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Abstrod - In this paper, we propose a new approach to 
robust fuzzy clustering of relational data, which does not require 
any particular restriction on the relation matrix. More precisely, 
we adopt an algorithm based on the Fuzzy C-Means (FCM) 
algorithm, improved with Dave’s concept of Noise Cluster, and 
suitable for data which are expressed in terms of mutual 
numerical relationships among patterns. In this way, we tackle a 
relational clustering problem taking advantage of the stability 
and effectiveness of object data clustering algorithms. We also 
exploit the concept of prototype as representative of the mutual 
relationships of a group of similar patterns. We show that our 
approach is more scalable and less sensitive to cluster 
initialization and parameter variations than the robust Non- 
Euclidean Fuzzy Relational data Clustering algorithm (robust- 
NE-FRC), one of the most efticient recently proposed relational 
algorithms, on both real and synthetic data sets. 

Keywords - robust fuzzy relational clustering, robust fuzzy 
C-means, noise prototype. 

I. INTRODUCTION 

Relational data are frequently encountered in fields where 
the characterisation of objects by means of attributes is not 
possible or appropriate, whereas it is easier to identify the 
mutual relationships among them. To partition relational data, 
several fuzzy relational clustering algorithms have been 
proposed. Most algorithms determine a fuzzy partition of the 
data set using an alternating optimisation scheme to iteratively 
minimize an appropriate objective h c t i o n  based on a 
(usually Euclidean) dissimilarity relation R [1-5]. When R is 
non-Euclidean, the algorithms can still be applied but no 
theoretical proof for their convergence is provided [6]. 

As far as fuzzy object clustering is concerned, one of the 
most popular algorithms is the fuzzy C-means (FCM) 
algorithm, which can be applied if the objects of interest are 
represented as points in a multi-dimensional space. FCM 
relates the concept of object similarity to spatial closeness and 
finds cluster centres as prototypes. Several examples of 
application of FCM to real clustering problems have proved 
the good characteristics of this algorithm with respect to 
stability and partition quality. Further, its convergence has 
been formally demonstrated. As it is well known in the 
literature, FCM is not robust against noise and outliers. To 

overcome these problems, DavC proposed a modified version 
of FCM, denoted robust-FCM in the following, based on the 
concept of noise cluster [7]. 

In this paper, we present a new fuzzy relational algorithm 
which has resulted to be stable without requiring any 
particular restrictions on the relation matrix. After 
representing each object by the vector of its relation strengths 
with the other objects in the data set, we apply the robust- 
FCM to this vector space. In this way, though working on 
relational data, we can exploit the good properties of stability 
and effectiveness of object data clustering algorithms. Finalty, 
we experimentally show the high scalability and low 
sensitivity to cluster initialization and parameter variations of 
our method on both real and synthetic data sets. To this aim, 
we compare our method with the robust Non-Euclidean Fuzzy 
Relational data Clustering algorithm (robust-NE-FRC), 
recently proposed in [XI. 

11. OUR APPROACH 

Our approach is founded on the following observation: in 
relational clustering, each pattern x i  is defmed by the values 
of the relations between xi  and all patterns in the data set. If 

the data set is composed of Mpatterns, each pattem xi can be 

represented as a vector xi  = [ a ,  ,..., ri ,M] in RM , where ri,j 

is the extent to which .xi is related to .rj . Since a relational 
clustering algorithm should group pattems that are “closely 
related” to each other, and “not so closely” related to pattems 
in other clusters, as indicated by their relative relational 
degrees, we can obtain clusters by grouping patterns based on 
their closeness in the space R M .  Representing the MxM 
relation matrix as Mvectors defined in the feature space RM 
allows us to transform a relational clustering problem into an 
object clustering problem. In previous papers [9][10], we have 
applied classical FCM to partition the M vectors of the data 
set. We have shown that ow approach is more stable than 
some of the most popular fuzzy relational clustering 
algorithms such as RFCM and NERFCM [6]. Further, we 
have discussed how this conversion allows us to determine the 
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optimal number of clusters using some popular indexes like 
the Xie and Beni’s index [ I l l  and the Fukuyama and 
Sugeno’s index [6]. Finally, we have highlighted the 
importance of having a prototype for each cluster. Here, a 
prototype is a (possibly virtual) pattern whose relationship 
with all patterns of the data set is representative of the mutual 
relationships of a group of similar patterns. 

111. IMPROVING CLUSTERING WITH THE NOISE CONCEPT 

As it is well known in the literature, the classical FCM is 
not robust against noise and outliers [7]. Thus, a pattern, 
which is strongly related to no pattern in the data set, is forced 
to belong to one or more of the clusters, possibly modifying 
the shape of these clusters. To overcome this problem, in this 
paper, we make our approach robust to noise and outliers by 
adopting the robust version of FCM (robust-FCM) proposed 
by Davt [7]. Robust-FCM is based on the concept of noise- 
prototype, that is, an entity that is always at the same distance 
6 from each pattern in the data set. The presence of the 
noise-prototype changes the constraint on the membership 
values imposed by the classical FCM: If C is the number of 

clusters, the constraint is 0 < xui* 5 1 instead of xui,k = 1 , 

where ui,k represents the membership value of pattern xk to 
cluster i. Thus, the objective function becomes 

c C 

i=l i=l 

C M  M 

i=I j=, j=l 
J ( Y , U , X ) =  C x u y  . d z k i , Z j ) + C u ;  .6’ (I)  

where M is the numher of panems, m is the fuvification 
coefficient, d e i , x j )  is the distance between the prototype 

xi of cluster i and x j  , uI is the membership degree of point 

x .  to the cluster represented by xi , and the membership 

uaj of point x j  to the noise cluster (indicated by the subscript 
*) is 

-I 

c 

i=l 
u . j = l - x u a  (2) 

The noise distance 6 ,  called the resolution parameter, is 
obviously a critical factor of the algorithm, and its value 
should be based on data set statistics: in particular, it is related 
to the concept of “scale” in robust statistics. In [7], Davt 
recommends to choose 

Like for the majority of robust clustering algorithms, also 
the results produced by robust-FCM depend on the choice of 
the initial partition. To reduce this dependence, we adopt the 
following procedure. First, we apply the classical FCM with 
low termination accuracy (e.g., equal to 0.1 or greater if the 
data set is bigger) and random initial partition. Then, we use 
the resulting fmal partition as the initial partition of robust- 
FCM (the membership of each pattern to the noise cluster is 
initialized to 0). We experimentally verified that this 
procedure strongly reduces the effect of the initialization on 
the final partition. 

IV. EXF’ERIMENTAL RESULTS 

We applied both OUI algorithm and robust-NE-FRC to a real 
data set and to a synthetic data set. For the latter, we have 
randomly added increasing percentages of patterns, and tested 
the convergence speed of both the algorithms. 

To assess the stability of the results with respect to the 
initial random partition, we evaluated the classification rates 
and the partition coefficient over IO runs and computed the 
average and standard deviations. The partition coefficient 

P(U) =- C u i  is a further index commonly used to 

evaluate the goodness of a partition. P essentially measures 
the distance the partition U is from being crisp by assessing 
the fuzziness in the rows of U. P varies in the interval [I/c, I]. 
Empirical studies show that maximizing P leads to a good 
interpretation of data. Thus, the closer P is to 1, the better the 
partition is. In the experiments described in sections 1V.A and 
IV.B, when the robust-NE-FRC does not reach the 
convergence after 100 steps, it returns the final result. On the 
contrary, in the experiments presented in section IV.C, only 
runs of robust-NE-FRC that achieve convergence are taken 
into account. 

To test the stability to the fuzzmess variation (expressed 
through the fuzzification coefficient m) and the scalability, we 
repeated the experiments form ranging in t1.1, 3.01, with step 
equal to 0.1. It is well-known in the literature that, when the 
number of objects and, consequently, the dimensionality of 
the problem increase, m has to be decreased to enforce the 
assignment of patterns to clusters. The lower the value of m 
necessary for the clustering algorithm to achieve a reasonable 
solution, the lower the robustness of the algorithm to the 
dimensionality curse. Finally, we show how the prototype- 
based analysis, possible with our algorithm, helps us interpret 
the results. 

M Y C M  i=lj=l 1 

L J A.  Countries dutu set 
where 1 is a positive real multiplier. 

variations of the resolution parameter. For this reason, as 
suggested in 171, 1 is initialized to a maximum value and 
changes adaptively to a smaller value as the algorithm 
progresses. 

Countries Data (CD) set is a classical example of relational 
One serious problem is the stability with respect to data [8]; dissimilarities between 12 countries are obtained by 

averaging the results of a survey among political science 
students; Fig. 1 shows the dissimilarity matrix in graphical 
form, where the degree of dissimilarity is painted as a grey 
level. A brief analysis of this structure reveals that Egypt is 
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dissimilar to any of the three typical groups (numbered 0, 1 
and 2 in the first column): its dissimilarity degrees are all 
grey-white (i.e., high) except (obviously) with itself. We can 
therefore consider it as an “outlier” to be put in the noise 
cluster (3). Also India has a strange silhouette, but Egypt is 
undoubtedly the “worst clusterable” country. This data set can 
be considered as an example of real, non-Euclidean relational 
data. 

1 Belgium 
2 Brasil 
0 China 
0 Cuba 
3 Egypt 
1 France 
2 hdia 
1 Israel 
1 USA 
0 USSR 
0 Yugosla\ 
2 Zaire 

Countries 

Fig. 1 Countries Data dissimilarity matrix 

Fig. 2 shows the three relational prototypes produced by 
robust-FCM the continuous, dashed and dotted lines, 
respectively; the figure highlights that only Egypt (i.e., pattem 
5) and, in part, India (pattern 7) have high dissimilarity with 
all prototypes. If we consider the value 4.6 as the threshold of 
dissimilarity to belong to a cluster, we cao distinguish a first 
cluster (continuous line) including patterns 3, 4, 10 and 11, a 
second cluster (dashed line) consisting of patterns 2, 7 and 12, 
and a third cluster (dotted line) formed by patterns 1,6,8 and 
9. Let us note that pattem 5 has a high average dissimilarity 
with all clusters, thus it belongs to the noise cluster. This 
qualitative analysis based on the observation of the prototypes 
is confirmed by the membership values computed by the 
algorithm. In particular, the memberships of Egypt and India 
to the three clusters are 0.18, 0.28, and 0.25, and 0.21, 0.31 
and 0.18, respectively. 

Patterns 

Fg.  2 Prototypes produced by robust-FCM on Countnnes Data 

Figures 3 and 4 show the goodness of our algorithm with 
respect to robust-NE-FRC. The performance of our algorithm 
in terms of classification rate and partition coefficient (Fig. 3) 
is very stable for all values of m. On the contrary, robust-NE- 
FRC (Fig. 4) requires values of m below 1.7 to achieve a 
satisfactory result. 

Fuzziness 

Fig. 3 Effectiveness of robust-FCM on Counnies Data 

Fuzziness 

Fig. 4 Effectiveness ofrobust-NE-FRC on Countries Data. 

E. Synthetic data set 
Fig. 5 shows the synthetic data set extracted from [7]: three 

compact clusters generated using uniform random distribution 
of points centred around three prototypes, plus some random 
added noise. 

For the sake of simplicity, we compute the relational 
patterns applying the Euclidean distance (or 2-norm distance) 
as dissimilarity measure; however, our approach does not 
require any particular metric on the relation matrix. We denote 
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R-synthetic-L2 the relational synthetic data set built with L2 
norm. 
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Finally, Fig. 9 shows that robust-NE-FRC achieves lower 
performance on R-synthetic& data. 
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Fig. 5 The synthetic data set in the feahlrc space 

Fig. 6 shows the relational prototypes produced by our 
method; we have ordered the patterns by class for better 
visualization; only the noise patterns, from 87 to 128, have 
high dissimilarity (>loo) with all prototypes. If we assume the 
value 100 as the threshold to determine the membership to a 
cluster, we can see a first cluster (dotted line) formed by the 
patterns from 1 to 30, a second cluster (dashed line) with 
patterns from 31 to 58, and a third cluster (continuous line) 
with patterns from 59 to 86. We can also observe that some 
noise patterns (from 87 to 128) are very close to the chosen 
threshold. This qualitative analysis is confmed by the 
membership matrix computed by the algorithm. 

Panems 
Fig. 6 Prototypes produced by robust-FCM on R-synthetic-L, data. 

Figures 7 and 8 show the advantage of robust-FCM 
initialised with the final partition of FCM over the rohust- 
FCM initialised with a randomly generated partition. Actually, 
in the latter case, the algorithm is less stable for low values of 
fuzziness. 

Fuzziness 

Fig. 7 Effectiveness of robust-FCM on R-synthetic-L, data, wi!haut FCM 
initialisation. 

. . . . . . . 
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Fuzziness 

Fig. 8 Effectiveness ofrobust-FCM on R-synthetic-L, data, with FCM 
initialisation. 

C. Scalability 
To compare the two algorithms over a significant number of 

patterns, we increased the size of the synthetic data set 
(consisting of 128 points) as shown in Fig. 10.a-d. The new 
patterns of each class (including the noise class) are generated 
by randomly adding a number of points equal to 50% (i.e., 64 
points), 100% (i.e., 128 points), 1000% (i.e., 1280 points) of 
the original size of the data set, and maintaining the ratio of 
each class to the total set of points. The added points are 
extracted, respectively, from the following circles shown in 
Fig. 10.a, where the centres are CO = [367.967, 181.51, CI 
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=[200.421, 497.7721 and C2=[528.351, 491.4461, and the 
radius is 80. The noise pattems are randomly extracted from 
the complementary area in the domain [0,90O]x[O, 8001. 

~ a t a  
Set 

192 
256 
1408 

Fuzziness 

Fig. 9 Effectiveness of robust-NE-FRC 00 R-synthetic-Lt data. 

Tables I and 11 show the numerical results of the two 
algorithms on the three data sets. We chose, as optimal 
combination of parameters, the values corresponding to the 
best classification rate (see Fig. 8 and Fig. 9) and (with 
smaller importance) to the best partition coefficient; then we 
executed 10 trials of the two algorithms for each data set, 
adopting the following termination criteria: 0.0001 (Fig. 
10.b), 0.001 (Fig. 1O.c) andO.O1 (Fig. 10.d). 

Partition classified Coefficient Iterations 
points 

99.5Y&O.O% 0.53+0.0 22.3&4.3 
99.6%tO.O% 0.55M.0 25.1+11.8 
99.9Y&O.O% 0.56iO.O 20.w8.3 

Fig. 10 The synthetic data set with added points in the featuro space 

It can he observed that the percentages of correcl 
classifications are near 100% for all tests. However, the 

partition coefficient (mainly due to the different adopted 
fuzziness) is much higher in our approach. Finally we note 
that the numbers of iterations in the two algorithms are 
similar, but robust NE-FRC has a higher standard deviation. 
TABLE I - Results of robust-FCM on tho R-”synthetie with added points”-L 

data sets. 

TABLE I1 - Results of robust- NE-FRC on the R-“synthetic with added 
pints”-L, data sets. 

V. CONCLUSIONS 

In this paper we have proposed a robust relational clustering 
technique based on the fuzzy C-means object clustering 
algorithm and the concept of Dave’s noise cluster. We have 
shown experimentally that ow method compares favourably 
with the robust-NE-FRC as regards scalability, cluster 
initialization and sensitivity to parameter variation. 
Furthermore, our method ensures convergence in all cases. 
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