Paper draft - please export an up-to-date reference from
http://www.iet.unipi.it/m.cimino/pub

Cerere: an information system supporting traceability
in the food supply chain

M.G.C.A. Cimino, B. Lazzerini, F. Marcelloni, A. Tomasi
Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni
University of Pisa
Via Diotisalvi 2, 56122 Pisa (Italy)
Fax: +39 050 2217600; Tel: +39 050 2217599
{m.cimino, b.lazzerini, f.marcelloni, a.tomasi}@iet.unipi.it

Abstract

In this paper, we present a system for traceability in
the food supply chain. The system is able to
systematically store information about products and
processes operating on products throughout the entire
supply chain from farm suppliers to retailers. The
system manages quality information too. Thanks to the
use of the electronic business using eXtensible Markup
Language (ebXML) standard, the traceability system
also provides data homogeneity, scalability and
interoperability.

1. Introduction

According to the ISO 9001:2000 standard, chain
traceability is the ability to trace the history,
application or location of an entity by means of
recorded identifications throughout the entire food
chain. In practice, chain traceability is achieved if food
businesses keep records of suppliers and customers and
exchange this information along the entire food supply
chain. In particular, each unit/batch (called lot in the
following) of an ingredient or a product must be both
traceable and trackable. To trace an entity means to
identify its origin by tracing back in the supply chain,
whereas to track an entity means to follow the path of
the entity through the supply chain from supplier(s) to
consumers. Traceability in the food supply chain has
attracted considerable attention in the last few years for
a variety of reasons. First of all, it has become a legal
obligation within the EU from 1% January 2005 [1];
similar requirements for traceability systems are
present in the United States and Japan too [2][3]. Then,
food companies tend to consider the significant
expenditure required to build a traceability system as a

long-term strategic investment to create consumer
confidence both in the image of the company and in the
specific product. As a consequence, other requirements
for traceability exist besides the legal ones. In fact, in
addition to systematically storing information that must
be made available to inspection authorities on demand,
a traceability system should take also food safety and
quality improvement into account [4]. This means, for
example, enabling the system to trace back to find out
the cause of a problem and prevent it from happening
again, or to launch a proper recall of potentially unsafe
products that have already been forwarded, thus
protecting public health. Of course, the implementation
of a complete and efficient food traceability system has
to cope with several problems, such as the lack of
alignment of the possibly different systems adopted in
the various sectors of the food supply chain, or the non
homogeneous information kept at the various units of
the supply chain [5][6]. To build a traceability system
is therefore a complex task that involves all stages of
production, processing and distribution: traceability
records should be kept for both products and processes
(such as moving, transformation or combination) that
operate on products.

In this paper, we describe Cerere, a generic
traceability system for the food supply chain, which is
able to meet both legal and quality requirements. Since
the reliability of such a system heavily relies on the
reliable and faithful exchange of documents among the
various units of the supply chain, we adopt ebXML [7]
as a standard that can help support data homogeneity
and scalability as well as system interoperability.

2. Traceability

As previously stated, a traceability system must be

able to trace both lots and activities [8]. This means
that each data model related to traceability must
include lot and activity as key entities, and allow lot
tracking and tracing. Tracking refers to the ability to
follow the downstream path of a product along the
supply chain, maybe based on specific criteria. This is
a crucial factor, e.g., for an efficient recall of defective
products. Tracing, on the other hand, refers to the
ability to determine the origin and characteristics of a
particular product. This is obtained by referencing to
records held upstream in the supply chain. Tracing can
help detect the cause of quality problems. Figure 1
shows a simplified supply chain consisting of only four
segments: it shows a typical scenario of a product recall
due to a contamination event. In the figure, a circle
denotes a traceability lot (lot, for short), that is a unit
of the food product processed or packaged under the
same conditions, or a batch of products that share such
characteristics as type, category, size, package and
place of origin. A rectangle represents an activity, such
as production, packaging, distribution and sale, which
may receive N lots as input and may deliver M lots as
output. An edge represents the relation between a lot
and an activity. In this way, edges allow following the
path of lots along the chain. The supply chain unit,
which performs an activity, is responsible for the
activity itself and for the corresponding outgoing lots.
In the following, the unit is denoted as responsible
actor. Assuming that each lot is generated by an
activity, we can state that each lot is associated with a
responsible actor. For traceability purposes, this actor
is also responsible for the reliability of the traceability
data related to the lot.

Input Supplier Producer Processor Distributor

fracing

Contamination lo uncontaminated le potentially
Incident units contaminated umis

Figure 1. Typical scenario for a product recall
in a supply chain.

The presence of an efficient traceability system
allows constraining the product withdrawal or recall

only to the products really affected by contamination.
Tracing and tracking capabilities are therefore crucial
to confine the reaction to possible hazards and reduce
the recovery cost.

The scenario shown in Figure 1 requires the
adoption of an appropriate data model, which must be
general enough to represent any kind of food. It also
has to provide a means to univocally identify
traceability lots and activities, record information about
lots and activities, and their relations. It would also be
advisable to include additional data regarding, in
particular, food quality. For example, when a cooking
activity is involved, oven temperature and humidity
could be important parameters to help avoiding cases
of hazard.

Each lot must be identified by a global identifier,
which has to be univocal within the supply chain. To
avoid a centralized administration of the identifiers, we
adopt a solution inspired to the approach used in the
EAN/UCC standard. We assume that each actor is
uniquely identified in the supply chain by an actor
identifier. We allow an actor to associate freely an
identifier (traceable entity identifier) with each
traceable entity, that is, either an activity or a lot, the
actor is responsible for. If an actor produces more
products, the lot identifier may consist, for instance, of
the type of product and a progressive number. The only
constraint we impose is that the identifier is univocal
within the amount of lots managed by the actor. The
global identifier is composed of the actor identifier and
the traceable entity identifier.

Figure 2 shows the data model using a UML
notation. Here, two distinct packages are shown:
Traceability and Quality. The former contains the
entities that allow tracing and tracking the product
path. The latter contains the components related to lot
quality. The Traceable Entity is an abstract class which
models the basic characteristics of the two entity types
involved in traceability: lots and activities. The field
TE_ID implements the traceable entity identifier. The
association relation is managed by enforces a traceable
entity to be always associated with a responsible actor.
This constraint guarantees the univocal identification of
the traceable entity, as described above. Further,
Traceable Entity is also associated with Site, which has
its own unique identifier. This relation states that each
lot is contained within a site. Thus, at each stage of the
supply chain, the traceability system is able to retrieve
the information about the site where the lot has been
processed or stored. Both Site and Responsible Actor
are characterized by a number of attributes, which
summarize all the information needed for traceability.
Classes Lot and Activity are derived from Traceable

Entity. The association relation is generated from
means that each lot may be generated from one or more
lots. The generation is ruled by an activity.

Traceability Package |

Site

1
is located into » S_ID

address

*

Responsible Actor

0.1 Traceable Entity
TE D is managed by » RA_ID
—Otyp_e name
- 1
AN
component
A *
Lot g Activity
of e
ha starting date
generation date % I duratifn
5
f=4
Q
o *
k%)
product
| Quality Package
is evaluated by means of » Quality Feature
description

T

Categorical Value

Value L | Categorical QF Numerical QF
ordering <——<value value
description defines » unit name

min value

max value

Figure 2. UML class diagram of the
traceability data model.

Figure 3 shows an example of the objects used to
record an activity: a distributor purchases a red wine
cask from a producer, and carries it to her/his
storehouse by a truck. The input and the output lots of
the activity are definitely the same cask lot. However,
producer and distributor typically identify the lot in a
different way. Further, producer and distributor are,
respectively, responsible for the input and the output
lot. Therefore, for traceability purposes, input and
output lots are different.

In Figure 4 two UML sequence diagrams describe
the interaction of messages arranged in time during a
purchase. In the first diagram we adopt a distributed
architecture without a central database. Here, the unit
responsible for an activity is also responsible for
recording and managing the relation between input and
output lots. The producer communicates the global

identifier of the input lot to the distributor, which
provides to associate it with the global identifier of the
output lot. This association allows tracing and tracking
the lot. Typically, the global identifier is attached as
bar code or RFID tag to the lot. Thus, part of the
communication between supply chain units generally
consists of reading the identifier by appropriate
readers.

purchase : Activity
TE_ID = "AQ05"
I
I
I
red winery : Site caski:Lot | ! | cask-:Lot distributor truck : Site
S_ID ="S007" TE_ID ="L033" TE_ID = "T047" S_ID ="T038"
producer : Responsible Actor distributor : Responsible Actor
RA_ID ="A001" RA_ID ="A009"

Figure 3. Objects involved in recording the
actual execution of a simple activity.

distributor_dbms .

producer_dbms :

<producer.RA_ID, cask-i.TE_ID> ,
_ <distributor.RA_ID, cask-.TE_ID>

B

/

C)

central dbms :

distributor_dbms :

producer_dbms :

T T é

Figure 4. Sequence diagram of a purchase
activity; (a) distributed architecture (b)
centralized architecture.

In the second diagram a central database exists,
which is responsible for the traceability data. This
architecture requires that each supply chain unit
responsible for an activity provides the database with
all the information related to the activity. In particular,
this information must allow the database at least to
associate the input lot(s) with the output lot(s).

In either architectures, in order to retrieve a lot history,
the various units in the supply chain have to
communicate with each other and possibly with the
central database. The data exchange must of course be

performed in a secure and reliable way.

Further, quality requirements should also be taken
into account. The ISO 9000 standard defines quality as
the totality of features and characteristics of a product
or service that bear on its ability to satisfy stated or
implied needs. To meet quality requirements, we
introduced the Quality Package shown in Figure 2. This
package contains the abstract class Quality Feature,
which includes a description of the feature itself and a
collection of methods to set and retrieve feature values.
Values can be either categorical or numerical.
Categorical QF and Numerical QF concrete classes
implement features that can assume, respectively,
categorical and numerical values. Categorical QF
contains a set of Categorical Value objects, which
define the possible values. A Categorical Value is
characterized by the value, a description, and an
ordering number. This last item can be used whenever
ordered categorical values are needed. Numerical QF is
qualified by the value, the unit name (for instance, Kg
for “weight” quality factor), and the minimum and
maximum values. This class organization allows
dealing uniformly with different quality features.

Figure 5 shows an example of object diagram that
describes the quality features “color intensity” and
“rating” associated with lot wine cask. Color intensity
can assume numerical values in the interval 1,10.
Rating takes the wine excellence into account. Here,
excellence is evaluated by using three values: one star,
two stars, and three stars, which correspond,
respectively, to good, very good and excellent.

red winery : Site

S_ID = "S007"
address = "Via Bottinaccio, 37 - 41066 Montelupo (FI) - ltaly"

l

cask-i : Lot producer : Responsible Actor

TE_ID ="L033" [|RA_ID ="A001"
type = "Wine Cask”" name = "Tom White"
| |
: Categorical QF : Numerical QF
description = "rating"
value = "2 stars"

description = "color intensity”
value = 8.21

unit name = "Intensity"

min value = 1

max value = 10

: Categorical Value : Categorical Value : Categorical Value

value = "1 stars” value = "2 stars” value = "3 stars"
ordering = 0 ordering = 1 ordering = 2
description = "good” | |description = "very good” | [description = "excellent"

Figure 5. Example of objects related to quality
features.

3. Dynamic behavior

The dynamic behavior of the lot can be modeled by the

following six activity patterns [3].

1. Lot acquisition: an actor (buyer) of the supply chain
acquires a lot from another actor (provider). Since a
lot can have only one responsible actor, the buyer
generates a new lot and creates an association
between the pre-acquisition lot and the post-
acquisition lot; this association allows
implementing the tracing process and therefore
determining the origin and characteristics of a
particular product. Figure 6.a shows the lot
acquisition pattern using a UML activity diagram,
whose aim is to focus on object and control flows
driven by internal processing. The shape with
straight top and bottom and with convex arcs on the
two sides represents an action state, i.e., a state with
an entry action and at least one outgoing transition
involving the implicit event of completing the entry
action. Rectangles represent objects. The input and
output objects of an action state are connected to
the action state by a dashed arrow. For the sake of
simplicity, we have omitted the object Activity as
output of the action state. This object maintains the
relation between the pre-acquisition lot and the
post-acquisition lot.

2. Lot providing: an actor (provider) of the supply
chain provides another actor (buyer) with a lot. The
provider generates a new lot and creates an
association between the pre-providing lot and the
post-providing lot; this association allows
implementing the tracking process and therefore
following the downstream path of a product along
the supply chain. Figure 6.b shows the lot providing
pattern.

3. Lot division: a lot is split into a number of lots. The
responsible actor of the lot creates an association
between the pre-division lot and the post-division
lots, and vice versa. Thus, both tracing and tracking
processes are possible. Examples of lot division are
cutting and splitting. Figure 6.c shows the lot
division pattern. The black bar represents a
concurrent transition: the post-division lots are
forked concurrently from the pre-division lot.

4. Lot integration: a number of lots are integrated into
a unique lot. The responsible actor of the lot creates
an association between the pre-integration lots and
the post-integration lot, and vice versa. Examples of
lot integration are mixing and packing. Figure 6.d

shows that pre-integration lots are concurrently
integrated into the post-integration lot.

5. Lot alteration: as shown in Figure 6.e, a new lot is
generated from a lot by an alteration activity. The
responsible actor of the lot creates an association
between the pre-alteration lot and the post-
alteration lot, and vice versa. Examples of lot
alteration are heating, freezing and drying.

6. Lot movement: a lot is moved from a storage to
another storage under the same responsible actor.
Since a lot can be associated with a unique site, the
responsible actor has to create a new lot with a new
identifier. Further, the responsible actor creates an
association between the pre-movement lot and the
post-movement lot, and vice versa. The movement
of a lot from a storage to another storage can be
considered as a lot alteration which does not change
the lot features, but only the lot site. Thus, lot
movement can be represented as in Figure 6.e.

(L (pcaistion)—>{0) (- (provang)—>{1al]

m-

m m

;\

o) 53] %}%
) [Tt})
5]

©)

Figure 6. Patterns of the dynamic behavior of
the lot.

From a dynamic point of view, lot division, lot
integration and lot alteration can be modeled as a
generic lot transformation from N lots to M lots (see
Fig. 6.f). Thus, a division of a lot into N lots and the
integration of N lots into a unique lot are represented as
a transformation of one lot into N lots and of N lots into
one lot, respectively. Unlike the other patterns, in the
first two patterns, the post-activity lots and the pre-
activity lots have different responsible actors. A lot has
to be acquired before being transformed. But if there
exists an actor that acquires a lot, there must also be an
actor that provides the lot. Further, a lot, which has
been acquired (provided), cannot be acquired
(provided) again if it has not been preliminarily
provided (acquired). These observations lead us to
define the state diagram of a lot as in Figure 7.

The lot can be in one of three different states:

acquired, transformed and provided. The figure
highlights the constraints intuitively expressed above.
First, the state of a lot cannot change directly from
“acquired” to “acquired” or from “provided” to
“provided”. When a lot is acquired, it can be either
transformed into another lot (transformation activity) or
provided (providing activity) to another actor. Second,
when a lot has been provided to an actor, it can be only
acquired (acquisition activity) by another actor. On the
contrary, the state of a lot can change from
“transformed” to “transformed”. This occurs, for
instance, when the lot undergoes different movements
or manufacturing processes. When a lot has been
transformed, however, it cannot be acquired directly,
but it has to be firstly provided by the responsible actor
and then acquired by another responsible actor.

at the beginning acquisition
alotis acquired _ activity :
by an actor from achIred
the "Nature”

transformation

activity
alotis
transformed -
by an transformed | ~ causiton
activity into activity providing
another lot activity
transformation
activity providing

at the end an activity

actor provides
the "Nature" or
the "Consumer”

with a lot
Figure 7. Lot state diagram.
Nature Responsible Actor Consumer
[extracted] B
Lot
[acquired]
ion > Lot
Transformation frransformed]
[consumed]
.- ; > -& S < S @
[damaged] Providing }= [provided]

Figure 8. UML activity diagram describing the
dynamic behavior of a lot.

Figure 8 shows a UML activity diagram describing
the dynamic behaviour of a lot. The rectangles, denoted
as swimlane in UML standard, which contain objects
and action states, are used to organize responsibility for
actions and objects. In the diagram, the black circle and

the black circle included in a white circle are,
respectively, the initial and final state of the lot. The
white diamond represents a decision. The text in square
brackets within an object defines the state of the object.
The solid lines identify the control flow. The text in
square brackets close to a solid line represents a guard
condition, i.e., a Boolean expression written in terms of
parameters of the triggering event. In the figure, we
introduced two particular responsible actors, namely
Nature and Consumer, which correspond to the initial
and the final responsible actors of a supply chain.
Actually, Nature can also be considered as the final
responsible actor when a lot is discarded because, for
instance, it is damaged. A lot can be acquired from the
nature through an extraction or provided by a
responsible actor. Once acquired, a lot can be either
transformed or provided. A transformed lot can be
either transformed once again or provided. A provided
lot can be sent to either another responsible actor, or a
consumer or the nature (in case it is discarded).

As an example, let us consider the simplified cheese
supply chain shown in Figure 9. The starting point of
the supply chain is the milk, which is soured with lactic

acid bacteria by the supplier. After the thickening of
the milk, the produced gelatin is reduced to small
pieces with cutting and mixing tools, then it separates
into curds (the solid components of the milk) and whey
(the water contained in the milk). At this stage of the
production process, the producer has to decide whether
a soft cheese, a cut cheese or a hard cheese will be
made. The type of cheese implies, for instance, the
temperature of the curd and its size. The cheese curd is
put into forms and pressed based on the cheese type.
Then, the cheese is salted to let the rind form. Finally,
the cheese is put into special ripening rooms: the
ripening process is controlled by the humidity in the
air, temperature and maintenance of the cheese surface.

Figure 9 shows the UML collaboration diagram (at
instance level) of the simplified cheese supply chain. In
the diagram, Nature, Supplier, Shop and Consumer are
objects that play the role of Responsible Actor and
exchange with each other stimuli representing
procedures, possibly producing new lots. The order of
execution of the procedures is described by the
numbers associated with the procedures themselves.

1: milking 2: souring 3: ripening 4: transport 5: sale 6: buying & eating
- - P N
3 a4 - 7 — \
S N ™
(= -\ ’Ml_\/
-
£ / /
Nature Supplier Shop Consumer
Lot {new} Lot {new} Lot {new}

status = “transformed”

status = “provided”

status = “provided”

<—1: acquisition()

Nature:

<4—1.1: create()

: Lot {new}

status = “acquired”

= E =
[0 © []
© o T
L & g
‘fj 2: transformation() ; :
o ©
4: providing() —»
.
| Supplier: = | Shop: | Consumer.
{] < <5 acquisition() o1 6: providing() —
3: transformation() | $ §
S °
!
: Lot {new} Lot {new}

status = “transformed”

status = “acquired”

Figure 9. Simplified cheese supply chain.

At the beginning, the Supplier performs an acquisition
from the Nature (milking) and creates a new lot (in the
“acquired” state). Then the Supplier performs two
transformations (souring and ripening): each
transformation produces a new lot (in the
“transformed” state). Finally, the Supplier provides
(transport) the Shop with the cheese and generates a
new lot (in the “provided” state). The Shop performs an
acquisition, which produces a new lot (in the
“acquired” state). When the Shop provides (sale) the
cheese to the Consumer, it creates a new lot (in the
“provided” state). The Consumer is the last actor of the
supply chain: he/she does not create any lot because
his/her acquisition has not to be traced.

4. Traceability and e-business standards

In order to implement the data model previously
described, we must consider that each responsible actor
actually belongs to a company involved in the supply
chain. The flow of product lots through the supply
chain is associated with information exchanges among

responsible actors and possibly third-party
organizations. An abstraction of traceability
information systems can envision a massive,

centralized database capturing in a single location all
the information about each lot at each stage of the
supply chain. The actual implementation of a
centralized solution typically relies on the so-called
push model [9]: as soon as each responsible actor
collects all data relevant to traceability, it pushes these
data into the centralized database. Though the push
model is very simple, it is not certainly efficient. First
of all, it requires that all information about a lot is
always available on the centralized database, while data
not relevant to traceability could be stored more
advantageously at the site where they are generated.
Second, it imposes that the centralized database
implements all protocols and data formats used in the
different stages of the supply chain. The push model
appears particularly inadequate in the food supply
chain, which is characterized by a number of
peculiarities such as [10]:

i) Inhomogeneous structure and naming of data.
For several years, important agricultural communities
have wrestled with the task of identifying the relevant
types of data that should be captured and stored in an
agricultural database for a given commodity, and
generating a standard naming convention for each data
element in that database. Producers have been
unsuccessful in building consensus for any single
standard for any single commodity, and there is no
reason to believe that consensus will ever be reached.

ii) Confidentiality and control of data. Food chain
participants, at all segments of production, are often
highly protective of their own data, thus they would not
agree on sharing their company’s data on the same
server with the others. Thus, a centralized database
would create issues of data confidentiality and trade
disruption. Ownership, movement and location data
might be used for purpose other than the goal of
traceability. Further, there are potential data integrity
issues.

The architectural solution which is achieving
widespread consensus is to distribute the traceability
information among different robust databases along the
supply chain, and create a backbone of connectivity
between these databases. Actually, the system would
not need to operate with constant connectivity. Data
may be held locally either within the management
system of each actor of the supply chain or associated
with the lot itself. Thus, different actors can use
different structure and naming of data and agree on a
common vocabulary only when interaction is required.
Further, each actor is responsible for confidentiality of
its data and will provide the other actors with only the
information concerning the traceability. Typically, the
distributed architecture uses intermediate data trustees.
A data trustee is a private, third party intermediary to
which an actor transfers its location and ownership
data: the data trustee manages these data in place of the
responsible actor and handles traceability issues in the
case of possible health investigation.

In a distributed architecture, actors have to manage
multiple interconnections and deal with multiple
interfaces. For instance, a fast food outlet has to cope
with the meat, baked goods, dairy products, lettuce,
tomatoes and catsup suppliers. It is obvious that it
would be preferable to access a single system which
provides all necessary information.

The best solution is to build independent, private
data sharing networks that are very loosely
interconnected [10]. Typically, these networks focus on
a certain class of food products. Ideally, there should
be as many networks as product classes. Each network
would operate autonomously and would be loosely
linked with other networks via technology that makes
the system appear a single one to a downstream actor
without exposing the data from one independent system
to another.

The implementation of the private data sharing
networks relies on standard inter-organizations co-
operation models and protocols. Such models and
protocols have been already studied in the framework
of electronic business over the web. In particular, the
proliferation of XML-based business interchanges has

served as the catalyst for defining a new global
paradigm that could allow all business activities to be
performed electronically. Such paradigm, denoted
electronic business eXtensible Markup Language
(ebXML) [7], is an international initiative established
by the United Nations Centre for Trade Facilitation and
Electronic Business (UN/CEFACT) [11] and the
Organization for the Advancement of Structured
Information Standards (OASIS) [12].

ebXML represents a set of modular business
collaboration-oriented specifications. Business
collaboration encompasses the concept of mutually
accepted trading partner agreements as well as the
concept of a technical infrastructure which enables
businesses to locate each other and provides for
reliable and secure exchange of business messages
between collaborating business partners. ebXML
requires collaborating partners to mutually agree upon
the formats and semantics of business documents,
which are XML-encoded. In an inter-enterprise
business collaboration scenario, both business partners
should use the ebXML Message Service (ebMS) to
securely and reliably transport business documents.
ebMS is defined as a set of layered extensions to
Simple Object Access Protocol (SOAP) and SOAP
Messages with Attachments (SOAPAttach)
specifications [13], which are defined by the W3C
organization [14].

However, ebMS just represents the message
envelope and requires an additional standard to define
the semantics of a business document, which
constitutes the content of the envelope. Since there are
several horizontal and vertical content standards in
existence, a novel initiative, called Universal Business
Language, is achieving a universal XML business
language over ebXML. Of course, ebXML-based
business collaboration has to take failure conditions
into account too. Transport level failures are managed
by ebMS, which caters for reliable and recoverable
message exchange. The Business Process Specification
Schema (BPSS) handles the business level failures. For
example, if a party fails to reply within a pre-defined
time period, then the BPSS reverts to the previous
known secure state. The message-exchange agreement
between two business partners is described by a
Collaboration Protocol Agreement (CPA). The CPA
can be regarded as the description of the interface of a
business service. If a business partner changes the
interface described in the CPA, it invalidates the CPA
and requires a new CPA to be built. The technical
message exchange is not however affected and the
sender is still ensured that the message is delivered,
delegating the recipient to deal with the potential

problem. ebXML has its major strengths when it comes
to inter-enterprise business process integration.
However, ebXML is also suitable for intra-enterprise
business process integration in that functional units
(e.g. divisions) are treated as separate mini-enterprises.
In B2B scenarios, ebXML is used for managing
enterprise-spanning business transaction services in the
context of collaborative business [15].

The ebXML technology has been used as reference
specification to define and exchange business
documents in the interoperability architecture
developed for food traceability in the framework of the
Cerere project. In particular, Cerere adopts the Hermes
Message Service Handler (MSH) implemented by the
Center for E-Commerce Infrastructure Development at
the University of Hong Kong [16]. Hermes MSH is in
compliance with ebMS standard and includes message
packaging, reliable messaging, message ordering, error
handling, security, synchronous reply, message status
service, and RDBMS persistent storage. In addition to
secure and reliable messaging functions, Hermes MSH
supports the concept of “quality of service” by
respecting the CPAs defined between collaborating
actors.

To define the XML documents exchanged by using
the Hermes MSH, we adopted the following generally
agreed rules: UML objects and attributes are translated
into XML elements if they are structured or can assume
a large set of values; on the other hand, UML objects
and attributes are translated into XML attributes if they
are not structured, for instance string or number, and
can only assume a set of predefined values.

The set of Cerere messages is composed of five
XML document types concerning the communication
of the state transitions (acquisition, providing and
transformation) and the specification of new instances
of Lot and Activity. Figure 10 shows the essential
structure of an XML document instance of acquisition,
providing and transformation notification in the
hypothesis of a distributed architecture. Since a
distributed architecture requires a minimum exchange
of information between the actors and the data trustee,
the ebXML messages just carry the identifiers of lots
and responsible actors. Figure 11 shows the
fundamental elements of an XML document instance of
an Activity and a Lot. For the sake of readability, the
XML structures of quality feature are shown in Figure
12, for numerical and categorical types, respectively.

5. Conclusions

We have presented a generic data model for food
traceability. We have described the basic classes of the

model and the patterns used to represent the dynamic
behavior of product lots along the food supply chain.
We have developed a prototype of a traceability system
which is able both to trace back and to trace forward
product units and batches. The system also supports
quality information. We are currently experiencing the
application of the prototype to a real vegetable supply
chain in Tuscany, Italy.

<acquisitionNotification> | <providingNotification> | <transformationNotification>
<fromActorld> <fromActorld> <actorld>
Aoo1 Aoo1 Ao01
</fromActorld> </fromActorld> </actorld>
<fromLotld> <fromLotld> <fromLotld>
L033 L033 L033
</fromLotld> </fromLotld> </fromLotld>

<toActorld> <toActorld> <toLotld>
A009 A009 T047
</toActorld> </toActorld> </toLotld>
<toLotld> <date> <date>
L033 2004-04-15 16:20:19 | 2004-04-15 16:20:19
</toLotld> </date> </date>
<date> </providingNotification> | </transformationNotification>
2004-04-15 16:20:19
</date>
</acquisitionNotification>
a) b) c)

Figure 10. A simplified XML document
instance of acquisition (a), providing (b) and
transformation (c) notification.

<activity type ="purchase’™> <lot type ="Wine Cask”>

<id>A055</id>
<respActorld>A009</respActorld>
<startingDate>
2004-04-15 16:20:19
</startingDate>
<duration unit ="hour”> 1</duration>
<siteld>S007</siteld>
<qualityFeature>...</qualityFeature>
<generatedLot>
<id>T047</id>
</generatedLot>
<componentLots>
<id>L033</id>
<respActorld>A009</respActorld>
</componentLots>
</activity>

a)

<id>T047</id>
<respActorld>A009</respActorld>
<generationDate>
2004-04-15 16:20:19
</generationDate>
<siteld>T038</siteld>
<activityld>A005</activityld>
<qualityFeature>...</qualityFeature>
</lot>

b)

Figure 11. A simplified XML document
instance of an Activity (a) and a Lot (b).

<qualityFeature>
<description>
color intensity
</description>
<numericalQF
unitName ="“Intensity”
minValue =“1"
maxValue =“10">
<value>8.21</value>
</numericalQF>
</qualityFeature>

a)

<qualityFeature>
<description>ratings</description>
<categoricalQF>
<value>2 stars</value>
<categoricalValue
value ="1 stars”
ordering ="0"
description =“good’/>
<categoricalValue
value ="2 stars”
ordering =“1"
description ="very good’/>
<categoricalValue value =3 stars”
ordering ="2”
description =“excellent’/>
</categoricalQF>
</qualityFeature>

b)

Figure 12. An XML translation for numerical
(a) and categorical (b) quality features.

Acknowledgments

The Cerere project is partially supported by The
Foundation Cassa di Risparmio di Pisa under contract
2003.0132

References

[1] Regulation (EC) n. 178/2002 of the European
Parliament and of the Council of 28 January 2002, ch.
V.

[2] US. Food and Drug Administration, regulation
21CFR820, "Title 21: Food and drugs, subchapter H:
Medical devices, part 820 Quality system regulation”,
revised April 1, 2004, http://www.accessdata.fda.gov/
scripts/cdrh/cfdocs/cfcft/CFRSearch.cfm?CFRPart=820.

[3] Ministry of Agriculture, Forestry and Fisheries of Japan,
“Guidelines for Introduction of Food Traceability
Systems”, March 2003.

[4] Food Standards Agency, “Traceability in the Food

Chain - A preliminary study,” March 2002,
http://www.foodstandards.gov.uk/news/newsarchive/tra
ceability.

[5] M. de Castro Neto, M.B. Lima Rodrigues, P. Aguiar
Pinto, I. Berger, “Traceability on the web — a prototype
for the Portuguese beef sector”, in Proc. of EFITA 2003
Conference, Debrecen, Hungary, 5-9 July 2003, pp.
607-611.

[6] C.A. van Dorp, “Tracking and Tracing Business Cases:
Incidents, Accidents and Opportunities”, in Proc. of
EFITA 2003, Debrecen, Hungary, 5-9 July 2003, pp.
601-606.

[7] ebXML official website — http://www.ebxml.org.

[8] H.M. Kim, M.S. Fox, M. Gruninger, “Ontology of
Quality for Enterprise Modelling” in Proc. of WET-
ICE, Los Alamitos, CA, USA, 1995, pp. 105-116.

[9] W.R. Pape, B. Jorgenson, R.D. Boyle, J. Pauwels,
“Let’s get animal traceback right the first time”, Food
Traceability Report, Feb 2004, pp. 14-15.

[10] W.R. Pape, B. Jorgenson, R.D. Boyle, J. Pauwels,
“Selecting the most appropriate database architecture”,
Food Traceability Report, Feb 2003, pp. 21-23.

[11] UN/CEFACT - United Nations Centre for Trade
Facilitation and Electronic Business, http://www.unece.
org/cefact/.

[12] OASIS - Organization for the Advancement of
Structured Information Standards, http://www.oasis-
open.org.

[13] SOAP, http://www.w3.org/TR/soap/.

[14] W3C - World Wide Web Consortium, http:/www.w3.
org/.

[15] D.E. Jenz, “ebXML and Web Services - Friends or
Foes?”, 27.06.2002, http://www.mywebservices.org/
index.php/article/articleview/451/1/1/.

[16] Hermes Message Service
http://www.freebxml.org/msh.htm.

Handler,

