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Abstract

Industrial traceability systems are designed to operate over complex supply chains, with a large and dynamic group of participants.
These systems need to agree on processing and marketing of goods, information management, responsibility, and identification. In addi-
tion, they should guarantee context independence, scalability, and interoperability. In this paper, we first discuss the main issues emerg-
ing at different abstraction levels in developing traceability systems. Second, we introduce a data model for traceability and a set of
suitable patterns to encode generic traceability semantics. Then, we discuss suitable technological standards to define, register, and enable
business collaborations. Finally, we show a practical implementation of a traceability system through a real world experience on food
supply chains.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

According to the ISO 9001:2000 standard, chain trace-

ability is the ability to trace the history, application or loca-
tion of an entity by means of recorded identifications
throughout the entire supply chain. In practice, chain
traceability is achieved if businesses keep records of suppli-
ers and customers and exchange this information along the
entire supply chain. In particular, each unit/batch (called
lot in the following) of a component or a product must
be both traceable and trackable. To trace an entity means
to identify its origin by tracing back in the supply chain,
whereas to track an entity means to follow the path of
the entity through the supply chain from supplier(s) to con-
sumers [1]. Traceability is a needed strategic service in any
production context. It can be used to improve security,
control quality, combat fraud or manage complex chains

[2]. In particular, traceability in food supply chain has
attracted considerable attention in the last few years for a
variety of reasons [3]. First of all, it has become a legal obli-
gation within the EU since 1st January 2005 [4]; similar
requirements for traceability systems are present in the
United States [5] and Japan too [6]. Then, food companies
tend to consider the significant expenditure required to
build a traceability system as a long-term strategic invest-
ment to create consumer confidence both in the company
image and in the specific product. Consequently, other
requirements for traceability exist besides the legal ones.
In fact, in addition to systematically storing information
that must be made available to inspection authorities on
demand, a traceability system should also take food safety
and quality improvement into account [7]. This means, for
example, enabling the system to trace back so as to dis-
cover the cause of a problem and to prevent it from hap-
pening again, or to trigger a proper recall of potentially
unsafe products, thus protecting public health. Of course,
the implementation of a complete and efficient traceability
system has to cope with several problems, such as the lack
of alignment of the possibly different systems adopted in
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the various segments of the supply chain, or the non-homo-
geneous information kept at the various supply chain units
[8,9].

Building a traceability system is therefore a complex
task that involves all stages of production, processing,
and distribution: traceability records should be kept for
both products and processes (such as movement, transfor-
mation or combination) that operate on products. To this
aim, traceability needs to be supported by appropriate
architectural and technical implementation solutions, as
well as suitable operational services, in order to provide
its expected value for business partners. These solutions
have been studied in the framework of virtual organization
(VO) models [10,11], where independent organizations
share resources and skills to achieve a specific goal. In this
context, Choudhury [12] has analyzed problems from the
standpoint of a firm making strategic decisions about
inter-organizational systems (IOSs), addressing the ques-
tions of what types of IOSs might be useful, and how these
IOSs might be developed. By extending the typology based
on the transaction cost economics proposed by Malone
et al. [13], Choudhury describes three types of IOSs
architectures: electronic monopolies, multilateral IOSs,
and electronic dyads. The increasing feasibility of adopting
a peer-to-peer (P2P) approach for business-to-business
(B2B) collaborations decreases the need for centralized
exchanges, making electronic dyads more and more attrac-
tive. B2B based on P2P allows implementing dynamic elec-
tronic dyads from the IOS perspective [12]. Indeed, Silva
et al. [14] pinpoint that, in any implementation of a VO
model, dynamic reconfigurability, and business alignment
with the market requirements can be considered as the
most important interrelated aspects. After a broad review
of the offerings of key e-marketplace makers, they observe
that the compliance towards Electronic Data Interchange
(EDI) [15] is often guaranteed; despite of this, they also rec-
ognize Web Services (WS) [16] and electronic business
using eXtensible Markup Language (ebXML) [17] as the
most promising technologies for the creation of dynamic
collaborative environments and business process integra-
tion. In Gunasekaran et al. [18], VO models are based on
the outsourcing concept to take advantage of the core com-
petencies with the objective of being flexible and responsive
to changing market requirements. Thus, companies inte-
grate various links of the supply chain and their supporting
information systems: such integration is driven by the need
to streamline operations. Types of architectures, dynamic
reconfigurability, business alignment, dynamic collabora-
tion, business process integration, flexibility, and respon-
siveness are therefore some of the main aspects that have
to be considered when developing IOSs.

This paper proposes an organic approach to manage the
aforementioned aspects inherent in inter-organizational
information systems and relevant technical aspects specific
to traceability (such as traceability semantics, scalability,
information management, and lot identification) in the
development of a traceability system. These aspects have

been widely discussed in the literature, but often they have
been tackled separately, proposing generic patterns inde-
pendent of the specific application domain. In this context,
our approach aims to enable existing models and technol-
ogies, and to create new domain-specific patterns in order
to develop an effective traceability system. The paper is
structured as follows. In Section 2, we introduce a data
model for describing assets and actors. Then, in Section
3, we show a formal description of the lot behavior
throughout the supply chain. In data exchange, a crucial
role is played by lot identification. Section 4 introduces
some of the most important techniques, such as barcodes
and Radio Frequency Identification (RFID), and stan-
dards, such as GS1 and Electronic Product Code (EPC),
for automatic lot identification, focusing on their potential
contributions in reducing the cost of procedures for track-
ing goods. The structure of a traceability system depends
on how data are managed by the involved actors: the pos-
sible choices are described in Section 5. Independently of
the type of structure, traceability relies on an integrated
environment. Section 6 discusses how this integration can
be achieved by exploiting recently proposed middleware
solutions, like Enterprise Service Bus (ESB). Furthermore,
as the system reliability heavily depends on agreed business
interfaces among the supply chain partners, Section 7 is
devoted to the discussion of business process interoperabil-
ity, through enabling technologies, like WS, and standards
for inter-enterprise business collaboration, like ebXML. In
this context, the Service Oriented Architecture (SOA)
model is presented as a key paradigm. Finally, we describe
a real world experience with food and beverage companies
in Section 8, where the most important XML artifacts and
the system architecture are presented.

2. Static structure of a traceability system

As previously stated, a traceability system must be able
to trace both lots and activities [19]. This means that each
data model related to traceability must include lot and
activity as key entities, and allow lot tracking and tracing
[1]. Tracking refers to the ability to follow the downstream
path of a product along the supply chain, possibly accord-
ing to some specific criteria. This is a crucial factor, e.g., for
an efficient recall of faulty products. Tracing, on the other
hand, refers to the ability to determine the origin and char-
acteristics of a particular product. This is obtained by ref-
erencing to records held upstream in the supply chain.
Tracing can help detect the cause of quality problems.
Fig. 1 shows a typical scenario of a product recall due,
e.g., to a contamination event in a simplified supply chain
consisting of only four segments. In the figure, a box
denotes a traceability lot (lot, for short), that is a product
unit processed or packaged under the same conditions, or
a batch of products that share such characteristics as type,
category, size, package and place of origin. A gear repre-
sents an activity, such as production, packaging, distribu-
tion, and sale, which may receive N lots as input and

A. Bechini et al. / Information and Software Technology 50 (2008) 342–359 343



may deliver M lots as output. A dashed edge represents the
relation between a lot and an activity. In this way, edges
allow following the path of lots along the chain. The supply
chain unit, which performs an activity, is responsible for
the activity itself and for the corresponding outgoing lots.
In Fig. 1, supply chain units are input suppliers, producers,
processors, and distributors. In the following, the unit is
denoted as responsible actor. Assuming that each lot is gen-
erated by an activity, we can state that each lot is associ-
ated with a responsible actor. For traceability purposes,
this actor is also responsible for the reliability of the trace-
ability data related to the lot.

The presence of an efficient traceability system allows
constraining the product withdrawal or recall only to the
products really affected by contamination. Tracing and
tracking capabilities are therefore crucial to confine the
reaction to possible hazards and reduce the recovery cost.

The scenario shown in Fig. 1 requires the adoption of an
appropriate data model, which must be general enough to
represent any kind of product. It also has to provide a
means to univocally identify traceability lots and activities,
and to record information about lots and activities, and
their relations. Further, it is often recommendable to take
explicitly into account additional data on quality features.
For example, in a cooking activity, the oven temperature
and humidity could be important parameters to monitor
potential hazard situations. To formally describe the differ-
ent aspects of the modeled system, in this paper we adopt
the standard Unified Modeling Language (UML) notation
[20]. UML is a general-purpose visual modeling language
that can be proficiently used to specify, visualize, construct,
and document the artifacts of an information system.
UML supports a number of diagram types, i.e., graphical
presentations of model elements, most often rendered as
a connected graph.

Each lot must be identified by a global identifier, which
has to be univocal within the supply chain. To avoid a cen-
tralized administration of the identifiers, we adopt a solu-
tion inspired to the approach used in the GS1 [21]
standard. Each actor is assumed to be uniquely identified
in the supply chain by an actor identifier. Moreover, an
actor is allowed to freely associate an identifier (traceable

entity identifier) with each traceable entity (i.e., either an
activity or a lot) the actor is responsible for. If an actor cre-
ates several distinct products, the lot identifier may consist,
for instance, of the product type identifier and one progres-
sive number. The only constraint we impose is that the
identifier is univocal within the amount of lots managed
by the actor. The global identifier is composed of the actor

identifier and the traceable entity identifier.
Fig. 2 shows the data model. Here, classes are grouped

into two distinct UML packages: Traceability and Quality.
The former contains the entities that allow tracing and
tracking the product path. The latter contains the compo-
nents related to lot quality (i.e., pertaining to the so-called
product information). The TraceableEntity is an abstract
class that models the basic characteristics of the two entity
types involved in traceability: lots and activities. The field
TraceableEntity.id implements the traceable entity identi-
fier. The association ‘‘is managed by’’ enforces a traceable
entity to be always associated with a responsible actor. This
constraint guarantees the univocal identification of the
traceable entity, as described above. Further, TraceableEn-

tity is also associated with Site, which holds its own unique
identifier: i.e., each lot is placed in one site. Thus, at each
stage of the supply chain, the traceability system is able
to retrieve the information about the site where the lot
has been processed or stored. Both Site and ResponsibleAc-

tor are characterized by a number of attributes that sum-
marize all the information required for traceability. The

Fig. 1. Typical scenario for a product recall in a supply chain.
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association ‘‘is generated from’’ states that each lot may be
generated from one or more lots. The generation is ruled by
an activity.

Fig. 3 shows an example of the objects used to record an
activity: a distributor purchases a red wine cask from a pro-
ducer, and carries it to her/his storehouse by a truck. The
input and the output lots of the activity are definitely the
same cask lot. However, producer and distributor typically
identify the lot in a different way. Further, producer and dis-
tributor are, respectively, responsible for the input and the
output lot. Therefore, for traceability purposes, input and
output lots are different. Thus, several different instances of
class Lot can correspond to a unique physical lot.

In Fig. 4, two UML sequence diagrams describe two
possible message exchanges within a purchase action.
In the first diagram, we refer to a distributed model with
no central tracking management. Here, the actor respon-
sible for an activity is also responsible for recording and
managing the relation between input and output lots.
The producer communicates the global identifier of the
input lot to the distributor, who is in charge of binding
such an identifier to the other corresponding identifier
for the output lot. This association allows both lot trac-
ing and lot tracking. Typically, the global identifier is
attached as barcode or RFID tag to the lot. Thus, part
of the communication consists of reading lot identifiers
(by means of appropriate appliances) at successive supply
chain units.

In the second diagram, there exists a central tracking
manager, which is responsible for the traceability data.
This model requires that each supply chain actor responsi-
ble for an activity provides the tracking manager with all
the information related to the activity. In particular, this
information must allow the data management system at
least to associate the input lot(s) with the output lot(s).
In both the models, in order to retrieve the history of a
lot, each actor of the supply chain has to communicate with
other actors: with its trading partners in the first model and
with the tracking manager in the second. In fact, legally,
the requirement [4–6] for traceability is limited to ensure
that businesses are at least able to identify the immediate
supplier of the lot and the immediate subsequent recipient
(‘‘one step back-one step forward’’ principle), with the
exemption of retailers to final consumers. The data
exchange must of course be carried out in a secure and reli-
able way.

Quality requirements often play a crucial role in modern
business process management, and thus they deserve par-
ticular attention in the corresponding traceability systems
as well [7]. The ISO 9000 standard [22] defines quality as
the totality of features and characteristics of a product or
service that bear on its ability to satisfy stated or implied
needs. To meet quality requirements, we introduced the
Quality package shown in Fig. 2. This package contains
the abstract class QualityFeature (QF), which includes a
description of the feature itself and a collection of methods
to set and retrieve feature values. Values can be either cat-

Fig. 2. UML class diagram of the traceability data model.

Fig. 3. Objects involved in recording the actual execution of a simple activity.
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egorical or numerical. CategoricalQF and NumericalQF

concrete classes implement features that can assume,
respectively, categorical and numerical values. Categorical-

QF contains a set of CategoricalValue objects, which define
the possible values. A CategoricalValue is characterized by
the value, a description, and an ordering value. This last
item can be used whenever ordered categorical values are
needed. NumericalQF is qualified by the value, the unit
name (for instance, ‘‘Kg’’ for ‘‘weight’’ quality factor),
and the minimum and maximum values. This class organi-
zation allows dealing uniformly with different quality
features.

Fig. 5 shows an example of object diagram that
describes the quality features ‘‘color intensity’’ and ‘‘rat-
ing’’ associated with lot cask-i of wine bottles. Color inten-
sity can assume numerical values in the interval 1–10.
Rating takes the wine excellence into account. Here, excel-
lence is evaluated by using three values: ‘‘one star’’, ‘‘two
stars’’, and ‘‘three stars’’, which correspond, respectively,
to ‘‘good’’, ‘‘very good’’, and ‘‘excellent’’.

The full comprehension and monitoring of what actually
happens along the supply chain requires not only a precise
data model for the involved assets, but also a clear under-
standing of the lot temporal progression towards successive
stages in the supply chain. In a nutshell, a simple formal
characterization of the lot ‘‘history’’ is needed for the inves-
tigation on the actual requirements of the overall traceabil-
ity system. The key observation is that the lot progression
is determined by activities over it, and thus its behavior can
be described according to a classification of the activities
that a generic lot may undergo. These aspects are discussed
in next section.

3. Basic behavioral patterns in a traceability system

The lot behavior can be modeled by the following six
activity patterns [6], as shown in Fig. 6a–g using a UML

activity diagram. For the sake of simplicity, we have omit-
ted the object Activity as output of the UML activity. This
object maintains the relation between the pre-activity lot
and the post-activity lot.

1. Lot integration: A number of lots are integrated into a
unique lot. The responsible actor of the lot creates an
association between the pre-integration lots and the
post-integration lot, and vice versa. Real examples of
lot integration are mixing and packing. Fig. 6a shows
a scenario of integration with three pre-integration lots
concurrently integrated into a unique post-integration
lot.

2. Lot division: A lot is split into a number of lots. The
responsible actor of the lot creates an association
between the pre-division lot and the post-division lots,
and vice versa. Thus, both tracing and tracking pro-
cesses are possible. Real examples of lot division are cut-
ting and splitting. Fig. 6b shows a scenario of the lot
division pattern.

3. Lot alteration: As shown in Fig. 6c, a new lot is gener-
ated from a lot by an alteration activity. The responsible
actor of the lot creates an association between the pre-
alteration lot and the post-alteration lot, and vice versa.
Real examples of lot alteration are heating, freezing, and
drying.

4. Lot movement: A lot is moved from one storage site
(source site in Fig. 6d) to another (destination site)
under the same responsible actor. Since a lot can be
associated with a unique site, the responsible actor
has to create a new lot with a new identifier. Further,
the responsible actor creates an association between
the pre-movement lot and the post-movement lot,
and vice versa.

5. Lot acquisition: An actor (buyer in Fig. 6e) of the supply
chain acquires a lot from another actor (provider). Since
a lot can have only one responsible actor, the buyer

Fig. 4. Sequence diagram of a purchase activity; (a) distributed model (b) centralized model.
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generates a new lot and creates an association between
the pre-acquisition lot and the post-acquisition lot; this
association allows implementing the tracing process
and therefore determining the origin and characteristics
of a particular product.

6. Lot providing: An actor (provider) of the supply chain
provides another actor (buyer) with a lot. The provider
generates a new lot and creates an association between
the pre-providing lot and the post-providing lot; this
association allows implementing the tracking process

Fig. 5. Example of objects related to quality features.

Fig. 6. Basic behavioral patterns for a lot.
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and therefore following the downstream path of a prod-
uct along the supply chain. Fig. 6f shows the lot-provid-
ing pattern.

From a dynamic point of view, the lot integration, lot
division, lot alteration and lot movement can be modeled
as a generic lot transformation from N lots to M lots (see
Fig. 6g for a scenario of transformation with three input
and output lots). Thus, a lot division into N separate lots,
and the integration of N lots into a unique lot are repre-
sented as a transformation of one lot into N lots and of
N lots into one lot, respectively. Unlike the transformation

pattern, in the acquisition and providing patterns the incom-
ing and outgoing lots have distinct associated responsible
actors. Transformation of a lot can occur only if the
responsible actor of the transformation is also responsible
for the lot. This implies that the responsible actor has to
acquire a lot before undergoing any transformation. But
the existence of an acquiring actor implies the presence of
a providing actor for the lot as well. Further, a lot that
has been acquired (provided) cannot be acquired (pro-
vided) again before being provided (acquired). A descrip-
tion of this behavior is shown in Fig. 7, by means of a
UML activity diagram.

In the figure, we introduced two particular responsible
actors, namely nature and customer, which correspond to
the initial and the final responsible actors of a supply chain.
Actually, nature can also be considered as the final respon-
sible actor when a lot is discarded because, for instance, it
is damaged. The Acquisition activity is triggered by an
extraction from nature or when lots are provided by a Pro-

viding activity. Only lots, which already belong to the
responsible actor, can be transformed or provided. Lots
produced by a Transformation activity can be transformed
in their turns or trigger a Providing activity. Lots generated
by a Providing activity can be either discarded, or con-
sumed or provided to another responsible actor.

As an example, let us consider a simplified cheese
supply chain. The starting point of the supply chain is

the milk acquisition (from nature, in our simplified
setting). In the first place, milk is soured with lactic acid
bacteria by the supplier. After milk thickening, the
produced gelatin is reduced to small pieces with cutting
and mixing tools, and then it separates into curds (the
solid components of the milk) and whey (the water
contained in the milk). At this stage, the producer must
decide to make soft, cut or hard cheese. The cheese type
is determined by the curd size, temperature, pressure,
etc. The cheese curd is put into forms and pressed,
according to the desired cheese type. Then, the salting
process is carried out in order to support the rind devel-
opment. Finally, the cheese is placed into special ripening
rooms: the ripening process is controlled by the humidity
in the air, temperature, and maintenance of the cheese
surface.

This simple supply chain can be modeled as depicted in
the UML communication diagram shown in Fig. 8. Here
nature, supplier, shop, and customer are the different
ResponsibleActors, and they interact according to given
activities, possibly producing new lots. The activity order-
ing is specified by the numbers associated with the shown
procedures.

At the beginning, the supplier performs an acquisition
from the nature (milking) and creates a new lot. Then the
supplier performs two transformations (souring and ripen-
ing): each transformation produces a new lot. Finally, the
supplier provides (transport) the shop with the cheese and
generates a new lot. The shop performs an acquisition (buy-
ing), which produces a new lot. When the shop provides
(sale) the cheese to the customer, it creates a new lot. The
customer comes after the last responsible actor of the sup-
ply chain: he/she does not create any lot because his/her
acquisition has not to be traced.

As highlighted in the last example, the tracking process
along the chain production possibly generates a huge
amount of data records. In order to allow tracing proce-
dures to remotely retrieve such data, a proper identification
technology is needed. This aspect is detailed in next section.

Fig. 7. UML activity diagram describing the lot behavior.
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4. Lot identification

Several experiences in the context of food traceability
have shown that the ability to generate accurate informa-
tion typically improves at the later stages of production
and processing. On the other hand, the closer to dirt one
gets, the more difficult collecting accurate data is. As
regards the simplified cheese production shown in Fig. 8,
for instance, the information is certainly more accurate at
the last stages (in the communication from supplier to
shop) than at the first stage (acquisition of the milk from
nature). This problem, known as the ‘‘first mile’’ problem,
can considerably reduce the benefits of a traceability sys-
tem. Since the easiest place to capture data is when the
event or transaction takes place on the farm or in the field,
capturing data first hand is better than reconstructing it
afterward. Time and distance from the point of origination
only serve to reduce the validity of data and increase the
total lifecycle cost of managing it [23]. Further, whenever
possible, data should be collected without human interven-
tion. Humans are typically poor data collectors. Several
techniques have been proposed to collect data in a cost-
effective manner without interrupting the workflow. A
widely accepted technique is to associate a tag with each
lot: the tag contains the data necessary to identify the lot.
These data can be automatically read by appropriate
readers.

The most used tags are barcodes and RFID tags. RFID
tags consist of a chip that can be attached onto or
implanted into any surface of an item [24]. As regards their
employment for traceability issues, RFID technology looks

very promising [25]. Unlike barcodes technology, e.g.,
RFID allows acquiring information at a rate of 1000 tags
per second. Thus, it is reasonable to expect a growing
acceptance of RFID technologies in the next years as basic
components within traceability information systems.

The simplest form of identification consists in a numeric
or alphanumeric string. The string gives no information
about the unit, but provides a univocal key to retrieve
traceability data stored elsewhere. To guarantee the string
uniqueness, several standard systems have been introduced.
The most promising one is certainly the GS1 (formerly
EAN.UCC) system [2,21]. By administering the assignment
of company prefixes and coordinating the accompanying
standards, GS1 maintains the most robust lot identification
system in the world. GS1 provides seven Identification
Keys to support the identification of items, services, loca-
tions, logistic units, returnable containers, etc. As regards
traceability, most of the numbering structures of interest
have been developed by GS1; among them, GTIN (Global
Trade Item Number), which identifies uniquely each com-
mercial unit, SSCC (Serial Shipping Container Code),
which identifies uniquely a logistic unit (dispatch unit),
GLN (Global Location Number), which identifies any
legal, functional or physical location within a business or
organizational entity [2]. More complex forms of identifica-
tion can however be realized, by introducing descriptions
of the key features of the item [6]. GS1 provides training
and support for another important emerging standard,
the EPC technology currently under development at EPC-
Global [26] to sustain the use of RFID tags. The EPC iden-
tifier is a meta-coding scheme designed to address the needs

Fig. 8. Communication diagram for a simplified traceability system in cheese production.
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of different kinds of industries. The EPC identifier accom-
modates existing coding schema (whenever possible) and
new schema (whenever it is necessary). Though GS1 and
EPC standards are very good candidates for the definition
of the global identifier, we decided to allow other alterna-
tive methods too, so as to make our system as general
and flexible as possible (small enterprises might be reluc-
tant to join the GS1 community, due to the initial difficul-
ties of justifying the investment).

Lot identification is the first step towards an effective
traceability information management. The identifier is the
key to retrieve data, but how are data records organized?
Where are such records stored? How are they communi-
cated among the different actors? In the next two sections,
we describe some possible architectural solutions to make
traceability effective.

5. Traceability information management within the supply

chain

As stated, e.g., by the European Community food law
guidance [27], business operators are expected to ensure
relevant information requirements and to verify their ful-
fillment, within the businesses under their control. From
an information management perspective, implementing a
traceability system within a supply chain requires all the
involved parties to systematically bind the physical flow
of materials/products to the corresponding information
flow. This is typically attained by developing a generic sup-
ply chain technical disciplinary, which defines a set of rules
with regards to material and document flow, production
process management and execution, business process col-
laboration through partners agreement, and responsibility
placements. In the disciplinary, traceability requirements
must be stated, as well as quality and safety goals. From
an abstract viewpoint, a traceability information system
can be thought as a single massive, centralized data storage
capturing all the information about each lot along each
stage of the supply chain. The logical view of a lot contains
attributes related to each feature of every product and its
components, as well as details of the processing phases.
Any traceability system adopting an actually centralized
solution is structured according to the so-called push model
[28]. This paradigm states that, as soon as each actor in the
supply chain collects traceability data, such data must be
transferred to the centralized traceability data storage.
However, the implementation of one single, centralized
traceability data storage is neither realistic nor efficient in
most actual settings, characterized by growing dynamism,
heterogeneity, complexity, and scale.

In order to foster scalability, in the first place we should
keep logically separate traceability information and data
from other product/lot characteristics: in fact, although
the former may be even managed through a single common
system, the latter can be sensibly stored at the different sites
where the corresponding measurements take place. Bring-
ing the discussion one step forward, multiple traceability

data repositories could be proficiently linked to either dif-
ferent stages or external data trustees, thus obtaining a
physically distributed architecture; in this scenario, each
different node would possibly address local specific man-
agement and implementation issues.

As a reference example for pointing out significant
issues in actual management of traceability data, we
can consider the peculiarities of a generic food supply
chain [29]:

1. Heterogeneous structure and naming of data: For sev-
eral years, important agricultural communities have
wrestled with the task of identifying the relevant infor-
mation to be captured and stored in an agricultural
database for a given product, and developing a standard
naming convention for each data element in that data-
base. Producers have failed in building consensus for
any single standard for any single commodity, and there
is no reason to believe that consensus will ever be
reached;

2. Confidentiality and control of data: Food chain partici-
pants, at all segments of production, are often highly
protective of their own data, thus they would not agree
on sharing their own company’s data. The industry is
concerned that a centralized database would create
issues of data confidentiality and trade disruption. Own-
ership, movement, and location data might be used for
purposes different from the goal of traceability. Further,
there are potential data integrity issues.

Such concerns further push to find proper alternatives to
the employment of a logically centralized solution. The
architectural model that is achieving widespread consensus
accounts for the distribution of traceability information
among different robust data storages along the supply
chain, taking also a connectivity backbone between them
into account. In such a setting, a constant connectivity is
not strictly required to guarantee a proper system opera-
tion: in fact, data may be held locally (either within the
management system or associated with lots) and trans-
ferred just during the periods when communication is pos-
sible. Therefore, different actors can use different data
structure and naming, agreeing on a common vocabulary
only when interaction is required. Further, each actor is
responsible for confidentiality of its own data, and he will
provide the others with traceability information only. Typ-
ically, this kind of distributed architecture, based on the so-
called pull model, also makes use of an intermediate data

trustee [28]. A data trustee is a private, third party interme-
diary among responsible actors and towards other entities:
companies, government, individuals, or associated con-
sumers. Each actor transfers its location and ownership
data to a data trustee. The data trustee acts like an escrow
agent, holding the actor’s data until a legitimate investiga-
tion need arises.

The UML sequence diagram in Fig. 9 introduces the pull

model: here the data flow is handled in a four-step process.
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First, the actor inputs data into its private software system
normally used to manage the operation. This software sys-
tem is linked to a data trustee chosen by the actor. Obvi-
ously this initial phase can be accomplished manually in
case no information system is present. Mandatory data
(no commercial or production data) are definitely pushed
to the data trustee. Second, the data trustee can expose
only the product identification number to external users.
No other ownership, location, or movement information
is exposed at this point. The third step is possibly taken
as authorized users or government officials ask for product
information, as in the case of detecting a costumer’s health
incident. As a consequence of such request, in the fourth
step the data trustee publishes to the requester the man-
dated data, bounded to the suspected product only.

A more realistic scenario would encompass multiple
data trustees, being certified and audited by the govern-
ment or by a government’s appointed agency (e.g., a trade
association of a certain product class). Actors can freely
choose their own data trustees for their own data. Some
of the largest actors in the supply chain might even decide
to act as data trustees by their own, applying for the related
certification: this choice mimics the self-insurance
approach many large corporations use for risk manage-
ment [28].

Furthermore, in the pull model, the distributed manage-
ment approach might be extended to the product identifi-
ers, thanks to the hierarchical structure of the global lot
identifier and to the ‘‘one step back-one step forward’’
principle. Indeed, the actor ID, which is encoded in the
lot identifier, can be a unique key for a global public regis-
try of responsible actors, which in addition can be hierar-
chically organized on regional basis. The registry contains
the data trustee URI (Uniform Resource Identifier), which
actually stores information both on products and on the
IDs of ingredients/components, thus safeguarding business
information and ensuring factual scalability. Of course, in
some contexts it is recommended to carry out system
check-ups to determine whether each data trustee is per-
forming its obligations.

The pull architecture has proved to be effective in other
critical fields like the global credit card organization. Credit

card transactions can occur within a matter of seconds even
though the technology must seamlessly link a large number
of separate data management systems [30]. This is also the
architecture used in the Brazilian national animal identifi-
cation program, which covers a national herd roughly
twice the size of that in the United States [31]. Some pro-
ducers and processors may still opt to ‘‘push’’ their data
in a common repository, e.g., for enhancing the value of
their products by publicly showing information about their
origin/features, or about the identification with a valuable
brand. However, the use of a data trustee will provide an
alternative, helping actors protect the confidentiality of
their data and the integrity of their existing trading rela-
tionships, and increase data integrity within the system.

We can finally state that, within a supply chain, the
management of traceability data can be supported by a sys-
tem built up according either to the push or to the pull
models. Although the latter could be regarded as more suit-
able to address decoupling of the participating actors and
protection of data privacy, the final choice between the
two models should depend on the size, requirements, heter-
ogeneity, and dynamism of the actual involved supply
chain [32].

6. Business process integration infrastructure

Independently of the information management models
adopted in the traceability system, actors are asked to
cooperate so as to obtain some kind of information shared
across different business processes at different locations
[8,9]. This cooperation, however, should not be achieved
by increasing the effort required to each actor in the supply
chain. Each actor has its own approach to manage infor-
mation and it is not likely enthusiastic on adapting this
approach to the other actors. Let us consider, for instance,
a retailer that buys products from several different provid-
ers. Each single provider is likely to have its information
management system different from the other providers’
ones. For example, the retailer should not be coerced to
interact with a huge number of disparate systems just in
order to accommodate traceability requirements. In fact,
the retailer must be free to keep its own approach to

Fig. 9. The pull model: in this paradigm, the responsible actor is expected to send all the required data towards a certified data trustee.
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information management by exploiting an infrastructure to
manage heterogeneous interfaces in a transparent way.
Similarly, fast food outlets would not like to use a separate
system for their meat, their baked goods, their dairy prod-
ucts, their lettuce, their tomatoes, their ketchup, and so on.
Instead, it would be preferable to access a single system
able to provide all the required information. In order to
achieve this kind of system integration in a heterogeneous
setting, a proper infrastructure for business process inte-
gration must be set up. A possible solution relies on build-
ing up independent, private data-sharing networks
(PDSNs), i.e., loosely interconnected data-sharing systems.
A PDSN [29] is initiated by one sponsoring company at
any production segment and it proceeds linking to individ-
ual suppliers and customer companies, thus expanding the
initial network. Typically, PDSNs focus on a certain class
of products, making issues in data schema definitions sim-
pler. Once built, different independent PDSNs could oper-
ate autonomously, yet appearing as a single one to a
downstream customer.

In designing a given independent PDSN, specific point-
to-point connections should be avoided. In fact, two appli-
cations could be easily connected, e.g., using standard
application program interfaces (API’s), XML [33] data
structures and SOAP (Simple Object Access Protocol)
[34], as usually done in WS [16], but this simple solution
has a number of shortcomings. In particular, scalability
issues must be taken into account: in case of n applications,
n(n � 1)/2 (possibly) different interfaces have to be devel-
oped. We observe that n is actually larger than the number
of production segments, because at each segment there
could be more than one pre-existing application program
to be involved (e.g., procurement system and separate man-
ufacturing system). The simple adoption of point-to-point
connections hampers maintenance as well, because a single
change in the application determines the substitution of all
the corresponding interfaces.

Recently, the Enterprise Service Bus (ESB) [35] has been
proposed as an architectural scheme for connecting third-
party applications, and such a solution fits also the require-
ments for our PDSNs. ESB is an integration middleware,
standards-based, service-oriented backbone capable of
connecting hundreds of application endpoints. ESBs com-
bine messaging, WS, XML, and data transformation/man-
agement, in order to reliably connect and coordinate
application interactions. In our scenario, ESB would trans-
late data from one third-party system (say a producer sys-
tem) to an internal data bus format, and then would
retranslate this information to another third-party system.
The data bus approach requires developing only one inter-
face between each third-party application and the data bus,
thus reducing the integration complexity. Further, applica-
tion and business changes can be easily managed within the
ESB infrastructure. Schema mediation problems [36], how-
ever, may arise in the ESB approach as well, because each
company must both publish its data in a common language
(e.g., XML) and agree on the naming convention for each

data element. Further, if the supply chain spans different
countries, the use of different languages makes the problem
even worse. These observations suggest transferring most
of the naming translation responsibility to the ESB. This
last choice definitely simplifies the overall system, allowing
each application program to use its own terminology.

Fig. 10 shows a UML component diagram of an ESB
for traceability purposes. A ResponsibleActor, a ControlAu-

thority or a DataTrustee interact with each other using the
own interfaces via the ESB.

In Fig. 10, the DataNamingTranslation component pro-
vides the translation of a data element from one system to
another on the basis of wording conventions. The compo-
nent concerns the mapping of general terminologies imple-
mented via syntactic or lexical rules that are not related to
a specific business context, for instance, synonyms and
homonyms resolution. The DataNamingTranslation allows
each system to adopt the own terminology, avoiding possi-
ble misunderstandings and reducing the complexity of the
information systems. The Message-Oriented Middleware

Facilities (MOMFacilites) component supports any asyn-
chronous data exchange. The need for this component
derives from the lack of standards ruling the use of
MOM. All the major vendors have their own implementa-
tions, each with its own application programming interface
(API) and management tools. One of the most used APIs is
JMS (Java Message Service), provided with the Java Enter-
prise Edition platform and implemented by the majority of
MOM vendors [35]. The various components hooked into
the ESB have their own expectations of data formats,
and these might differ from other components. The Trans-

formationServices component makes it possible to ensure
that data received by any component is in the format it
expects, thereby removing the need to make changes. As
an example, let us consider the representation of a date
or a time. Different formats and levels of granularity could
be used. The International Standard for the representation
of dates and times, the ISO 8601, describes just six levels of
granularity and a large number of formats [37]. Different
systems could use different formats, thus giving different
interpretations of a same date.

In order to be able to define the business services that
are made up by the various components on the ESB, it is
necessary to be able to specify the required flow from com-
ponent to component. But the path used to physically get
from one component to another has to be understood by
the ESB, and indeed the ESB may well want to dynamically
alter this path, such as a reaction to a failure in part of the
network. The ContentBasedRouting component provides a
routing service that can intelligently consider the content of
the information being passed from one step to another and
choose the appropriate next business step based on that
information.

It is worth noticing that the ESB provides a general-pur-
pose technical integration infrastructure, and it should not
be used for semantic interoperability issues. Indeed, techni-
cal integration refers to the design of technological artifacts
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that are easy to use as part of a larger suite of components,
tools, or services. Semantic interoperability concerns the
design of the business interfaces that enable separately
designed business processes to be plugged together so they
can be flexibly used. How do we define standards that are
sufficiently flexible and well defined that they can form the
basis for broad integration of heterogeneous, legacy and
future systems for traceability issues? Since the traced
product history describes relations of commercial partners
(a set of sales and purchases), we can refer to business-to-
business (B2B) context where interoperability issues have
been studied from several years. Next section is devoted
to discuss this aspect.

7. Business process interoperability

In the B2B context, EDI has been used for almost a quar-
ter of a century, as a fast and reliable means of achieving elec-
tronic, computer-to-computer information exchange
between trading partners. The efficacy of using EDI has been
widely investigated (see e.g., [38]), and it is now evident that
the potential of this standard can be fully exploited by enter-
prises with mature IT capabilities: often this is not the case
for all the actors throughout the supply chain. On the other
hand, the proliferation of XML-based business interchanges
has served as the catalyst for defining a new global paradigm
that ensured all business activities, regardless of size, could
engage in electronic business activities. Such a paradigm,
known as ebXML [17], has been developed by an interna-
tional initiative established by the United Nations Centre
for Trade Facilitation and Electronic Business (UN/
CEFACT) [39] and the Organization for the Advancement
of Structured Information Standards (OASIS) [40]. It
enables enterprises to conduct business over the Internet in
more straightforward and efficient ways than in the past
[41–43]. ebXML represents a set of modular business collab-
oration-oriented specifications, defined as a set of layered
extensions to the base SOAP and SOAP Messages with
Attachments (SOAPAttach) specifications [34]. ebXML
has been recently standardized, and it is currently known
also as ISO 15000 [44]. Business collaboration requires a
solid and consistent conceptual foundation, encompassing
both issues in inter-enterprise business collaboration (based

on mutually accepted trading partner agreements), and a
technical infrastructure that (i) enables businesses to find
each other and (ii) provides for the reliable and secure
exchange of business messages between partners. As well
as the plain web services technology, ebXML provides tech-
nical interoperability through a vendor-neutral protocol.
Moreover, ebXML uses Collaboration Protocol Agree-
ments (CPAs) to declare bindings to business collaboration
specifications. ebXML requires collaborating partners to
mutually agree upon the formats and semantics of business
documents. However, it is not mandatory to exploit only
XML-encoded messages in an ebXML-based system: theo-
retically, EDI messages could be used as well.

In an inter-enterprise business collaboration scenario,
both business partners would use the ebXML Message Ser-
vice (ebMS) to transport business documents in a secure,
reliable, and recoverable way. Obviously, in case one of
the business partners cannot manage ebMS messages (for
instance, in the case of legacy systems), the communication
is handled via ESB. Business level failures are completely
taken into account with the Business Process Specification
Schema (BPSS) [45]. For example, if a party fails to
respond within a pre-defined time period, then the BPSS
reverts to the previously known secure state.

ebMS is just concerned about message transport: an
additional standard is needed in order to define the seman-
tics of a business document (i.e., the message payload). As
there are several horizontal and vertical content standards
in existence, a novel initiative, called Universal Business

Language (UBL) [46], is trying to achieve a universal
XML business language over ebXML. The message-
exchange agreement between two business partners is
described by means of a CPA. Any successive change on
the interface of a business service identified in the CPA will
consequently invalidate the CPA, thus requiring a new for-
mal agreement document to be built. Of course, this kind
of modifications does not affect the technical message
exchange function. Hence, the sender can still be sure that
the message gets delivered, even if the recipient will be
likely to experience potential problems with the new mes-
sage content semantics.

The foundation layer of the ebXML stack, i.e., the
XML Schema [47] and the SOAP standards, constitute a

Fig. 10. Generic components of an Enterprise Service Bus for traceability purposes.
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stateless, one-way message exchange paradigm, providing a
basic messaging framework for higher abstract layers.
Another important set of layered standards is the WS stack
[48]. SOAP-WS architecture is the most common and mar-
keted form of web service in the industry. In B2B scenarios,
the specific strengths of ebXML and WS can be combined
in that ebXML is used for managing enterprise-spanning
business transaction services in the context of collaborative
business, while WS find their place in intra-enterprise inte-
gration of back-end systems. The most important vendors
of WS architectures support SOAP, WSDL, UDDI [49] as
the primary standards to develop simple WS, and ebXML
as the standard for complex WS [50–52].

Actually, both standards implement the principles
behind the next generation of e-business architectures
[16,53], representing the logical evolution from Object-Ori-
ented architecture (OOA) to systems of services, built
according to SOA [54]. The fundamental layer of WS, how-
ever, does not consider business process semantics as
ebXML does. Not surprisingly, an ESB can be considered
as a SOA approach to integration, even though, as we want
to emphasize in this section, interoperability, rather than
integration, is the most innovative principle of SOA.

SOA promotes significant decoupling and dynamic
binding of components: all software components are struc-
tured as services, i.e., they encapsulate behavior and expose
it to other collaborating components on the network by
means of standard messaging facilities. In the SOA
approach, applications are built by discovering and orches-
trating network-available services, or by just-in-time inte-
gration of applications. Fig. 11 represents the SOA
pattern using a UML component diagram [55]. Here, Pro-

vider and Requester are interpreted as roles of components
implementing and using an interface, respectively. The Bro-

ker service acts as a registry that implements a special inter-
face to publish/query service descriptions by providers/
requesters.

The three fundamental operations in this kind of archi-
tecture are publishing, finding, and binding. Service provid-

ers publish services to a service broker, service requesters
find required services using the service broker and bind
to them. In the current version of ebXML specifications,
like in UDDI, the service broker is implemented by a Reg-
istry. The ebXML Registry exposes services for informa-
tion sharing between parties. The typical SOA-compliant
use of the ebXML registry can be sketched by describing
the following scenario, shown in Fig. 12 as a UML commu-
nication diagram.

First, a company A becomes aware of an ebXML Reg-
istry. Second, company A, after reviewing the contents of
the ebXML Registry, decides to build and deploy its own
ebXML compliant application. Third, company A then
submits its own Business Profile information to the
ebXML Registry, describing its capabilities and con-
straints, as well as its supported business scenarios. Fourth,
a company B discovers these business scenarios in the
ebXML Registry, and (fifth) sends a request to company
A to engage in one of them. In particular, company B

acquires an ebXML compliant application and submits a
proposed business arrangement directly to the software
interface of company A. Sixth, companies A and B are
ready to engage in e-business using ebXML.

The ebXML Registry standard defines both the data to
be held in the registry/repository, and the service interfaces
to access such data. In addition, the standard has been
designed extensible so as to allow any artifact to be incor-
porated. ebXML has also defined how registries can be fed-
erated in such a way that a SOA solution can be developed
across multiple registries; this is an essential function
because the intent of SOA is that services may be provided
by multiple suppliers (either different organizations) within
an enterprise or external organizations. The definition of
an artifact must be owned and controlled by the producer,
and therefore must be in a registry/repository controlled by
the producer. Therefore multiple registries will be involved
in any significant SOA implementation and namely also in
traceability systems built on ebXML technologies.

8. Traceability in the food supply chain: the Cerere project

The scenarios described in the previous sections have
been established in a project named ‘‘Cerere’’. The method-
ology followed in the project is made up of three main and
overlapping activities, namely setup, build-up, and test-up

activities. The setup activity consists of three sub-tasks: (i)
analysis of the business processes and transactions inherent
in traceability, (ii) development of detailed specifications
and design of data schemas so as to support automatic
application-to-application transactions, and (iii) drafting
of detailed specifications for the technological infrastruc-
ture of the overall system. The build-up activity is devoted
to the implementation of the messaging/repositories servers
and to the development of a set of reference client applica-
tions, which allow the interconnection of different systems.
Finally, the vertical test-up activity encompasses the three
following sub-tasks: (i) trial and pilot operation of theFig. 11. Generic components of a Service Oriented Architecture.
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entire system with select groups of users, (ii) validation of
the system for a variety of products and users and evalua-
tion of its capability to adapt itself to different contexts,
and (iii) the dissemination and exploitation of the project
results.

As regards the first two activities, the modeling of the
production processes for a given supply chain is accom-
plished according to the following procedure. First, the
traceability technical disciplinary (for the production pro-
cesses) and the supply chain management regulation (for
the administrative processes) are analyzed. Second, the
business processes extracted from the disciplinary are mod-
eled through UML and translated into XML documents,
as required by the BPSS specification.

The application of the methodology has allowed the
Cerere project to achieve the following results:

1. the design of a set of business processes, protocols, and
reference architecture for the interoperability of infor-
mation systems in food supply chains;

2. the development of a software prototype that allows the
smart interconnection of such systems and the safe asyn-
chronous transfer of transaction data between busi-
nesses or other legal entities;

3. some pilot studies carried out in four real supply chains
corresponding to four different contexts: olive oil, wine,
bread-making, and vegetable.

In our methodological context, ebXML is used as the
reference specification to define and exchange business doc-
uments in the interoperability architecture. In particular, in
the Cerere project we decided to adopt the Hermes Mes-

sage Service Handler (MSH) [56], because of its full sup-
port to ebMS, message packaging and ordering,
reliability, error handling, security, synchronous reply,
message status service, and RDBMS persistent storage.
Another important feature is the employment of CPAs
among collaborating actors, required by our project and
provided by MSH. The business documents (including
the CPAs) involved in the Cerere framework are handled
by means of an open-source implementation of ebXML
Registry (the freebXML Registry-OMAR [57]). To edit
the ebXML documents, the freebXML BP visual editor
has been used [58]. To edit the specific context XML busi-
ness documents, a general-purpose visual XML editor has
been developed, with a lightweight Java applet web inter-
face. It is worth noticing that the use of a visual editor is
of fundamental help in the accessibility of the aforemen-
tioned documents, which determine the actual tuning of
the traceability platform used to execute simulations.

An important methodological step in the ebXML mod-
eling is the mapping between UML and XML entities. The
definition of the XML Schema documents exchanged via
Hermes MSH has been accomplished by conforming to
the following rule, coming from established best practices:
if UML objects and attributes are structured ones, or they
can assume a large set of values, then they are translated
into XML elements; otherwise, they are mapped onto
XML attributes. More specifically, the set of Cerere mes-
sages is composed of five XML document types concerning
the communication of the state transitions (acquisition, pro-

viding, and transformation) and the specification of new
instances of Lot and Activity. Fig. 13 shows the basic struc-
ture of three XML documents for acquisition, providing,

Fig. 12. A high level UML communication diagram of the interaction of two companies conducting e-business using ebXML.
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and transformation notification in a distributed setting (we
refer to the entities in Figs. 3 and 5). Since in a distributed
architecture the exchanged data amount must be kept as
small as possible, we can notice that the ebXML messages
just include the lot and actor identifiers.

Fig. 14 shows the fundamental elements of an XML
document instance of an Activity and a Lot. For the sake
of readability, the XML structures of quality features are
shown in Fig. 15, for numerical and categorical types,
respectively.

The simplified software infrastructure is shown in
Fig. 16, using a UML deployment diagram. It is worth pin-
pointing that the main component of the message switching
system (i.e., MSH) takes care of validating Cerere docu-
ments, as well as sending/receiving them over HTTP. Fur-
thermore, it provides error-handling facilities for a number
of situations that may arise in real life. The final customer
can access traceability information through a Web Inter-

face connected to the system backend and leveraging a
WS infrastructure. Whenever Process Collaboration is the
main goal, the MSH System provides the proper interac-
tion protocol among peers, according to a document-cen-
tric approach [59]. On the other hand, the access to
Business Information Services can be proficiently achieved
via WS, able to provide an efficient and lightweight RPC-
based interaction.

The architectural design process leads to a clear and
well-structured organization of the modules involved in
the traceability system. This has allowed addressing the
typical issues for this broad category of information sys-
tems. We would like also to underline that each specific
domain covered by actual traceability systems presents par-
ticular challenges in obtaining the required performance
level. In traceability systems, because of their typical asyn-
chronous nature, no strict Quality of Service requirement is
usually present for the interaction among actors in the

Fig. 13. Three simplified XML documents used for acquisition (a), providing (b), and transformation (c) notification.

Fig. 14. A simplified XML document instance of an activity (a) and a lot (b).
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supply chain. For this reason, performance is not the main
concern in the presented architecture. Nevertheless, partic-
ular attention must be paid to performance whenever sca-
lability becomes crucial to the system operation. The
overall design has been arranged to isolate potential perfor-
mance issues within a single component (namely, the

messaging module), so that possible required improve-
ments have to involve just the design, implementation
and configuration of the messaging subsystem. Although
XML processing for B2B documents has been recognized
as a computing-intensive activity [53,60], today the effi-
ciency improvements obtained by the employment of opti-

Fig. 15. An XML translation for numerical (a) and categorical (b) quality features.

Fig. 16. The simplified communication architecture for the Cerere system, shown by a UML deployment diagram.
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mized libraries for this kind of tasks can substantially mit-
igate potential performance problems from the XML-pro-
cessing modules.

9. Conclusions

Design and implementation of traceability systems need
preliminary investigations to point out problems and solu-
tions at different abstraction levels. The foundation for any
possible discussion about the development of this kind of
systems is represented by the adoption of a generic data
model for traceability. We have proposed such a model,
expressed using UML, describing its basic classes and the
patterns used to represent the lot behavior along the supply
chain.

In order to achieve data integration along the supply
chain for traceability purposes, a common, widely
accepted set of specifications for collaboration is required.
In this context, XML and SOAP can be surely regarded
as emerging enabling technologies. The plain help from
XML and SOAP is not sufficient to address all the seman-
tic aspects of each document exchange; document com-
munication and sharing among business partners should
be unambiguously modeled. A recently proposed standard
to provide semantics elements and properties necessary to
define business collaborations is ebXML: its employment
in the context of traceability has been discussed in this
paper. The goal of the ebXML specification is to provide
the bridge between e-business process modeling and spec-
ification of e-business software components. Business pro-
cess models describe interoperable business processes that
allow business partners to collaborate. The use of
ebXML-related solutions has been weighted up, taking
integration and interoperability requirements into
account. The evaluation of these standards has been dis-
cussed in the framework to the SOA paradigm.

Under the Cerere project, we have developed a proto-
type of a traceability system and a corresponding Web
Information System for the food supply chain, which is
able both to trace and to track product units and batches.
The system takes also information about product quality
into account. Such a system has been applied to four real
food supply chains, composed of a wide assortment of
small and medium enterprises. The participating enter-
prises play different roles in the supply chain and are char-
acterized by different levels in technological competence,
economic resources, and human skills. In this setting, the
ebXML technology has been successfully adopted to sup-
port collaboration among all the involved actors at differ-
ent stages of the supply chain. The supply chain
processes are defined by means of CPA documents and
messages are delivered to a data trustee repository using
ebXML mechanisms.

The benefits for the partners that have adopted the Cere-
re system can be summarized in the following aspects. First,
a significant reduction of the time and effort needed to exe-
cute every-day transactions, in terms of several person-

months per year. Second, a significant reduction in rate of
errors that are currently caused by replicated data entries
and manual interventions. Third, a reduced cost in the
adoption of e-business processes, since the Cerere system
has been made widely available and freely distributed.

Finally, we would like to point out important open prob-
lems, which are related to the automated negotiation pro-
cess. This process is controlled by the CPA, starts with the
negotiation of variables from two CPPs and moves upward
to the negotiation of application domain entities. In this con-
text, several difficulties have been experienced in automating
the definitions of business terms, conditions and parameters,
related to the agribusiness sector. In order to overcome these
difficulties, we have created a common XML vocabulary for
specific agribusiness documents, to embed specialized busi-
ness logic in a collection of business document templates.
In fact, generic ontologies (as UBL) are not directly usable
in the traceability domain, because they do not contain
domain-specific concept definitions. Thus, we realized that,
though traceability fundamentals are independent of types
of products, and production and control systems, the task
of building traceability ontologies is very time-expensive,
since it is partially composed of manual tasks performed
by skilled actors. To this aim, a methodology is currently
under development, and a validation procedure has been
planned, so as to make such methodology reusable as refer-
ence in different agribusiness contexts.
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