
Relational Clustering based on a Dissimilarity Relation 
Extracted from Data by a TS Model* 

Mario G.C.A. Cimino, Beatrice Lazzerini, Francesco Marcelloni 
Dipartimento di Ingegneria dell’hformazione: Elettronica, Informatica, Telecomunicazioni 

University of Pisa 
Via Diotisalvi 2, 56122 Pisa 

(b.lazzerini,f.marceIloni) @iet.unipi.it 

Abstract - Most clustering algorithmspartition a &fa set 
based on a dissimilarity relation expressed in t e m  of some 
distance function. When the nature of this relation is 
conceptual rather than mehic, distance finctions may fail 
to adequately model dissimilarity. For this reason, we 
propose to extract dissimilarify relations directlyfrom the 
data. We exploit some pairs of paffems with known 
dissimilarity to build a T S f u q  system which models the 
dissimilarity relation. Then, we use the TS @stem to 
compute a dissimilarity relation between any pair of 
panems. The resulting dissimilarity matrix is input to a new 
unsupervised f izzy  relational clustering algorithm, which 
partitions the data set based on theproximity of the vectors 
containing the dissimilmity values between a p m e m  and 
all the paffems in the data set. Experimental results to 
confirm the validity of our approach are shown and 
discussed 

Keywords: SimilarityiDissimilarity relations, Fuzzy 
identification, Fuzzy clustering. 

1 Introduction 
In the last years, several different clustering 

algorithms have been proposed to partition a data set into 
groups of similar objects. Similarity (more often 
dissimilarity) is typically expressed in terms of some 
distance function (such as the Euclidean distance or the 
Mahalanobis distance). In real applications, however, 
when data distribution is not regular, distance functions 
cannot adequately model dissimilarity, which appears to 
be conceptual rather than metric [6][9][10][13]. Consider, 
for example, the pixels of an image made up of 
distinguishable elements with irregular-shaped contours. 
The dissimilarity between pixels should be small (large) 
when the pixels belong to the same image element 
(different image elements). In these (hquent) situations, 
a relation extracted directly from the data ratber than a 
data-independent relation (such as a distance function) 
may be more effective in modeling dissimilarity. 

To this aim, in previous papers, we used a multilayer 
perceptron with supervised leaming to extract the 

dissimilarity relation from the data exploiting a few pairs 
of data with known dissimilarity [3][4][5]. Then, we used 
the dissimilarity measure generated by the network to 
guide an unsupervised fuzzy relational clustering algorithm. 
We showed that the clustering algorithm based on the 
neural dissimilarity outperforms some widely used 
(possibly partially supervised) clustering algorithms based 
on spatial dissimilarity. Following this approach, in this 
paper, we exploit a Takagi-Sugeno (TS) fuzzy rule system 
to extract the dissimilarity relation from the data [121. 
Fuzzy rules composing the TS system are identified from 
a few pairs of pattems with known dissimilarity by using 
the method proposed in [ 111. First, we apply the classical 
fuzzy C-means (FCM) algorithm [ I ]  to determine the TS 
system structure (i.e., number of rules and number of 
fuzzy sets which partition each input variable). Then, we 
estimate the parameters which identify the consequent 
functions. Finally, we apply a genetic algorithm to refine 
the TS model so as to reduce the model error. Appropriate 
constraints are enforced during the genetic evolution to 
preserve the properties of the TS model derived from the 
clusters produced by the FCM algorithm. At the end of 
the identification phase, the TS system can associate a 
dissimilarity degree with each pair of pattems in the data 
set so as to generate a dissimilarity relation between 
pattems in the data set. Compared to the neural network- 
based approach, the TS model-based approach shows 
similar performance, but better capability of describing 
the dissimilarity relation (through the rules of the TS 
model).. 

Due to the generalization performed starting from a 
restricted number of known relationship values, the 
dissimilarity relation D produced by the TS model may be 
neither irreflexive nor symmetric. Unfortunately, the most 
popular examples of fuzzy relational clustering algorithms 
[2] [8], such as the fuzzy nometric model, the 
assignment prototype model, the relational fuzzy C- 
means, and fuzzy C-medoids, assume that D is at least a 
positive, irreflexive and symmetric square binary relation. 
This makes these fuzzy relational clustering algorithms 
not applicable to our relation. Actually, these algorithms 
can be applied, but their convergence to a reasonable 
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partition is not guaranteed. To make our approach 
independent of the characteristics of the relation generated 
by the TS model, we propose a new fuzzy relational 
clustering method which can he applied to any *e of 
relation matrix. The algorithm exploits the well-known 
fuzzy C-means algorithm to pasition the data set based on 
the proximity of the vectors contammg the dissimilarity 
values between a pattern and all the patterns in the data set. 
We verified that our algorithm produces partitions similar 
to the ones generated by the other fuzzy relational 
clustering algorithms, when these converge to a sound 
partition. On the other hand, as our algorithm is based on 
the fuzzy C-means algorithm [I], which has proved to be 
one of the most stable fuzzy clustering algorithms, our 
algorithm is appreciably more stable than the other fuzy 
relational clustering algorithms. 

To test the effectiveness of our approach we present 
an example of its application to a synthetic data set and to 
a public real data set. We show how our relational 
clustering algorithm, which exploits the dissimilarity 
relation extracted using a limited number of training 
samples, achieves very good clustering performance. 

2 Dissimilarity modeling 
Let Q=kl, ...,xM] he the data set. To model the 

dissimilarity relation, we use a fuzzy system composed of 
a set of rules expressed in Takagi-Sngeno form [12]: 

ri: If XI,] is A,,],] and ... XI+ is A i l F  1 .  and Xz.l is 

4 , Z . I  and " '  x2.F is 4 2 . P  

then d, = ~ f l X l + g ~ 2 X _ z + b i  i=I..C 

where X, = [X,, ,._., X e , F ] ,  with e=1,2, are the two input 
variables of F components which represent the pair of 
patterns whose dissimilarity has to he evaluated, Ai,e,l, ..., 

Ai,e,F are fuzzy sets defined on the domain of Xe,l, ..., 
X e , F ,  respectively, and uTe =[U,,,, ,..., a,,,,F], with 
u ~ , . , ~  E%. The model output d, which represents the 

dissimilarity between the two input patterns, is computed 
by aggregating the conclusions inferred fiom the 
individual rules as follows: 

Z F  

e=lf=I 
where pi = n 
the i-th rule. 

&(xj )  is the degree of activation of 

The number C of rules, the fuzzy sets Ai,<,, and the 

consequent functions of the rules are extracted fiom the 
data using a version of the method proposed in [I I]. Let 
T={T, ,..., T,} he the set of known data, where 

= [ x i , x j , d i , j ] ~ ! H z F + l ,  with di, j  the known 

dissimilarity between x i  and x,. First, the fuzzy c- 
means algorithm (FCM) is applied to T to determine a 
partition U of the inpnVoutput space [ I ] .  The optimal 
number of clusters is determined by executing FCM with 
increasing values of the number C of clusters for values of 
the ftuzification constant m in 11.4, 1.6, 1.8, 2.0) and 
assessing the goodness of each resulting partition using 
the Xie-Beni index [14]. We plot the Xie-Beni index 
versus C and choose, as optimal number of clusters, the 
value of C corresponding to the first distinctive local 
minimum. Fuzzy sets Ai,cJ are obtained hy projecting the 
rows ofthe partition matrix U onto the f" component of 
the input variable X, and approximating the projections 
by triangular membership functions. Once the antecedent 
membership functions have been fixed, the consequent 
parameters hi,l, g i , 2 , b i ] ,  i=l..C, of each individual rule 
i are obtained as a local least squares estimate. 

The strategy used so far to build the TS model has 
aimed at generating a rule base characterized by a number 
of interesting properties, such as moderate number of 
rules, membership functions distinguishable fiom each 
other, and space coverage, rather than at minimizing the 
model error. To improve possible poor performance of the 
system, we apply a genetic algorithm (GA) to tune 
simultaneously the parameters in the antecedent and 
consequent parts of each rule in a global optimization. To 
preserve the good properties which characterize the fuzzy 
model, we impose that no gap exists in the partition of 
each input variable. Further, to preserve distinguishability 
we allow the parameters that defme the fuzzy sets to vary 
within a range around their initial values. Each 
chromosome represents the entire fuzzy system, rule by 
rule, with the antecedent and consequent parts. Each rule 
antecedent consists of a sequence of 2 .  F triplets ( I ,  m, r) 
of real numbers representing triangular membership 
functions, whereas each rule consequent contains 2 .  F + 1 
real numbers corresponding to the consequent parameters. 
The fitness value is the inverse of the mean square error 
between the predicted output and the desired output over 
the training set. 

We start with an initial population composed of 80 
chromosomes generated as follows: The first chromosome 
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codifies the system generated by the FCM, the others are 
obtained by perturbing the fust chromosome randomly 
within the ranges ‘fixed to maintain distinguishability. At 
each generation, the arithmetic crnssover and the uniform 
mutation operators are applied with probabilities 0.8 and 
0.6, respectively. Chromosomes to be mated are chosen 
by using the well-known roulette wheel selection method. 
At each generation, the offspring are checked against the 
aforementioned space coverage criterion. To speed up the 
convergence of the algorithm without significantly 
increasing the risk of premature convergence to local 
minima, we adopt the following acceptance mechanism: 
only 25% of the new population is composed of offspring, 
whereas 75% consists of the best chromosomes of the 
previous population. When the average of the fitness 
values of all the individuals in the population is greater 
than 99% of the fitness value of the best individual or a 
prefixed number of iterations has been executed (6000 in 
the experiments), the GA is considered to have 
converged. 

Once the TS model has been generated and 
optimised, we compute the dissimilarity value between 
each possible pair ( x i , x j )  of pattems in .Q. Such 

dissimilarity values are provided as an M x M relation 
matrix D = [di,j] . The value di, j  represents the extent to 

which xi is dissimilar to x j .  

3 Relational clustering algorithm 
To partition a set of pattems described by their 

reciprocal relationships, several fuzzy relational clustering 
algorithms have been introduced. The most popular 
examples are the fuzzy nonmetric model (FNM), the 
assignment prototype model (AP), the relational fuzzy C- 
means (RFCM), the non-Euclidean RFCM (NERFCM) 
[2] and the fuzzy C-medoids (FCMdd) [8]. All these 
algorithms assume that, at least, D = [d,, j] is a positive, 

irreflexive and symmetric fuzzy square binary 
dissimilarity relation, i.e., Vi, jE[l . .M], 
d,,j 20,  di,i = O  and di,j  = d j , , .  Unfortunately, the 

relation D produced by the TS model may be neither 
irreflexive nor symmetric, thus makimg the existing fuzzy 
relational clustering algorithms theoretically not 
applicable to this relation. Actually, these algorithms can 
be applied, but their convergence to a reasonable partition 
is not guaranteed. 

To make our approach independent of the relation 
generated by the TS model, we propose a new fuzzy 
relational clustering method which can be applied to any 
type of relation matrix. The basic idea of our method 
arises 60m the following observation: in relational 
clustering, each pattem’ xi is defined by the values of the 

relations between .xi and all pattems in the data set. If the 
data set is composed of M pattems, each pattem xi can 

be represented as a vector 2, =[di, ,..., di,M1 in !HM, 
where di,j is the extent to which x i  is related to z j .  
Since a relational clustering algorithm should group 
pattems that are “closely related” to each other, and “not 
so closely” related to pattems in other clusters, as 
indicated by their relative relational degrees [2 ] ,  we can 
obtain clusters by grouping pattems based on their 
closeness in the space XM. Representing the M x M 
relation matrix as M vectors defined in the feature space 
X~ allows us to transform a relational clustering 
problem into an object clustering problem. In this way, we 
can use the most popular and stable fuzzy object 
clustering algorithm, namely, the FCM algorithm [l]. 

Let El,  ..., Bc be a family of fuzzy clusters on Q. 
Then, the objective function mini ised by the FCM 

algorithm is, in our case, Jm(U,Y)= xurkdZ( ik , c i ) ,  

where m is the fuzzificazion constant, U = [ u , , ~ ]  is a real 
C x M partition matrix, U,,* is the membership value of 

xk to E , ,  d ( i k , f , )  denotes the Euclidean distance 

between the representations gk and 4, in X M  of the 
generic pattem x k  and the prototype vi of cluster E , .  In 
our case, a prototype is a (possibly virtual) pattem whose 
relationship with all pattems of the data set is 
representative of the mutual relationships of a group of 
similar pattems. 

C M  

i=lk=l  

We tested our method on some public data sets and 
verified that the partitions obtained by our method are 
comparable to the ones generated by RFCM or NERFCM, 
when applicable. Further, we note that our approach 
requires no particular constraint on the dissimilarity 
relation matrix, thus allowing its application to the 
dissimilarity relation generated by the TS fuzzy system. In 
the experiments, we used m=2 and E = 0.001, where E is 
the maximum difference between corresponding 
membership values in two subsequent iterations. Further, 
we implemented the FCM algorithm in an efficient way in 
terms of both memoIy requirement and computation time, 
thanks to the use of the technique described in [7]. 

4 Experimental results 
To assess the validity of our approach, we used the 

synthetic data set shown in Figure 1 and the Iris data set. 
For each data set, we repeated five experiments. We 
randomly extracted a pool of pattems (called training 
pool) fiom the data set. This pool was composed of 5%, 
lo%, 15%, 20% and 25% of the data set, respectively, in 
the five experiments. We assume to know the dissimilarity 
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degrees between all the pairs that can be built fiom 
pattems in the training pool. From the training pool, we 
selected the pairs used to build the training set. More 
precisely, assume that C is the number of clusters, which 
we expect to identify in the data set. Then, for each 
pattem zi in the training pool, we form C pairs ( x i  , x j  ) 
by randomly selecting C pattems x j  of the training pool 

as follows: one pattem is chosen among those with 
dissimilarity degree lower than 0.5 with x i ,  and the 
remaining C-l pattems are chosen among those with 
dissimilarity degree higher than 0.5. Let dij be the degree 
of dissimilarity between x i  and x j .  We insert both 

[ ~ ~ , x ~ , d ~ , ~ ]  and [ ~ ~ , x ~ , d ~ , ~ ]  intothetraining set. 

4.1 Synthetic data set 

Figure 1 shows the synthetic data set, which is 
composed of two classes. As it can be noted by analyzing 
the distribution of the points, object clustering algorithms 
based on the Euclidean or Mahalanobis distances cannot 
identify the classes correctly. We carried out the five 
experiments described above and, for each experiment, 
we executed ten trials. For the sake of simplicity, in the 
experiments, we used only 0 and 1 to express the 
dissimilarity degree of two input points belonging to the 
same class or to different classes, respectively. Please, 
note that we use the knowledge about classes just to 
assign dissimilarity degrees to pairs of points in the 
training pool. First, for each trial, we executed the FCM 
algorithm with values of the number C of clusters from 2 
to 15 and values of the fuzzification constant m ranging in 
(1.4, 1.6, 1.8, 2.0). Second, we plotted the Xie-Beni 
index versus C and chose, as optimal number of clusters, 
the value of C corresponding to the fmt  distinctive local 
minimum. Figure 2 shows an example of this plot for a 
trial with the training pool composed of 15% of the data. 
It can be observed that there exists a distinctive global 
minimum at 0 1 1 .  Third, we built the antecedent of the 
TS model by projecting the rows of the partition matrix U 
corresponding to the minimum of the Xie-Beni index onto 
the input variables and approximating the projections by 
triangular membership functions. Fourth, we computed 
the consequent parameters of each rule as a local least 
squares estimate. Fifth, we applied the GA to optimize the 
TS model so as to reduce the mean square error between 
the known dissimilarity values and the output of the TS 
model. 

To assess the generalization properties, for each trial 
and each experiment we tested the TS model on all 
possible pairs of points in the data set and measured the 
percentage of the point pairs with dissimilarity degree 
lower than (higher than) 0.5 for pairs of points belonging 
(not belonging) to the same class. Table I shows the 
percentages of correct dissimilarity values obtained. Here, 
the fust column indicates the percentage of points 

composing the training pool, the second column shows 
the number of rules of the TS model (in the form (mean I 
standard deviation)), the thud and fourth columns present 
the percentage of correct dissimilarity values before and 
after the optimization process performed by the GA. It can 
he observed that the application of the GA sensibly 
improves - the percentage of correct dissimilarity values 
generated by the TS model independently of the 
cardinality of the training pool. Please, note that the 
percentage of total pairs of points included in the training 
set is much lower than the percentage of total points in the 
training pool. Taking this into account, the 87.2% 
achieved by the TS model using a training pool with 25% 
of the points is undoubtedly remarkable. 

1 1 , 6 8 7 1 1  

Figure I.  The synthetic data set 

1 I 
* t 1 6  8 7 I (0 %I 12 I f  I‘ 

*w*r * dY.l... 

Figure 2. The Xie-Beni index versus C 

Finally, we computed the dissimilarity relation and 
applied the new fuzzy relational algorithm. We used 
E = 0.001 and -2. As our relational algorithm is in fact 
based on an object clustering algorithm, to determine the 
numher of clusters we can adopt the same indexes as in 
object clustering algorithms. Thus, we decided to use 
again the Xie-Beni index. We executed the fuzzy 
relational algorithm with C ranging fiom 2 to 8 and 
plotted the Xie-Beni index versus C. We chose, as optimal 
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Training 
DO01 

Correctly classified Partition 
noints Coefficient 

1 10% /11.0*3.71 63.9%+4.8% I73.1%f5.5% I 

5% I 82.4% f 7.0% 

I I 

0.83 f 0.09 

15% I10.8+4.1 I 66.5%+6.3% 179.1%f5.5% 
20% I 12.4 f 3.1 I 64.8% f 3.2% I 80.8% f 4.9%. 

Training 
pool 

I 25% I 12.5 f 2.6 I 63.7% f 5.4% I 87.2%f 3.6% I 

Number of Correct Correct 
rules dissimilarity dissimilarity 10% 84.6% f 6.3% 0.84 5 0.05 

I 10% 1 2 . 4 2  1.3 I 90% I 

5% 

I I 

9.2 i 4.5 61.2% f 4.6% 67.4% f 5.2% 

25% 

I 25% I 2.0f0.0 I 100% I 

95.7% f 2.5% 0.90 f 0.02 

In [ 5 ] ,  we used a three-layer feed-forward neural 
network instead of the TS model to compute the 
dissimilarity relation. We performed three experiments 

Training 
DO01 

Number of 
clusters 

Percentage of trials with 
number of clusters eaual to 

5% I 2.5 f 1.3 

I 15% I 90.8%+5.0% I0.8Sf0.06 I 

80% 

15% I 2.1 f 0.3 

4.2 The Iris data set 

As second example, we used the real data base Iris, 
provided by the University of Califomia, b i n e  
(http://www.ics.uci.edu/AYML/MLDBReposito~.h~). 
Iris contains three classes of Iris plants, namely Iris 
Setosa, Iris Versicolor and Iris Vuginica. Each class 
consists of 50 pattems characterised by 4 numeric features 
which describe, respectively, sepal length, sepal width, 
petal length and petal width. Class Iris Setosa is linearly 
separable from the other two. However, class Iris 
Versicolor and Iris Viginica are not separable from each 
other. Tables N, V and VI show the percentage of pattem 
pairs with correct dissimilarity values, the number of 
clusters determined by the Xie-Beni index, and the 
percentage of correctly classified points of the Iris data set 
in the five experiments, respectively. We observe that the 
percentage of correct dissimilarity values is higher than 
90% with just 20% of points in the training pool. Further, 
in 90% of the trials the number of clusters is equal to the 
number of classes when the training pool contains 25% of 
the points. Finally, just with 10% of points in the training 
pool, the Combination TS system-relational clustering 
algorithm is able to correctly classify nearly 90% of the 
points. 

90% 

5 Conclusions 

20% 

In this paper, we have adopted a combination of 
supervised and unsupervised learning for clustering data 
without assuming any preliminary knowledge of the 
cluster shape. First, we extract a dissimilarity relation 
directly &om the available data by using a TS fuzzy 
system appropriately trained with a few known 
dissimilarities between pattem pairs. Then, the 
dissimilarity relation is input to a new fuzzy relational 
clustering algorithm which partitions the data set based on 
the proximity of the vectors containing the dissimilarity 
values between a panem and all the pattems in the data set. 

2.3 f 0.9 90% 
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Training Number of Correct Correct 
pool rules dissimilarity dissimilarity 

values before GA values after GA 
5% 8.5 f 4.1 76.6% f 4.3% 77.4% k 3.8% 

10% 6.4 f 3.3 77.3% f 8.4% 84.3% I6.8% 

15% 4 .3 f l .Z  77.6%k5.5% 87.2%f6.1% 
- 

25% 5.2f1.8 81.7%f4.2% 91.6%f2.0% 

10% I 3.1 f 0 . 9  I 60% 

15% I 2 .8 f0 .4  1 80% 

Training Number of 
pool clusters 

5% 3.3 f 1.1 

Percentage of trials with 
number of clusters equal to 

number of classes 
20% 

Table VI. Percentage of correctly classified points of the 
Iris data set in the five experiments 

25% 2.9 i 0.3 90% 

Training Correctly classified 
pool points 

1 15% I 91.5%i8.7% I 0.87f0.07 I 

Partition 
Coefficient 

5% 
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