the server side with the current user’s position, generated
Fig. 2 An ontological view of the collaborative situation-aware

scheme for mobile service recommendation
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by its Time-Position Sampler module. The smart phone

receives from the server side the resource recommendation,

via its Resource Launcher module. The Marking Server

manages the marking process, i.e., it hosts the MA and the

Time-Position Log module, and delivers marks to the Sit-

uation Server. In the Recommendation Server, the UA

steers the recommendation process, according to recom-

mendation ontology and rules processed by means of a

Semantic Web Engine (Cimino et al. 2012). Finally, the

Situation Server manages the Environment (via a Multi-

Agent Systems Manager), hosts the SA and EA instances,

and supports both fuzzy granulation and situation fuzzy

inference processes, according to linguistic variables and

rules processed by means of the Fuzzy Engine. A single

Marking Server and a single Recommendation Server can

support many smart phone clients, via a lightweight and

platform-independent communication protocol based on

XML-RPC over HTTP. Thus, any client-side platform can

be easily integrated with the System. A single Situation

Server can support many Marking and Recommendation

servers, via an efficient Java-RMI communication protocol.

Indeed server-side subsystems are entirely Java-based.

More specifically, the following environments have been

employed to develop and execute the infrastructure. The

Semantic Web Engine is based on Apache Jena,1 a Java

framework for building Semantic Web applications, used

in conjunction with Pellet,2 a Java based OWL DL

reasoner. The Fuzzy Engine is based on jFuzzyLogic,3 a

Java package that implements a series of basic fuzzy

operations as well as a fuzzy inference system. Finally,

the Multi-Agent Systems Manager is based on Repast

Simphony,4 a Java-based modeling system supporting the

development of interacting agents. It can be used as a

GUI-based (user driven) simulation environment, as

well as an execution engine run from another Java

application.

In the next section, we will discuss in detail the marking

process, the fuzzy granulation process and the situation

inference process, which are the core processes of the

MAs, the EAs and the SAs, respectively.

3 The three core processes

3.1 The marking process

In our architecture, an MA is associated with each user.

The main responsibility of an MA is to periodically leave a

mark where the user is currently located. Thus, while the

user moves in the environment, the MA generates a

marking path. Without loss of generality, we assume that

our environment is constrained to a specific area. We

superimpose to this area a grid consisting of L2 squares,

Fig. 3 A UML deployment

diagram of the proposed

collaborative situation-aware

architecture

1 http://incubator.apache.org/jena.
2 http://clarkparsia.com/pellet.

3 http://jfuzzylogic.sourceforge.net.
4 http://repast.sourceforge.net.
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where each square Q(x, y) is identified by a pair (x, y) of

coordinates, with x, y [ [1,…, L]. The actual size of the area

and the number of squares depend on the specific appli-

cation domain and contextual factors. Each mark covers a

set of squares and is characterized by an intensity which

has the highest value in correspondence to the square

where the user is located and degrades with the increasing

of the distance from this square. This spatial extension

allows taking both the uncertainty of the localization and

the movement of the user into consideration. Further, the

intensity of the mark decays with the passage of time. This

temporal decay gives us the possibility of monitoring the

movement of the user. In particular, since we assume

that the beginning of a collaboration occurs when at least

half of users are in approximately the same position and

are still, the combination of the spatial extension and

the temporal decay allows us to recognize both the

conditions.

Figure 4a shows a simple scenario of the marking pro-

cess performed by three MAs. The levels of mark intensity

are represented by different grey gradations: the darker the

gradation is, the higher the intensity of the mark is. The

highest intensity IMAX of the mark left by a single MA is in

correspondence to the position Q(xP, yP) (the square with

the darkest grey gradation in the figure) of the user when

the mark is left. The mark intensity decreases with the

number of squares from the position of the user of a per-

centage d for each square. Further, the intensity left on each

square has a temporal decay, and after a certain time the

mark tends to dissolve. The decay time of the intensity is

longer than the time period used by the MAs for leaving

marks. Thus, if the user is still in a specific position, new

marks at the end of each period will superimpose on the old

marks and the intensity will reach a stationary level. On the

contrary, if the MA moves to other locations, the mark

intensities will decrease with the passage of time without

being reinforced.

Figure 4b shows an example of this temporal decay:

when the users move from one position to another, the

intensity of the mark in the former position decreases.

When the users are still and very close to each other the

markers superimpose over one another and consequently

the intensities sum up. The resulting intensities tend to be

higher than the potential intensity of a single user. Fig-

ure 4c shows this scenario by associating a darker grada-

tion with the squares where the marker superimposition

occurs. Intuitively, this effect can be exploited to under-

stand when two or more users are very close to each other

and then probably have started a collaboration.

More formally, at each instant �t, �t ¼ 0; TM ; 2TM ; . . .; the

MA i leaves in the squares Q(x,y), x, y [ [1,…, L], a mark

of intensity Ii(x, y, �t) defined as:

Ii;�tðx; y;�tÞ ¼ max 0; IMAX � 1� d �max x� xPj j; y� yPj jð Þ½ �ð Þ
ð1Þ

Every TD seconds the intensity of the mark decays of a

percentage a of its current value, that is,

Ii;�tðx; y; tÞ ¼ a � Ii;�tðx; y; t � TDÞ with t ¼ �t þ TD;�t þ 2TD; . . .

ð2Þ

For each square Q(x, y), the actual value I(x, y, t) of the

intensity is obtained as the sum of the intensities of the

marks left by each MA, that is,

Iðx; y; tÞ ¼
X

8i; 8�t:Ii;�tðx;y;tÞ[ 0

Ii;�tðx; y; tÞ ð3Þ

Let us suppose that a user is still and alone. Then, from

formulas (2) and (3) we can deduce that after Z � TD

seconds,

Iðx; y; tÞ ¼ a � Ii;�tðx; y;�tÞ þ a2 � Ii;�tðx; y;�tÞ þ � � � þ aZ

� Ii;�tðx; y;�tÞ

¼ Ii;�tðx; y;�tÞ �
1� aZ

1� a
ð4Þ

 (c)(b)(a)

Fig. 4 Examples of scenarios for three MAs: a the three MAs are still and far from each other, b the three MAs are moving, and c the three MAs

are still and close to each other
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If Z �1, then

Iðx; y; tÞ ! Ii;�tðx; y;�tÞ �
1

1� a
: ð5Þ

Obviously, when a number of users are still in the same

location, we can easily deduce from formulas (3) and (5)

that the intensity of square Q(x,y) grows up with the

passage of time until achieving a stationary level.

Exploiting this observation, in the following section, we

will discuss how the four different situations can be

recognized with different certainty degrees.

3.2 The fuzzy granulation process

The intensities left in the Environment from the different

MAs are exploited by two different types of EAs, namely

the GA and the DA. Both these agent types are generated by

an MA whenever the Mark left by the MA itself is super-

imposed on at least one Mark left by other MAs. The GA

characterizes the behavior of groups of MAs and is devoted

to detect when a grouping event occurs. The rationale is that

a grouping event occurs only if a number of users are close

to each other. In this scenario, the intensity in the location

where the users are still results from the superimposition of

the intensities of the single MAs, thus making the grouping

event detectable. Hence, a GA detects the presence of a

group of users and provides a certainty degree of the

grouping event for all the users belonging to the group.

Let (xG, yG) be the position of the GA created in the

environment. Once instantiated, each GA observes a

neighboring area, here denoted by N(xG, yG), centered in

(xG, yG). The center (xG, yG) coincides with the position

(xP, yP) of the MA which generates the GA. As a conse-

quence, the GA follows the same movements as the cor-

responding MA. We assume that the size of the area N(xG,

yG) is equal to the size of the area of a Mark. This area is

fixed by the percentage d in formula (1).

The intensity associated with the area N(xG, yG) is

computed as

IGAðxG; yG; tÞ ¼
X

x;yð Þ2N xG;yGð Þ
I x; y; tð Þ ð6Þ

Grouping Agents corresponding to the same group of

users are fused in such a way that only one GA is

associated with a group of users. Two GAs are fused when

at least one square of the neighborhood of the former is

superimposed on one square of the neighborhood of the

latter. At each instant �t, the position (xG, yG) of the

generated GA is computed as the center of gravity of the

positions (xP, yP) of the MAs which have instanced the

fused GAs.

The DA detects if a user, after having joined a group,

separates from it. Thus, the DA characterizes the behavior

of the single user after he/she has joined the group and

provides a certainty degree of the disjoining event for that

user: the disjoining event occurs when the user is alone and

far from the group of users. The position (xD, yD) of a DA

coincides at each time step with the position of the corre-

sponding MA. A DA is removed by the Environment when

the GA, which contains the user corresponding to the DA,

is removed. Once instantiated, each DA observes a

neighboring area, here denoted by N(xD, yD), centered in

(xD, yD). We assume that also the size of N(xD, yD) is equal

to the size of the area of a Mark. The intensity associated

with the area N(xD, yD) is computed as:

IDAðxD; yD; tÞ ¼
X

x;yð Þ2N xD;yDð Þ
I x; y; tð Þ ð7Þ

Both GAs and DAs are modeled by fuzzy granules. Fuzzy

granules are conceptual entities that offer abstractions of the

reality in the form of fuzzy concepts depending on the

context (Bargiela and Pedrycz 2003). Therefore they

represent a suitable formalism to model the behavior

of agents working on contextual data characterized by

uncertainty. The use of a fuzzy granulation approach allows

us to manage the natural vagueness and imprecision of

contextual data used for the detection of events. In our case,

contextual data are represented by the intensities of the

markers accumulated by the various MAs during time. Thus

both the GA and the DA are designed to provide event

degrees by exploiting only marking intensities deposited by

the MAs.

Formally, an s-shape membership function is adopted

for the GA:

lGA IGAðxG; yG; tÞð Þ

¼

0 if IGAðxG; yG; tÞ� a

2
IGAðxG;yG;tÞ�a

b�a

� �2

if a� IGAðxG; yG; tÞ� ðaþ bÞ=2

1� 2
b�IGAðxG;yG;tÞ

b�a

� �2

if ðaþ bÞ=2� IGAðxG; yG; tÞ� b

1 if IGAðxG; yG; tÞ� b

8
>>>>>><

>>>>>>:

ð8Þ

where parameters a and b control the curve slope of the s-

function. In choosing a and b, we have to consider the

minimum and the maximum values which can be assumed

by IGAðxG; yG; tÞ: The minimum value Imin
GA ðxG; yG; tÞ

corresponds to the case in which a unique user has left a

mark in the squares N(xG, yG). If we assume that d ¼ 0:5

(the value used in our experiments), then the minimum

value is Imin
GA ðxG; yG; tÞ ¼ 5 � IMAX. The maximum value

Imax
GA ðxG; yG; tÞ corresponds to the case in which all the users

are still and leave marks on the same squares. Then, from

formulas (5) and (6), we conclude that the maximum value

Imax
GA ðxG; yG; tÞ is
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Imax
GA ðxG; yG; tÞ ¼

X

x;yð Þ2N xG;yGð Þ
I x; y; tð Þ

¼
X

x;yð Þ2N xG;yGð Þ
Ii;�tðx; y;�tÞ �

1

1� a

¼ U � IMAX �
1

1� a
þ 8 � IMAX

2
� 1

1� a

� �

¼ 5 � U � IMAX �
1

1� a

We set a = Imin
GA ðxG; yG; tÞ and b = 2

3
� Imax

GA ðxG; yG; tÞ.
The choice of b is motivated by the following reasonable

assumption: a grouping event occurs when at least half of

the U users are close to each other. Thus, we consider that

when a number of users higher than 2/3 U are close to each

other, then the grouping event should have maximum

degree. Figure 5 shows an example of a GA fuzzy granule.

As regards DA, the following z-shaped membership

function is adopted as fuzzy granule:

lDA IDA xD; yD; tð Þð Þ

¼

1 if IDA xD; yD; tð Þ� a

1� 2
IDA xD;yD;tð Þ�a

b�a

� �2

if a� IDA xD; yD; tð Þ� ðaþ bÞ=2

2
b�IDA xD;yD;tð Þ

b�a

� �2

if ðaþ bÞ=2� IDA xD; yD; tð Þ� b

0 if IDA xD; yD; tð Þ� b

8
>>>>>><

>>>>>>:

ð9Þ

where parameters a and b control the curve slope of the z-

function. Also for DA, in choosing a and b, we have to

consider the minimum and the maximum values which can

be assumed by IDAðxD; yD; tÞ: These values are equal to the

ones already computed for IGAðxG; yG; tÞ, that is,

Imin
DA ðxD; yD; tÞ ¼ 5 � IMAX and Imax

DA ðxD; yD; tÞ ¼ 5 � U � IMAX�
1

1�a. Unlike GA, which considers a group of users, DA

takes only one user into consideration: a disjoining event

occurs when a user is alone in the area of the Marker. Thus,

we set a = Imin
DA ðxD; yD; tÞ and b = 2 � Imin

DA ðxD; yD; tÞ � 1
1�a,

where b coincides with the maximum value achievable in

correspondence to two users still and alone. Obviously, for

values higher than b, we can be sure that the user is not

alone and therefore the disjoining event is recognized with

minimum certainty degree. Figure 6 shows an example of a

DA fuzzy granule.

Finally, the certainty degrees of the grouping event and

the disjoining event for each user at time t are computed

respectively as:

lgrouping ¼ lGA IGA xG; yG; tð Þð Þ

ldisjoining ¼ lDA IDA xD; yD; tð Þð Þ

3.3 The situation fuzzy inference process

The situation fuzzy inference process is in charge of

assessing the current situation for each user. It is accom-

plished by an SA. In this paper we show the design of a

particular SA, the Collaboration Agent (CA), which is

aimed at recognizing four types of situations related to

collaboration:

1. PreC, while the user is discussing with one or more

other users about the coming collaboration;

2. OngC, while the user is attending the collaboration;

3. PauC, while the user is having a break during the

collaboration;

4. PstC, while the user is discussing with one or more

other users about the collaboration, once it has

terminated.

The CA uses the certainty degrees of the grouping and

disjoining events provided by the GAs and the DAs,

respectively, to detect the situation in which each user is

involved. Precisely, the CA detects for each user the

beginning and the end of each situation by using a set of

fuzzy rules. In this work, fuzzy rules were manually

Fig. 5 Membership functions

used to model the granulation

process of a GA
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defined by observing the behavior of participants and by

analyzing the situations that may occur from when a par-

ticipant achieves the collaboration place until the collabo-

ration ends. Specifically, fuzzy rules have been designed so

as to describe the constraints characterizing the sequence of

situations occurring during a collaboration.

For each user, the CA uses an Agenda, which is a small

memory capable of storing the sequence of situations for

the specific user. The agenda allows the CA to enforce

constraints on the sequence of situations: for instance, the

agenda avoids to recognize a PauC situation in place of a

PreC situation. At the beginning, the agendas are empty for

all users. Whenever the CA detects the beginning of a new

situation for the ith user, the associated agenda is updated

by adding the new situation. The agenda is reset for the ith

user when the sequence PreC ? OngC ? (PauC ?
OngC) ? PstC is completed.

The fuzzy rules used by the CA to detect situations of

the ith user are given in Table 1. The fuzzy rules are

defined on three input variables: the value of the Agenda of

the ith user, the grouping degree provided by the GA to

which the ith user belongs and the disjoining degree sup-

plied by the DA corresponding to the ith user. The certainty

degree of the grouping event is described by the linguistic

values LOW, MEDIUM and HIGH. These linguistic values

are defined by trapezoidal fuzzy sets, as shown in Fig. 5.

The parameters of these fuzzy sets have been defined by

taking the following intuitive semantics of a grouping

event into account (we assume that U [ 2):

• a grouping event has LOW degree when two users are

not very close to each other;

• a grouping event has MEDIUM degree when at least

two and not more than U=2

l m
users are close to each

other;

• a grouping event has HIGH degree when at least U=2

l m

users are close to each other.

Thus, the intersections between LOW and MEDIUM,

and between MEDIUM and HIGH occur in correspondence to,

respectively, the value IGAðxG; yG; tÞ ¼ Imin
GA ðxG; yG; tÞ � 1

1�a

(maximum possible value of intensity generated by one user)

and IGAðxG; yG; tÞ ¼ U
2

� �
� 1

� 	
� Imin

GA ðxG; yG; tÞ � 1
1�a (maxi-

mum possible value of intensity generated by U
2

� �
� 1

� 	
users).

Since the intersections are adapted according to the number U

Fig. 6 Membership functions

used to model the granulation

process of a DA

Table 1 Fuzzy rules used by the CA for recognizing the situation of a user i

Rule 1 IF grouping degree is Medium and the agenda is empty THEN PreC begins

Rule 2 IF grouping degree is Medium and the agenda contains PreC THEN PreC continues

Rule 3 IF grouping degree is High and the agenda contains PreC THEN PreC ends and OngC begins

Rule 4 IF grouping degree is High and the agenda contains OngC THEN OngC continues

Rule 5 IF grouping degree is Medium and the agenda contains OngC THEN OngC ends and PstC begins

Rule 6 IF grouping degree is Medium and the agenda contains PstC THEN PstC continues

Rule 7 IF grouping degree is Low and the agenda contains PstC THEN PstC ends

Rule 8 IF grouping degree is Low and the agenda contains PauC THEN PstC begins

Rule 9 IF grouping degree is High and disjoining degree is High AND the agenda contains OngC THEN PauC begins

Rule 10 IF grouping degree is High AND disjoining degree is High AND the agenda contains PauC THEN PauC continues

Rule 11 IF grouping degree is High AND disjoining degree is Low AND the agenda contains PauC THEN PauC ends AND OngC continues
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of users, the rules can be applied independently of the specific

U.

Fuzzy rules devoted to detect the PauC situation for the

ith user (rules 9, 10, 11) take into account also the certainty

degree of the disjoining event for the ith user. The certainty

degree is described by only two linguistic values LOW and

HIGH. Similar to the grouping event, these linguistic val-

ues are defined by trapezoidal fuzzy sets, as shown in

Fig. 6. The parameters of these fuzzy sets have been

defined by taking the following intuitive semantics of a

disjoining event into account:

• a disjoining event has LOW degree for a user when he/

she is close to at least another user;

• a disjoining event has HIGH degree for a user when he/

she is alone and far from a group of users.

Since the disjoining event is related to the behavior of a

single user, the definition of the fuzzy sets does not depend

on the number of users involved in the collaboration: thus it

is defined regardless of U. In particular, we fixed the

intersection between LOW and HIGH in correspondence to

the value aþb
2

, where a = Imin
DA ðxD; yD; tÞ and b = 2 � Imin

DA

ðxD; yD; tÞ � 1
1�a are the values used in the definition of the

z-function in formula (9). This value is slightly higher

than IDAðxD; yD; tÞ ¼ 5 � IMAX � 1
1�a, the maximum possible

intensity value for a single user, so as to capture the dis-

joining event as soon as the user moves away from the

group. Indeed, when the group is composed of at least three

users certainly the intensity IDAðxD; yD; tÞ is higher than aþb
2

.

In Table 1, two fuzzy rules (rules 5 and 8) are devoted to

detect the beginning of situation PstC. The rule 8 has been

added to model the case in which a user is in pause when

the meeting ends. In such a case, the PauC situation should

end and the PstC situation should start for that user.

By inferring the fuzzy rules in Table 1, the CA can provide

a certainty degree for each situation and for each user at each

time step. Of course, at each time step, only some situations

will have a non-zero degree for a user. For example, in the

preliminary phase of a meeting, a user may be in the PreC

situation with high degree and in the OngC situation with low

degree; likewise, during the ending phase of a meeting a user

may be in the OngC situation with low degree and in the PstC

situation with high degree. Given the certainty degrees of all

situations for each user at a certain time step, the CA selects

the situation with the highest degree as current situation to be

included in the Agenda of the user.

4 Experimental results

In order to assess the effectiveness of the proposed multi-

agent scheme in detecting collaboration situations, we have

applied our model to three real scenarios involving a dif-

ferent number U of participants (P1,…, PU). In particular,

the three scenarios, denoted as A, B and C, consider a

meeting among 10, 7 and 4 participants, respectively, hold

in Pisa (Italy). These scenarios are characterized as

follows:

• Scenario A (U = 10). P1 meets P2 at a bar before

arriving at the meeting place. P8 reaches P1 and P2 at

the bar and then together they go to the meeting place.

During the meeting, P3 leaves the meeting place for a

short time to go to the bar. Further, P4 and P5 leave the

meeting place for a longer time to go to the fast food.

P1, P2, P3 and P4 leave the meeting place before the

other participants.

• Scenario B (U = 7). This scenario was obtained by

selecting participants P1,…, P7 from the Scenario A;

• Scenario C (U = 4). This scenario was obtained by

selecting participants P1,…, P4 from the Scenario A.

As an example, Fig. 7 shows the GPS data generated by

the mobile devices of each user in scenario B.

As a first step, continuous GPS data are discretized into

a grid of square cells. The discretized tracks of the par-

ticipants involved in the three scenarios are shown in

Fig. 8a, b, c for scenarios A, B and C, respectively. Here,

for the sake of clarity, we adopted a 10 9 10 grid, where

each cell corresponds to ten cells of the real grid. For all the

scenarios, the model parameters were set as follows:

L = 100, d = 50 %, a = 0.5, TD = TM = T = 60 s. We

Fig. 7 GPS data for scenario B involving 7 participants to a meeting

A collaborative situation-aware scheme 431

123



considered a time interval of 100 TD. Fuzzy sets used to

model the values LOW, MEDIUM and HIGH for the

grouping degree are shown in Fig. 9. As explained in the

previous section, the parameters of the fuzzy sets are

automatically adapted to the number U of users.

As an example, in Fig. 10.a we show, for each partici-

pant in the scenario A, the certainty degree of the grouping

event at instant a = 49: each degree is shown in corre-

spondence to the position of the corresponding participant.

At �t = 49, all participants are still at the meeting place (all

GAs are fused in a single GA). We can observe that, for all

participants, the certainty degree of the grouping event is

maximum (lGA = 1.00). In Fig. 10b, we show the cer-

tainty degree of the grouping event at instant �t = 55, when

participants P4 and P5 leave the meeting place to go to the

fast food. We can observe that the grouping event is still

recognized with high degree by the GA which gathers all

the remaining participants. Further, in the neighborhood of

this GA, there is a peak indicating that a second GA has

been created as soon as the two participants P4 and P5 have

moved together away from the meeting place.

As an illustrative example of the situation inference

process performed by the CA using the fuzzy rules in

Table 1, Fig. 11a, b, c show for participant P3 the

sequences of situations and the corresponding certainty

degrees in the three scenarios, respectively. According to

the description of the scenarios given above, participant P3

leaves first the group for a short time to go to the bar and

then leaves definitively the group before the end of the

meeting. It can be clearly seen that in each scenario the CA

successfully recognizes the PauC situation during the

OngC situation. It should be noted that, in the scenario A,

the CA detects the PauC situation two times for user P3.

The first time corresponds to the actual pause. The second

time corresponds to the case in which the user leaves the

meeting before the other participants. This is recognized by

the CA as a PauC situation as long as at least half of the

participants are grouped (the meeting is going on), while it

is recognized as a PostC situation as soon as the group is

composed by a number of users lower than U=2

l m
. Since

the number of participants is high in the scenario A, the

situation is initially recognized as a pause, while it is rec-

ognized as a PostC situation only when another participant

leaves the group.

To assess the goodness of our approach, we have com-

pared the instants when the CA recognizes the beginning

and the end of each situation for the three scenarios with

the instants when the beginning and the end occur really.

Tables 2, 3 and 4 show these instants for the three sce-

narios, respectively. In each table, the actual instants are

represented between parentheses.

Fig. 8 Tracks of the

participants for scenario A (a),

scenario B (b) and scenario C

(c)
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From Table 2, we can observe that, in scenario A, the

CA recognizes correctly that P1 meets P2 at a bar before

arriving at the meeting place (step t = 28) and that P8

reaches P1 and P2 at the bar (step t = 29) before going to

the meeting place. The beginning of the meeting is cor-

rectly recognized for almost all the participants. Also, the

CA recognizes the beginning (step t = 61) and the end

(step t = 67) of the pause situation for P3. Further, the CA

detects that P4 and P5 begin a pause almost together (steps

t = 53 and t = 54, respectively) and end the pause toge-

ther (step t = 71). As we have already discussed, the CA

detects the PauC situation two times for user P3. The first

time corresponds to the actual pause (from step t = 61 to

step t = 67), while the second coincides with the early

disjoining of P3 from the group. Until the CA does not

recognize the PostC situation (when the group is composed

by a number of users lower than U=2

l m
), then the disjoining

is considered as a pause. The same observations can be

made for P4. The CA recognizes the beginning of the PstC

situation at step t = 82 for all participants. In particular, at

the same step, the CA correctly recognizes the end of the

meeting and, for participants P1, P2, P3 and P4, who were

in the PauC situation, determines the beginning of the PstC

Fig. 9 Fuzzy sets used to model the grouping degree for scenario A (U = 10) (a), scenario B (U = 7) (b) and scenario C (U = 4) (c)

Fig. 10 Certainty degrees of the grouping event in the scenario A when a all participants are still at the meeting place and when b two

participants leave together the meeting place for a pause
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situation. Finally, the CA detects that no participant is close

to another participant in the same place and at step t = 90

recognizes the end of the PstC situation for all participants.

Similar observations can be made by examining the

results for scenario B in Table 3. In this case, the CA

correctly determines the beginning of the PstC situation at

step t = 81 when only three users (a number lower than

U=2

l m
) are grouped. The end of the PstC situation is

recognized by the CA at step t = 89 with one only step in

advance with respect to the target step.

From Table 4 it can be seen that at step t = 28, P1 meets

P2 at a bar and the CA correctly recognizes the beginning

of the PreC situation. In scenario C, however, we are

considering only four users. Thus, the meeting of P1 with

P2 at the bar also determines the beginning of the OngC

situation. Indeed, we recall that, referring to our semantics,

the OngC situation starts when half of the users are

Fig. 11 Sequences of situations and corresponding certainty degrees for participant P3 in scenarios A (a), scenario B (b) and scenario C (c),

respectively

Table 2 Results of the situation

inference process in scenario A
PreC

begins

PreC ends/

OngC begins

PauC

begins

PauC

ends

OngC ends/

PstC begins

PstC ends

P1 28 (28) 46 (46) 78 (78) 82 (82) 90 (90)

P2 28 (28) 46 (46) 78 (78) 82 (82) 90 (90)

P3 48 (47) 49 (48) 61 (61)

81 (80)

68 (67) 82 (82) 90 (90)

P4 41 (41) 46 (46) 53 (53)

78 (78)

71 (71) 82 (82) 90 (90)

P5 44 (44) 46 (46) 54 (54) 71 (71) 82 (82) 90 (90)

P6 44 (44) 46 (46) 82 (82) 90 (90)

P7 38 (38) 46 (46) 82 (82) 90 (90)

P8 29 (29) 47 (47) 82 (82) 90 (90)

P9 45 (45) 47 (47) 82 (82) 90 (90)

P10 46 (46) 48 (48) 82 (82) 90 (90)
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involved in the meeting. The CA recognizes the beginning

of the OngC situation at step t = 29, with a delay of one

step. This delay is due to the low number of participants

which does not allow the intensity to increase very much.

At step t = 39, although P1 and P2 are close to each other,

the disjoining intensity for P1 decreases and the CA rec-

ognizes the beginning of a pause, which however termi-

nates at the subsequent instant. This pause is the only error

made by our system in the three scenarios. In the table, we

have highlighted the error by representing the instants in

bold and by using a hyphen in place of the actual time. At

step t = 41, P4 reaches P1 and P2 at the meeting point. At

step t = 44, P4 goes away from P1 and P2. The CA cor-

rectly recognizes a PauC situation for P4. This situation

ends in the subsequent time step when P1, P2 and P4 are

again together. After step t = 49, also P3 achieves the

meeting point. Both for P3 and for P4 the CA correctly

recognizes the beginning of a PauC situation at steps

t = 61 and t = 53, respectively, and the end of these sit-

uations at steps t = 67 and t = 70, respectively. Both P2

and P4 go away from the meeting point before the other

participants (t = 78). For both P2 and P4 a PauC situation

is recognized. When the meeting ends at step t = 81, the

CA determines the beginning of the PstC situation for all

participants. The PstC situation terminates for all the par-

ticipants at step t = 82.

To provide a measure of the effectiveness of the CA

agent in recognizing situations, we computed the respon-

siveness index defined as:

R Ssð Þ ¼
PU

i¼1 ti;s � t0i;s










U

where ti,s represents the time step at which the sth situation

begins/ends for each ith user and t0i,s is the time step at

which the CA agent recognizes the beginning/end of this

situation. Thus R Ssð Þ is computed as the average of the

differences between the step in which a situation begins/

ends for a user and the step in which the CA automatically

recognizes the beginning/end of the same situation for the

same user. Table 5 shows the responsiveness values

obtained for each situation recognized during the test of the

model in the three scenarios. We observe that on average

the value of the responsiveness is close to 0. Further, for all

the situations, the responsiveness is lower than one time

step (except for the end of the PstC situation, where its

Table 3 Results of the situation

inference process in scenario B
PreC

begins

PreC ends/

OngC begins

PauC

begins

PauC

ends

OngC ends/

PstC begins

PstC

ends

P1 28 (28) 45 (46) 78 (78) 81 (81) 89 (90)

P2 28 (28) 45 (46) 78 (78) 81 (81) 89 (90)

P3 48 (47) 49 (48) 61 (61) 69 (67) 81 (81) 89 (90)

P4 41 (41) 45 (46) 53 (53)

78 (78)

71 (71) 81 (81) 89 (90)

P5 44 (44) 46 (46) 54 (54) 71 (71) 81 (81) 89 (90)

P6 45 (44) 46 (46) 81 (81) 89 (90)

P7 44 (38) 45 (46) 81 (81) 89 (90)

Table 4 Results of the situation

inference process in scenario C
PreC

begins

PreC ends/

OngC begins

PauC

begins

PauC

ends

OngC ends/

PstC begins

PstC ends

P1 28 (28) 29 (28) 39 (–)

80 (80)

40 (–) 81 (81) 82 (81)

P2 28 (28) 29 (28) 78 (78) 81 (81) 82 (81)

P3 48 (47) 49 (48) 61 (61) 67 (67) 81 (81) 82 (81)

P4 41 (41) 42 (42) 44 (44)

53 (53)

78 (78)

45 (45)

70 (70)

81 (81) 82 situations,

we computed (81)

Table 5 Responsiveness values obtained in the three scenarios

Scenario A Scenario B Scenario C

PreC begin 0.1 0.28 0.25

PreC end/OngC begin 0.1 0.72 0.75

PauC begin 0.1 0 0

PauC end 0.1 0.28 0

OngC end/PstC begin 0 0 0

PstC end 0 1 1

Average 0.06 0.38 0.33
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value is 1), thus pointing out the good performance of the

CA in detecting situations.

5 Conclusions

A collaborative multi-agent scheme based on the idea of

emergent collective behavior has been presented. The

proposed scheme, implemented for detecting situations of

users involved in social events, is structured into three

processing levels managed by different agents that are

modeled using a fuzzy granulation approach. The effec-

tiveness of the situation-aware scheme has been shown on

three real scenarios involving a different number of users

participating to a meeting. The obtained results in terms of

situation recognition and responsiveness show that the

scheme can be successfully applied to any scenario,

regardless the number of users involved in the collabora-

tion. Situations detected by the proposed scheme can be

exploited to recommend personalized information and

services to users during a social event.

With respect to the approach used in our previous work

on situation-aware resource recommender, the context

knowledge injected in the current system has been reduced,

by removing the user calendar. In the new proposed

scheme, the behavior of the agent which recognizes the

social events is entirely determined by the human designer

via linguistic rules. A challenging problem to be investi-

gated as a future work is the possibility of modeling situ-

ation-specific agents as an outcome of a machine learning

technique embodied by a situation-independent agent.
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