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a b s t r a c t

In this paper, we propose a new neural network architecture based on a family of referential multilayer

perceptrons (RMLPs) that play a role of generalized receptive fields. In contrast to ‘‘standard’’ radial

basis function (RBF) neural networks, the proposed topology of the network offers a considerable level

of flexibility as the resulting receptive fields are highly diversified and capable of adjusting themselves

to the characteristics of the locally available experimental data. We discuss in detail a design strategy of

the novel architecture that fully exploits the modeling capabilities of the contributing RMLPs. The

strategy comprises three phases. In the first phase, we form a ‘‘blueprint’’ of the network by employing a

specialized version of the commonly encountered fuzzy C-means (FCM) clustering algorithm, namely

the conditional (context-based) FCM. In this phase our intent is to generate a collection of information

granules (fuzzy sets) in the space of input and output variables, narrowed down to some certain

contexts. In the second phase, based upon a global view at the structure, we refine the input–output

relationships by engaging a collection of RMLPs where each RMLP is trained by using the subset of data

associated with the corresponding context fuzzy set. During training each receptive field focuses on the

characteristics of these locally available data and builds a nonlinear mapping in a referential mode.

Finally, the connections of the receptive fields are optimized through global minimization of the linear

aggregation unit located at the output layer of the overall architecture. We also include a series of

numeric experiments involving synthetic and real-world data sets which provide a thorough

comparative analysis with standard RBF neural networks.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

In information processing, the common idea of nonlinear
neural regression encompasses all data at once and concerns the
tuning of all parameters (connections) over the overall training
set, which is typically spread across the entire universe of
discourse. In general, this learning scheme is usually referred to
as global modeling [1]. The explosion of units needed for the
realization of more complex mappings leads to increasing
difficulties in modeling and, from the practical perspective, brings
a danger of inability to cope with highly nonlinear relationships.
On the contrary, the concept of receptive fields (RFs) is related to
local modeling, i.e., it relates to sub-models that focus predomi-
nantly on some selected regions of the entire modeling domain.
An overall model is then formed by combining such local models.

The most popular examples of architectures based on RFs are the
RBF (radial basis function) neural networks [2].

Very likely, RFs are the most prominent and ubiquitous
computational mechanism employed by biological information
processing systems [3]. For instance, visual, auditory and
somatosensory RFs provide local maps that are representations
of the corresponding sensory organs, and more complex RFs form
when features from several of these cortical maps combine [4,5].

From a regression analysis standpoint, RFs can be considered
as collections of units each related to a segment (namely receptive

area) of the target mapping (which could be conceptual rather
than metric) and globally connected to support further levels of
processing.

The novelty of the undertaken study relates to a way in which
such RFs are being formed and optimized. Instead of simple RBFs
used in RBF neural networks, in this paper we consider more
complex local RFs, namely referential multilayer perceptrons
(RMLPs). The MLP can be considered referential since it ‘‘com-
pares’’ the current input/output with the reference-prototypes
of the local receptive area. We show that this architectural
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development provides an effective way of designing nonlinear
mappings by offering an increased level of flexibility due to the
different complexities (possible number of neurons) that each RF
of this nature could have.

Experiments carried out for a synthetic data set and well-
known regression benchmarks show that the proposed architec-
ture achieves high accuracy values while exhibiting limited
complexity. Furthermore, we show that in all data sets, our
architecture outperforms RBFs.

The paper is organized as follows. In Section 2, we introduce
the neural networks based on RFs by describing the RBFs. Section
3 describes the proposed neural network architecture based on
RMLPs and in Section 4 we propose a design method for this
architecture. In Section 5, we discuss the experimental results.
Finally, Section 6 offers several conclusions.

2. RFs networks: a comparative insight

Traditional RFs focus on a ‘‘local’’ character of processing by
exploiting a collection of simple units and concentrating all
computation around them [6]. As a starting reference in this
study, let us consider a close relative of the proposed architecture,
namely RBF neural networks, which represent one of basis
categories of neural RFs [7]. Here, the topology of each RF is fixed
and a number of units, being highly circumstance dependent, are
needed to cope with complex mappings. Furthermore, the choice
of the form of these RFs is often critical to the successful
performance of the networks. A great deal of research has been
performed for different types of nonlinear functions so as to
replace classical RBFs in RBF architecture [8–13]. As a matter of
fact, it can be noticed how the shape of the resulting mapping is
determined by the shape of the single RFs. For instance, Gaussian
RBF (GRBF) units exhibit a very regular shape, say ellipsoidal or
circular, and evidently Gaussian RFs are of hyperellipsoidal shape.
The geometry of the field is determined by the class of the RFs
used in these networks.

In general, it is not always possible to find the best
approximation within a specified class of approximators, even
when the analytical expression of the function is given [14].

A central design issue in GRBF-based regression is the selection
of an appropriate dimension (number of units) for the representa-
tion. Another important design problem is concerned with a
suitable choice of parameters of each Gaussian RF. In a standard
GRBF network, the training consists of adjusting spreads and
centers, as well as weights of the output layer. RBF networks may
require a larger number of neurons than standard ‘‘global’’ MLPs
and in general they perform best when several training vectors are
available.

As it has been proven in [15], if the activation function in the
hidden layer is nonlinear, a three (input, hidden and output) layer
MLP is a universal approximator. In the MLP networks, where the
most frequently used activation function of the hidden layer is the
sigmoid, each neuron of the hidden layer can be associated with
the overall input domain. Indeed, when a weight between two
nodes is modified, for instance by the back-propagation (BP)
updating rule during the training phase, the effect involves an
infinite region of the input space and can affect large part of the
co-domain of the target function. On the contrary, in RBF
networks, while similar in terms of topological structure each
hidden neuron is associated with a convex closed region in the
input domain (receptive area), where its response is significantly
greater than zero, and dominates over every other neuron.
Changing the size of the region of the input space, in which the
activation function of a neuron in an RBF RF fires, or shifting its
position produce an effect local to the region dominated by that

neuron. In general, this locality property of the RBF allows the
network layout to be incrementally constructed adjusting the
existing neurons and/or adding new ones. Indeed, since any
parameter tuning that involves an RBF RF has a local effect, the
knowledge encoded in the other parts of the network is not lost;
hence, it is not necessary to go through a global revision process.
Furthermore, there is the possibility of providing a logic
interpretation of the hidden neuron semantics, as the closed
regions corresponding to neuron activation areas can be labeled
and interpreted as elementary concepts, to develop a logic-based
model of neurocomputing, cf. [16,17].

The knowledge needed to distribute RFs in the input space can
come from a designer-oriented data analysis or from some
preliminary analysis of available data.

In the first case, the RFs are formed based upon some
qualitative hints provided by the designer who distributes the
RFs in the input space according to her/his domain knowledge.
This allows focusing attention of the training mechanisms on
some essential regions of the input space. Such an orientation
could eventually lead to a multi-resolution (accuracy) character of
processing carried out by the neural network and accelerate the
learning itself. Along this line, some fuzzy systems emerge. In
particular, some interesting analogies between RBF neural net-
works and rule-based systems have been already discussed in
[18]. Here, the antecedents of the respective rules describing the
fuzzy model give rise to a so-called linguistic partition of the input
space. Depending on whether the output vector is involved in the
clustering process or not, there can be an input–output or an input
clustering [19,20]. Typically, the application domain is too
complex and the designer can provide no qualitative hint to
distribute RFs. Thus, the second approach to distribute RFs in the
input space has to be considered.

The original data set is analyzed with respect to its internal
topology by typically using clustering methods [19]. For instance,
in RBF networks, clustering techniques associate a cluster with
each RBF node in the hidden layer. In [21] the importance of the
initialization in the clustering algorithm for RBF networks was
studied, and then a new algorithm was proposed. Of course, the
results of the clustering algorithm directly affect the performance
of the RBF networks. In [22,23], performance achieved by different
clustering techniques, namely K-means [24], iterative optimiza-
tion (IO) [25], a technique based on depth first (DF) search [26],
two combinations of the previous techniques [27] (in the first
combination, named IODF, IO is applied to the odd iterations and
DF to the even iterations; in the second, named DFIO, DF is applied
to the odd iterations and IO to the even iterations), on-line
K-means [28] and optimal adaptive K-means [29], are compared.
These results indicate that no technique was clearly better than
the others. The best overall performances for the training,
validation and test subsets were obtained by the optimal adaptive
K-means (500 clusters), DF (400 clusters) and DFIO (400 clusters),
respectively.

The evident drawback that is commonly encountered across
the variety of the clustering methods utilized to determine the
distribution of RFs is that all of them are completely unsupervised
[2]. Actually, for this task, it would be extremely advantageous to
establish groups within the data ensuring that these are also
homogeneous with respect to the output variable. Conditional
clustering has proved to be an effective approach to achieve this
property of homogeneity [30]. In conditional clustering the
process of revealing the structure in the input space is conditioned
upon some linguistic landmarks defined in the output space.
These landmarks correspond to classes in classification problems
and to fuzzy sets which partition the output variable in regression
problems. Partitions of the output variable can be defined by the
user or, as in our approach, generated by applying a clustering
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algorithm to the output values. In conclusion, a limitation of the
use of simple RFs is that they tend to be memory intensive.

A different approach based on the aggregation of more
complex sub-models is represented by the broad class of modular
neural networks (MNs) [31–33]. The use of MNs allows capturing
the structure of an input–output mapping at intermediate levels
of granularity, in order to permit the formation of higher-order
computational units that can perform more complex, explicit and
interpretable tasks. From a technical perspective, although the
network presented in the next Section is not strictly based on MLP,
it could be treated also as a novel structure of MNs.

3. Architecture of the network

The proposed network topology based on RFs, as visualized in
Fig. 1 in the case of two-dimensional input space and mono-
dimensional output space, consists of two types of functional
blocks arranged in a two-layer architecture. The first functional
layer is formed by a collection of RFs (sub-models RF1,RF2,y,RFN),
whereas the second layer is a single unit (referred here as an
AGGREGATOR) whose role is to aggregate the values coming from
the RFs.

Each RF comes with its own prototype (shown as a black dot)
and its corresponding receptive area (gray region), in both input
and output spaces. A receptive area allows a RF to concentrate
(focus) in a certain sub-region of the overall domain, thus
realizing a computing of local nature.

Let us suppose that the receptive areas in the input space are
overlapped, as well as the corresponding segments in the output
space, and that any input x is included in two receptive areas, i.e.,
there are two RFs that contribute to compute the output value y

corresponding to x. In the following, let us denote as ‘‘context’’
each sub-region of the output domain.

The extraction of a context for each RF leads to split the
problem into sub-problems. This is done by a procedure guided by
the context constraints, i.e. fuzzy sets or fuzzy relations on the
output space (context variable). Furthermore, this process supplies
a set of prototypes, i.e. representatives in the input space. As
mentioned before, the computing realized at the level of the
individual RF is also referential, that is, the current input/output is
compared with the reference-prototypes of the local sub-region.
Finally, RFs are connected through the further processing phase,
the aggregation [17].

In Fig. 2, we show in more detail the architecture in Fig. 1, by
highlighting the implementation of each component. The MLPs,
that build a nonlinear mapping from <F to < and serve as core of
the generalized and highly heterogeneous RFs, are organized in P

groups, one for each context. The i-th group contains Ci MLPs, and
the j-th MLP holds the reference point ri;j 2 <

F , determined in the
input space for context i. For a given input x, for each group i,
module L( � ) performs a selection of the MLPs belonging to that
group by enabling to feed only the MLP

i;j
whose corresponding

reference point r
i;j

is the closest to the input x among all the
reference points ri;j. MLP

i;j
receives the difference between the

current input x and the corresponding r
i;j

as input. The output of
MLP

i;j
is shifted by the corresponding reference point vi 2 <,

determined in the output space, and then weighted by a certain
activation function fi( � ).

Each MLP is aimed at the mapping of an input receptive area,
whose prototype is the reference point ri;j, to a specific output
area, whose prototype is the reference point vi. Thus, the term
RMLP has been employed to denote an MLP inclusive of its own
references.

The role of fi( � ) is to activate (weight) the output of the neural
network, depending on the reference vi. The weighted outputs are
then processed by module O( � ), which acts as a filter by selecting
a pair of consecutive weighted outputs, on the basis of a specified
criterion. Finally, the linear node in the output layer produces a
linear combination of the selected outputs, with weights wi.

More specifically, the output value of the activation function
fi( � ) is defined as its input value multiplied by the contextualized
value of this input. Formally speaking, fið�Þ � ð�Þ � Fið�Þ, where ‘‘( � )’’
stands for the identity function and Fi( � ) for the ‘‘context’’
function, respectively. Using the context function, the output
of the RMLP narrows down to the range of values within the
field where it has been trained. Outside this range, the output of
the field is set to zero, because its processed value is not
meaningful.

Actually, contexts overlap in the output variable, and for each
input x to the system, only the outputs of two adjacent fields are
supposed to be meaningful (these fields are exactly selected by

ARTICLE IN PRESS

Fig. 1. A topology that employs generalized receptive fields. Fig. 2. An overall architecture of the network.

M.G.C.A. Cimino et al. / Neurocomputing 72 (2009) 2536–25482538



O( � ), as described below). Therefore, the context functions split
the output variable into overlapped bands as in Fig. 3, associating
with each output reference vi the triangular function Fi( � ), whose
core and support are {vi} and ½vi�1;viþ1�, respectively. Similarly,
the minimum and maximum of the output values are considered
as the modal values of corresponding triangular functions Fi( � )
and FP( � ), respectively. Here P is the number of contexts. We can
regard these contexts as a certain vehicle to decompose the
problem, by considering the output space (context variable) in
which a fuzzy condition can be derived, or expressed by terms
such as ‘‘low’’, ‘‘medium’’, ‘‘high’’, etc.

It is worth stressing that contexts could originate from
different sources. For instance, these fuzzy sets could come from
the user/designer who is interested in some particular relation-
ships, say ‘‘determine the sub-model M under the condition that
the output is linguistically expressed as some fuzzy set D’’. There
could be application-oriented needs which may call for models
that are focused on some specific requirement implied by the
problem itself. Say, we may be required to develop a model which
is oriented on high positive output values of the process.
Interestingly, in this way the context being imposed can help
handle issues of imbalanced (rare) data which we would be
interested in careful modeling. Note also that contexts are ordered
on the basis of references, and then there are pairs of adjacent

contexts, whose supplied values are combined to produce the
output of the system.

More specifically, let us now consider the selection module
O( � ) as shown in Fig. 2. It selects, among the P values associated
with the contexts, the two values which correspond to adjacent
contexts and are the closest to each other, setting the remaining
P�2 values to zero. To explain the rationale behind this module,
consider again the overall information flow in the architecture. For
a given input x, due to the local selectors, P RMLPs, one for each
context, supply a value in output, and these values are shaped
using the activation functions fi( � ). However, only the output
values of two RMLPs should be considered, i.e., the RMLPs whose
contexts contain that input. For instance, for the input correspond-
ing to yk in Fig. 3, only the two RMLPs corresponding to F2 and F3

should be considered. Each RMLP is trained by using only the
training patterns whose outputs belong to the context of the
RMLP and whose inputs are selected by L( � ). Thus, a given input
is proper only for two RFs, and improper for the other P�2. RFs are
trained to recognize just their proper inputs. However, for a given
improper input, an RF may supply a misleading output. For
instance, it may supply the O( � ) module with a value different
from zero, because the output value of the field may by chance
occur where its context function is not zero. Module O( � ) is,
therefore, needed to select only the two adjacent RFs for which
the inputs are proper, i.e., the two RFs that were trained to
recognize that input. This selection can be performed considering
that these RFs provide approximately the same output values for
the same proper inputs. Though there is still a minimal chance
that another improper RF may supply an output value similar to
the one supplied by a proper RF, we observed that this chance is
not relevant in practice.

In conclusion, the output of the overall system can be formally
expressed as

outiðxÞ ¼MLP
i;ĵ
ðx� r

i;ĵ
Þ þ vi;

yðxÞ ¼
XP

i¼1

O½outiðxÞ � FiðoutiðxÞÞ� �wi; (1)

with ĵ such that kx� r
i;ĵ
k is minimum, 1pjpCi.

It can be noticed, in Fig. 2, that the proposed architecture is
divided in two layers that are related to corresponding blocks in
the pattern of Fig. 1. In particular, the linear layer plays the role of
aggregator and the i-th RMLP, in conjunction with the activation
function fi( � ), plays the role of RF.

As it is evident from the description of the architecture, it
comes with a high level of flexibility which could be fully
exploited in its development.

4. The development of the network

As already stated, the development of the network comprises
several major phases. We start from building a skeleton (blue-
print) of the network and afterwards refine its parameters
through detailed parametric learning. The blueprint is formed
by using a conditional (context)-based clustering [17]. The
structure formed in this manner is optimized by training the
individual MLP neural networks and adjusting the weights of
the output linear aggregator. In the following, we elaborate on the
details of the construction by delineating the successive design
steps.

Let y ¼ f(x), with x 2 <F , be the unknown mapping to be
identified by using a set T of N input–output pairs ðxk; ykÞ, with
yk ¼ f ðxkÞ. Let X ¼ fx1; . . . ;xNg;xk 2 <

F , and Y ¼ fy1; . . . ; yNg; yk 2 <

be, respectively, the set of the inputs and the set of corresponding
outputs of the patterns contained in T.

4.1. Blueprint development

The blueprint development is realized as follows:

1. Find the representatives in the output space by using a
standard k-means clustering algorithm applied to the set Y

of training outputs. Let P�2 be the number of clusters,
and V ¼ fv2; . . . ;vP�1g;vi 2 <, the set of corresponding proto-
types.

2. Assume that v1 ¼ minðYÞ and vP ¼maxðYÞ. Partition the
output domain y with P triangular membership functions
Fi(y), denoted as context fuzzy sets, in the following way. The
core and support of FiðyÞ, i ¼ 1yP, are {vi} and ½vi�1;viþ1�,
respectively, with v0 ¼ ymin and vPþ1 ¼ ymax.

3. For each context fuzzy set Fi(y), apply the conditional fuzzy C-
means (CFCM) [17] to X, subject to the context Fi(y), so as to
derive a fuzzy partition of Ci clusters. Let ri;j 2 <

F ; 1pjpCi, be
the prototypes of these clusters. The value Ci might be pre-
fixed, or generated using a cluster validity index such as the
one introduced by Xie and Beni [34].

4.2. The parametric learning of the RFs

Let Xi;j be the subset of X which contains the input values that
belong to the cluster represented by ri;j with the highest
membership degree among all Ci clusters. Use the pairs
ðxk � ri;j; yk � viÞ, where xk 2 Xi;j and yk is the output correspond-
ing to xk, to train the MLP associated with Xi;j. The gradient
descend method used in the BP procedure adopts the following
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cost function (performance index):

MSEi;j ¼
1

jXi;jj
�
X

xk2Xi;j ;
yk2Yi;j

½MLPi;jðxk � ri;jÞ � ðyk � viÞ�
2, (2)

where ‘‘| � |’’ denotes the cardinality function. Note that the
network is trained using referenced target values, namely
yk � vi. Note also that the approximation of each MLPi;j concerns
solely the subset Xi;j of X.

4.3. The optimization of the linear neuron

Once the MLPs have been trained, the connections of the linear
combination, i.e., the parameters (weights) w ¼ {w1,y,wP} are
determined through the standard LSE optimization. More for-
mally, the linear system of N equations in P variables is
determined by choosing w that Q ¼

PN
k¼1ðỹk � ykÞ

2 attains
its minimal value, where ỹk ¼

PP
r¼1O½outiðxkÞ � FiðoutiðxkÞÞ� �wi ¼PP

i¼1sikwi. This minimization problem can be expressed as
min Q ðw1; . . . ;wPÞ ¼ min

PN
k¼1ð

PP
i¼1sikwi � ykÞ

2, whose solution is

w ¼ ðRTRÞ�1RTy; R ¼

s11 . . . s1N

. . . . . . . . .

sP1 . . . sPN

2
664

3
775,

y ¼

y1

. . .

yN

2
664

3
775; w ¼

w1

. . .

wP

2
664

3
775.

4.4. Further considerations on the structuring of the RMLP

Let us consider the dimensioning of the local RFs, which are
realized in terms of standard fully connected MLPs. In general,
structuring a single ‘‘centralized’’ MLP architecture requires
identifying the correct number of hidden nodes and the number
of layers [35,36]. Trial-and-error is the most practical method for
determining this value even if it is very time expensive.
Furthermore, the common BP technique is a local search
algorithm and thus tends to become trapped in local optima. To
solve this problem, a variety of approaches have been used [36],
which, however, require some domain knowledge to tackle the
necessary increase in the training complexity. Actually, as the
neural architecture becomes less complex, which is the case of
MLPs used as RFs in our approach, the BP algorithm is more likely
to be successful, and the most related issues practically disappear.
This corroborates the local modeling paradigm as fundamental
approach to cope with model complexity. In particular, good
generalization properties can be obtained using simple and well-
known standard rules-of-thumb for MLP structuring and training,
and employing the same criteria for all data sets. This means that
no domain knowledge is injected in RF architecture through
specific tuning processes. Then, a comparison with the RBF
architecture can be fair since in both systems no user parameter
is tuned on the training set, except the network size (i.e., the
number of units), which is scanned in both architectures.

A number of studies in the literature [37–39] indicate the
superiority of two hidden layered neural networks over one
hidden layered networks, with a finite number of hidden units, in
terms of mapping capabilities. In particular, it is useful to have
several units in the second hidden layer because they enable the
net to fit local critical points, and an MLP with two hidden layers
can often yield an accurate approximation with fewer connections
(weights) than an MLP with one hidden layer. In fact, it has been

experimentally verified that the same accuracy can be obtained
with RFs with both one and two hidden layers, but using, in case
of one hidden layer architecture, a number of parameters 4–5
times greater than in two hidden layer architecture. Further, one
of the parameters that influence the generalization capability of
networks is the complexity, closely related to number of weights
in the architecture [40]. Therefore, to ensure the use of the
minimum number of hidden units, it is useful to start from
training with a very small network, and growing the network by
adding a hidden unit until the gradient descent fails to find a
satisfactory solution. Not surprisingly, this process is very fast and
domain independent, due to the low complexity of RFs.

To fully evaluate the success of the proposed neural network
architecture with respect to RBF networks, we consider both
accuracy and complexity. Network complexity is commonly
measured by the Vapnik–Chervonenkis (VC) dimension [41].
Baum and Haussler [40] have shown that the VC dimension is
closely related to the number of weights (parameters) in the
architecture, and since the exact VC dimension is practically
impossible to calculate for complex networks, the number of
parameters (tunable real numbers) is used as an approximate
indicator of complexity in what follows.

Considering a fully connected MLP with N1 and N2 units in
the first and second hidden layer, respectively, as well as F (i.e. the
input space dimension) units in the input layer, and one (i.e. the
output space dimension) unit in the output layer, the total
number of parameters employed per MLP is

WMLP ¼ F � N1 þ ðN1 þ 1Þ � N2. (3)

In addition, for the proposed architecture (see Fig. 2), each RF
needs an input reference (i.e., F parameters). Furthermore, each
context needs an output reference (i.e., one parameter) and a
context triangular function (i.e. three parameters). Actually, the
triangular function is fully determined through the output
references, and thus it is not considered in parameter computa-
tion. Finally, the architecture employs a parameter in the linear
layer, per context. In conclusion, the number of parameters
needed per context is

WCONTEXTi
¼ ðN1 þ 1Þ � ðN2 þ FÞ � Ci þ 2. (4)

Considering C1,y,CP (number of MLPs per context), the total
number of parameters becomes

WMLP-SYSTEM ¼ 2P þ ðN1 þ 1Þ � ðN2 þ FÞ �
XP

i¼1

Ci. (5)

Note that, as the output dimension is just one, the contribution
of N1 in terms of number of parameters, i.e. N1 � N2 þ N1 � F, is
more relevant than the one of N2, i.e. N1 � N2 þ N2.

As regards the comparative architecture, in the learning
scheme, each RBF uses F parameters, i.e. the center coordinates
in the input space (as explained in the next section, we fix the
spread). In addition, the architecture employs a further parameter
in the linear layer. Finally, the number of parameters needed per
RBF is

WRBF ¼ F þ 1 (6)

and for the overall RBF system

WRBF-SYSTEM ¼ ðF þ 1Þ � P, (7)

respectively.
To show the effectiveness of the proposed system, giving also a

comparison with the RBF architecture, in the next section we
consider first an illustrative example and then a quantitative
analysis on a number of well-known data sets.
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5. Experimental studies

In this section, we report on a comprehensive suite of numeric
experiments. Our intent is to demonstrate the performance of the
network and contrast its capabilities with commonly encountered
RBF neural networks. Both some synthetic data and real-world
data are considered. In all experiments, the data are normalized
(by subtracting the mean value and dividing the data by their
standard deviation).

As regards RBF networks (RBFNs), two different learning
procedures are dominant in the literature. The static learning
procedure fixes a number of basis functions and learns by
modifying the parameters of the basis functions [42]. On the
other hand, the dynamic learning procedure also modifies
the number of basis functions, integrating the initialization
and the refining phases in an incremental learning algorithm
[43,44].

A static learning algorithm is parametric because the search for
the optimal approximator corresponds to a search in the
parameter space defined by the fixed number of RBFs. In absence
of domain knowledge, due to the high number of units needed,
training process for determining centers and spreads could be
ineffective. On the contrary, a dynamic learning algorithm
adaptively changes the parameter space in which it operates, by
adding (or deleting) RBFs, thus requiring a less precise domain
knowledge than a static learning algorithm. The dynamic
procedure used in the experiments determines incrementally
the number of radial units, iteratively adding a unit at each step.
The procedure starts with no neuron in the hidden layer. Hence,
the following steps are repeated until the SSE falls beneath an
error goal or a prefixed maximum number of units is reached
(in the limit, this might be one node per training pattern): (i) the
network is simulated; (ii) the input vector with the greatest error
is found; (iii) a RF is added with center equal to that vector; and
(iii) the output layer weights are recomputed, by solving a set of
linear equations, so as to minimize SSE. The dynamic method used
in the experiments is described in [44]. In particular, we used an
optimized implementation of the method (2005), which has been
included in The MathWorks MatlabTM v. 7 toolbox.

In the comparative (RBF-based) system, the spreads are fixed
to the (standard) value 1.0, as data are normalized. Obviously, it
could be helpful to use different spreads of the RFs. This, however,
requires further learning where knowledge injection is needed,
rather than a universal value of spreads. Also, both architectures
could have been better adjusted by exploiting domain knowledge
or proceeding with more advanced learning. However, the
experimentation has been carried out avoiding complex solutions
for both systems so as to reduce the possibility of customization,
i.e., the injection of some form of domain knowledge.

As regards MLPs used in the proposed system, we consider
N1 ¼ 5 and N2 ¼ 3 as maximum number of neurons being located
in the first and second hidden layers, respectively. These values
result from some preliminary experimentation, in which we have
observed that the performance of the MLP system is quite
independent of the size of the network and the distribution of
training data. Hence, in function (3), the maximum number of
parameters per RF is WMLP ¼ 5F þ 18. In the training of the
networks, we used a predefined number E ¼ 2000 of learning
epochs. We verified that these epochs are sufficient to arrive at the
point where no further relevant improvement of the performance
of the network is observable. The learning rate was equal to 0.05
which, albeit quite small, was helpful in assuring stable learning
and avoiding possible oscillations.

In the RBF architecture, complexity depends only on the
number of radial functions. In the MLP architecture, complexity
depends on three parameters: number of neurons employed

in the MLPs, number of contexts and numbers of fields per
context.

In order to obtain in both systems a similar number of
parameters, in the MLP system we have varied the number of
contexts, starting from the minimum possible value, i.e. three.
Also, for each context, we have determined the number of fields
by the Xie-Beni index. In general, other validity indexes could be
successfully employed [34]. However, the objective of this
experimental section is to demonstrate that, using standard
and common components, the MLP architecture outperforms the
RBF architecture, when the complexity is comparable. To have
the direct control of the number of parameters employed in the
MLP architecture, the user could fix a number of fields for each
context, thus avoiding the use of a validity index. However, we
experienced that the use of the Xie-Beni index is very helpful for
large and highly dimensional data sets. Though this index could
breed sub-optimal solutions, this is not relevant for the aims of
this study.

To compare the systems in the case of very low complexity, in
some trials we have also reduced the number of neurons for MLPs
(the same number for all MLPs in the system, for the sake of
simplicity) until N1 ¼ 2 and N2 ¼ 2. In any trial, the maximum
complexity for MLPs is, however, determined by the upper limit of
N1 ¼ 5 and N2 ¼ 3 mentioned above.

5.1. Synthetic data set

Let us consider a three-dimensional (i.e., the dimensionality F

of input space is equal to 2) synthetic data set consisting of 10,000
elements obtained by sampling a gray level image. Fig. 4a and b
shows the image and the data set, respectively. To perform an
early qualitative analysis with this pilot example, let us examine a
representative training scenario, using a common holdout method.
The training set, therefore, consists of two-third (66.66%) of the
available data, randomly extracted, while the remaining data
(33.34%) form the test set.

We applied the above-mentioned dynamic learning procedure
to determine the RBF network. The resulting network is composed
of 113 units, which correspond to 339 parameters.

Fig. 5 shows the output of the RBF system. The values of the
mean square error (MSE) obtained on the training and test sets are
0.0826 and 0.0850, respectively.

As regards the MLP architecture, to guarantee interpretability
and keep the number of parameters low, we employed four
contexts. Fig. 6 shows the output of our MLP system, using the
same training and test sets as for the RBF network. Also, the total
number of parameters is almost the same (338): just 11 RFs have
been used, with each RF having 30 parameters. Carrying out
20 trials under the same conditions, the MLP architecture
achieved an MSE (expressed as average7standard deviation) on
the training and test sets equals to 0.038470.0038 and
0.041570.0043, respectively.

We observe that though using a similar number of parameters,
the MSE of our system is considerably lower than the MSE of the
RBF network. These results are mainly due to the different
modeling capabilities of the two types of neural networks. As a
matter of fact, RFs implemented by MLPs are able to model more
complex shapes than RBFs.

Fig. 7 shows the four context fuzzy sets and the relative
frequency distribution of the output points, related to the same
trial of Fig. 4, using bold and normal lines, respectively. More
specifically, the abscissa value of the k-th point of the function is
yk, whereas the corresponding ordinate value is the number of
times that yk occurs in the training set. The ordinate values are
normalized, i.e., divided by the maximum value. Note that just
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four clusters in the output space are not enough to adequately fit
the data structure.

Fig. 8 shows clusters and reference points in the input space for
each context. In particular, each cluster is represented by a
different texture and each reference point by a numbered
rectangle. Note that there is a different number of RFs per context,
determined by using Xie-Beni index. The figure clearly shows the
local nature of each sub-model based on an RF. As the complexity
of each RF is kept low, too many RFs do not allow the system to
reflect a detailed mapping. At the same time, it becomes obvious
that one has to keep the number of parameters much lower than
the number of points in the data set. Thus, too many RFs do not
allow the system to realize an effective generalization and an
efficient training process.

In the next section, we consider a series of numeric experi-
ments involving a number of data sets, in order to provide a
thorough comparative analysis. Since a single evaluation is
dependent on the data points, which end up in the training and
test sets, we adopted a 10-fold cross-validation. For each trial, the

training and test sets consist, respectively, of randomly extracted
90% and 10% of the original data.

The comparison between RBF and MLP architecture is made
using the same fold cross sections, for increasing number of RFs
(parameters). The analysis has been performed up to a reasonable
number of parameters, on the basis of the following well-known
rule-of-thumb for machine learning systems: the ratio between
number of parameters employed in the system and number of
observations should be considerably lower than the desired MSE.

5.2. Real-world data

We consider a suite of real data coming from publicly available
and well-documented web sites (Bilkent, http://funapp.cs.
bilkent.edu.tr/DataSets/; UCI, http://www.ics.uci.edu/�mlearn/
MLSummary.html). Table 1 characterizes these data in terms of
the dimensionality of the problems as well as the size of the data
sets (the first line in the table describes the synthetic data set
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Fig. 4. The synthetic data set (b), sampled from a gray level image (a).

Fig. 5. Output of the RBF system.

Fig. 6. Output of the MLP system.
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discussed in Section 5.1). Our intent is to consider problems of
higher dimensionality than those typically used in other studies.
Furthermore, in order to provide a clear insight into the
dimensionality of the MLPs and the RBFs, we report the maximum

number of the parameters of a single MLP unit and the number of
parameters of a single RBF unit.

Note that, to solve scalability problems (which are detailed
below in this Section) in the system routine used to generate the
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Fig. 7. Context fuzzy sets and relative frequency of the output points.

Fig. 8. Clusters and reference points in the input space for each context.

Table 1
Data sets dimensions and max receptive field complexity.

Data set name Dimensionality of

input space (F)

Number of data (N) Max number of parameters

per MLP unit (WMLP)

Number of parameters

per RBF unit (WRBF)

Synthetic 2 10,000 30 3

Abalone 6 4177 54 7

Ailerons 38 7154 246 39

Kinematics 8 8192 66 9

Computer activity 21 8192 144 22

House_16H 15 11,392 108 16
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RBF architecture, we used only 50% (randomly extracted) of the
original data for the House_16H data set.

The performances of the resulting architectures on these data
sets are represented in Fig. 9. For each data set, the resulting
values of the average MSEs versus the number of parameters are
jointly plotted for both MLP (squares in the figure) and RBF
(circles in the figure) architectures, thus providing a useful
comparative insight. For a given number of parameters, the
average MSE is evaluated for both the training (black) and test
(white) sets.

The networks based on MLPs as RFs demonstrate an evident
superiority when compared with the RBF neural networks; this
superiority manifests itself both in training and testing phases
thus highlighting the generalization properties of our approach.
Obviously, both architectures could be improved by exploiting
domain knowledge or using a more accurate learning. For
example, in the RBF network it could be helpful to use different

spreads of the RFs. This, however, would have required further
learning where knowledge injection is needed.

Let us examine more precisely the series of data sets used,
starting from the synthetic data set (Fig. 9a). Although Gaussian
functions should excellently fit smoothed shapes generated by
sampling synthetic functions, the MLP RFs outperform the RBF-
based architecture. In the case in point, both systems reveal no
overfitting problem, having almost the same error on training and
test sets. The lowest average MSE (0.0182 using 636 parameters)
obtained by the proposed system on test set is almost four times
lower than the lowest average MSE (0.07 with exactly the same
number of parameters) obtained by the RBF network.

In Abalone data set (Fig. 9b) the nominal attribute has been
removed, as usual for non-metric variables. Both systems reveal
some difficulties in improving their accuracy and their general-
ization capabilities, for increasing numbers of parameters. This
could be ascribed to some overfitting problem. Despite this, the
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Fig. 9. Average MSE versus number of parameters, for RBF systems on training (K) and testing sets (J), and for MLP systems on training (’) and testing sets (&):

(a) synthetic data set; (b) Abalone data set; (c) Ailerons data set; (d) kinematics data set; (e) computer activity data set; and (f) House_16H data set.
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proposed architecture shows better generalization capabilities,
and further the lowest average MSE (i.e. 0.435, with 87
parameters) is lower than the lowest average MSE of the
comparative RBF architecture (i.e. 0.45, with 168 parameters).

On Ailerons data set (Fig. 9c), where two attributes have been
removed because they are constant, the difference between the
lowest average MSEs of the two approaches is evident, 0.162 for
the MLP architecture versus 0.873 for the RBF architecture.

On kinematics data set (Fig. 9d), different modeling capabil-
ities of the two approaches are even more pronounced: the lowest
average MSEs on test set are 0.129 for the MLP architecture with
732 parameters and 0.32 with 768 parameters for the RBF
architecture, respectively.

On some data sets, as Abalone and computer activity data sets
(Fig. 9e), the trend of the MLP system shows some ripple. This can
be ascribed to the variance of the learning process that, however,
has been verified to be negligible with respect to the differences
between the performance levels of both architectures. In the latter
data set, the lowest average MSEs are 0.297 (with 282 parameters)
and 0.542 (with 1254 parameters), for the MLP and the RBF
architectures, respectively, confirming the trend on both accuracy
and generalization characteristics. Lastly, on House_16H data set
(Fig. 9) the MLP architecture (with the lowest average MSE of
0.467 using 690 parameters) outperforms the comparative
architecture (with the lowest average MSE of 0.6 with 1152
parameters).

Furthermore, the MLP learning algorithm is more scalable than
the RBF. Indeed, the receptive areas are constructed using a
clustering process that concerns just a mono-dimensional space
(the output space), and a modularized (context-based) clustering
that involves a local computation (input space). Also, each MLP is
trained on a subset of the training data, with bounded complexity,
thanks to the local nature of the process. Thus, each MLP is trained
in a comparatively short computing time, since the BP process is
directly proportional to the number of hidden units, the number
of hidden layers and the number of training points. In the dynamic
learning process used for the RBF architecture, the most complex
task is the center selection [7]. The key question is how to select
centers appropriately from the data set. This implies to calculate
the individual contribution to the desired output by each basis
vector. In general, the number of all the candidate bases can be
very large and an adequate selection procedure involves a global
computation with huge memory and time requirements. Though
the training of the RBF architecture is fast for a limited number of
units, it becomes very low and ineffective for increasing complex-
ity. On the contrary, the memory and time required for training
the MLP architecture scale quite well, considering that a few RFs
(that might be trained in parallel) are involved.

Fig. 10 shows the result of a computing time analysis,
performed on House_16H data, applying a holdout method in
which the training set consists of 90% of the available data. Here,
the resulting values of the training time versus the number of
parameters are jointly plotted for both MLP (black squares) and
RBF (black circles) architectures, thus providing a useful com-
parative insight. Furthermore, for each number of parameters
considered, the related number of RFs is also shown in the graph.

The software and hardware platforms are characterized as
follows. The used computing framework is The MathWorks

MatlabTM v. 7; the installed operating system is Microsoft Windows

XPTM Professional; the employed CPU is Intel PentiumTM IV, with a
clock of 3.20 GHz, a memory cache L1 of 16 KB (data) and 12 K
(instructions), a memory cache L2 of 1 MB, and a RAM of 2.00 GB.

As expected, the time increases with the increase of the
number of parameters in both training procedures. Note, however,
how the MLP architecture requires a shorter training time than
the RBF architecture. Further, at least for the reasonable number of

parameters taken into account, the MLP architecture is character-
ized by a higher scalability over networks of growing complexity.

Lastly, the memory requirements in the training phases of MLP
and RBF architectures differ for orders of magnitude: about
30–35 MB (MLP system) versus 1.6–1.7 GB (RBF system). This
further leads us to appreciate the scalability of the proposed
architecture.

In order to provide a formal description of the complexity of
each approach, let us consider the asymptotic computational cost,
which can be formulated considering the major phases of the
development of the networks. In particular, for the MLP system,
the blueprint development (Section 4.1) is realized using a
standard K-means clustering algorithm applied to the set Y of
training outputs, and a CFCM to the set X of training inputs.

As the K-means clustering algorithm is concerned, the
asymptotic complexity is YðN � P � LÞ [45], where N is the number
of patterns, P is the number of clusters, and L is the number of
iterations taken by the algorithm to converge. Typically, L is fixed
in advance, and then the algorithm has a linear time complexity in
the size of the data set and in the number of clusters. As regards
the clustering phase, in the case of the classic FCM (fuzzy
C-means), the asymptotic complexity is YðN � C2

� FÞ [17], where C

is the number of clusters and F is the input space dimension.
Considering the CFCM algorithm, the asymptotic computational
cost of a single iteration is the same as in the case of the FCM
algorithm. The advantage is that the algorithm is applied to
subsets of the data set. For the sake of simplicity, let us assume
that the data set is split into P subsets (each of N/P points) by the
fuzzy partition, and that each of them is partitioned into C/P
clusters [46]. Then C represents also the total number of RFs in the
system. Hence, the asymptotic complexity of this phase is
YðN=P � ðC=PÞ2 � FÞ, considering that the P conditional clustering
processes are independent, and then they can be performed in
parallel.

Second, we consider the parametric learning of the RFs, which
comprises a classical BP procedure over a subset of N/P points. The
BP process is directly proportional to the number of input neurons
(F), the number of hidden units and the number of hidden layers
(both fixed), and to the number of training points (N/P). Hence, the
learning of each RF costs YðN=P � FÞ [47]. Finally, we consider the
LSE optimization, which mainly involves multiplication and
inversion of matrices (due to the term ðSTSÞ�1), i.e., a complexity
YðPN2

þ N3
Þ [48].
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Fig. 10. Total training time versus number of parameters, for RBF systems (K) and

MLP systems (’).
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As regards the dynamic RBF network, the major cost terms are
represented by (i) the global search for the location of next radial
basis, i.e. YðN � F � Q Þ, and (ii) the LSE optimization YðQN2

þ N3
Þ,

where Q is the number of RFs. Then we can conclude that, the
asymptotic computational costs of the considered algorithms are:

MLP system : ½YðN � PÞ þYðN=P � ðC=PÞ2 � FÞ

þYðN=P � FÞ�YðPN2
þ N3
Þ, (8)

RBF system : ½YðN � Q � FÞ� þYðQN2
þ N3
Þ. (9)

Note, first, that P in (8), i.e. number of contexts, is much smaller
than Q in (9), i.e. number of RFs. Also, note that the output matrix
S is sparse in (8) (each column of the matrix has just two non-
zero elements), and then both the product and the inversion
matrices are actually less expensive in (8) than in (9), considering
both temporal and spatial (memory) criteria. Furthermore, it can
be observed that in (8) the term C/P is usually of order 1, and then,
the major terms are NF/P and NFQ in (8) and (9), respectively. This
reveals the better scalability of the proposed systems in terms of N

and F.

5.3. Conceptual and spatial criteria in RFs networks

In the proposed model, the use of RFs relies on the decom-
position of the input space into sub-regions on the basis of context
constraints. This allows global partitioning guided by conceptual
criteria, rather than metric ones. However, the RF (MLP) training
in each local model is still based on spatial criteria between
patterns. To apply this strategy implies obviously that a ‘‘global’’
conceptual criterion and a spatial (i.e., Euclidean) distance
between ‘‘local’’ patterns have to be pertinent. Actually, this could
not be the case for all the tasks. For example, how a dynamic or
noisy function could be globally and locally split with conceptual
and spatial criteria, respectively? We can assume that more
complex criteria could be more pertinent in such cases. This
problem is somewhat present also in dynamic RBF networks. A
theoretical investigation needs to be done for this purpose.

To practically illustrate this concept, let us consider the
Mackey–Glass (MG) time series. In this case, partitioning of the
input space should be performed by using measures different
from classical Euclidean spatial distance, as for instance those
proposed in [49,50] for RBF networks.

The time series used in the experiments is generated by the
chaotic MG differential delay equation (available on http://
www.cse.ogi.edu/�ericwan/data.html). In particular, the genera-
tion of the series is characterized by a delay parameter t, usually
set to 17 (MG-17 series) or 30 (MG-30 series), which determines
the level of chaos, i.e. unpredictability, of the model. It is known,
however, that the MG-17 is at the borderline of chaos, as the MG
series becomes chaotic if t416.8. To stress the approximation
capabilities of the compared systems we used the less common
MG-30 series, shown in Fig. 11, with 1500 samples.

As usual in the literature, in order to tackle the problem with
spatial criteria, the data are represented in a four-dimensional
space where each sample sn of the series is predicted using four

past samples [51]. More specifically, the input and output patterns
are constructed using the following feature extraction procedure:

xn ¼ fsn�n; sn�n�6; sn�n�12; sn�n�18g,

yn ¼ sn, (10)

with the parameter n ¼ 1 (step-ahead).
In this five-dimensional representation, the training set is

composed of the first 90% (i.e., 1350 samples) of the data, and then
the test set is formed by the remaining 10% (i.e., 150) of samples.

Fig. 12 shows the results of the experiments. As regards the
MLP architecture, performances refer to the average MSE value
over 10 trials carried out under the same conditions. Note that in
this case the compared systems have quite similar performances
in terms of function approximation properties. The results are not
particularly good both for the classical RBF network and for our
neural architecture. On the other hand, both networks have not
been designed for solving these types of problems. Indeed, both
networks adopt spatial criteria, in training or positioning RFs,
which are not appropriate to time series domains.

Furthermore, the proposed system has been tested in case of
noise. Noise affects the task of decomposition in sub-tasks, as well
as the local training of each RF. In both architectures, the presence
of noise can be tackled only by using specific techniques in
clustering and learning processes, depending of the kind of noise.

In order to test the robustness of the system in presence of
noisy data, we added Gaussian noise to each pattern of the
training set in the time series, keeping the test set noiseless to
measure the true prediction error [52]. In particular, the signal to
noise ratio (SNR) has been kept low multiplying the generated
noise by a constant normalization factor, determined as
0:05 � jmaxnðsnÞ �minnðsnÞj, i.e., we considered the 5% of the
maximum magnitude of the signal.
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Fig. 11. The Mackey–Glass time series, with t ¼ 30.

Fig. 12. Mackey–Glass time series, average MSE versus number of parameters, for

RBF systems on training (K) and test sets (J), and for MLP systems on training

(’) and test sets (&).
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Fig. 13 shows the results of the experiments. Here, we can
observe that our architecture suffers from overtraining: when the
number of parameters increases, the MLP tends to specialize itself
too much on the noisy training patterns, loosing its generalization
capability. On the other hand, MLPs allow a higher modeling
capability than classical RBFs. This is proved by the continuous
decrease of the error on the training with the increase of the
number of parameters.

5.4. A comparative study with other regression methods

In the previous sections we have discussed the main features
and limitations of the proposed paradigm, through a comparison
with its counterpart, the RBF neural network. In this section, to
show the performance of our regression approach in absolute
terms, we compare the performance achieved by our architecture
with the selection of regression paradigms discussed in [53]. Here,
regression tree induction (DART), instance-based (KNN) learning,
rule-based learning (RPFP, RULE) spline-based and partitioning
regression (MARS) methodologies are compared with each other
by applying a 10-fold cross validation. Most of these methods have
been recently developed and outperform earlier algorithms (see
[53] for an extensive discussion). Table 2 shows the best average
accuracies achieved on Abalone, Plastic and Fat data sets (Publicly
available at the Function Approximation Repository of the Bilkent
University (http://funapp.cs.bilkent.edu.tr/DataSets/)). The accu-
racy is measured by using the relative error (RE), i.e., the mean
absolute distance normalized by the mean absolute distance from
the median:

RE ¼

PN
1 joutk � ykjPN

1 jyk �medianðyÞj
, (11)

where N is the number of points in the testing set, yk and outk are
the desired and produced outputs for the k-th input, respectively.
This error index was used in [53]. In this subsection, we resorted
to this index so as to have the possibility to compare our approach
with the regression techniques discussed in [53].

The results show clearly that our approach (viz. MLP RF)
outperforms other models in terms of the RE.

6. Conclusions

The concept of receptive fields is the most prominent and
ubiquitous conceptual and computational mechanism employed
by biological information processing systems. In automated
information processing, it is related to an architectural style
consisting of a collection of local sub-models that realize some
local mappings on some selected regions of the entire modeling
domain. Local sub-models are then connected on further levels of
processing so as to realize a global mapping. RBF neural networks
realize a local character of processing, one of the most used in the
literature, as focused on receptive fields. In this study, the use of
more complex local receptive fields, precisely RMLPs, has been
proposed as a more general and effective way of designing
nonlinear mappings. The parametric flexibility of such generalized
receptive fields provides a better ability of modeling complex
relationships with a lower number of parameters, even when
using standard training procedures. A comparative analysis
completed for a number of data sets between the standard RBF
network and the new proposed architecture has highlighted how
the latter outperforms the former both in terms of accuracy and
learning time. Further, we have also shown for three commonly
exploited data sets that our approach generates models which are
more accurate than the ones produced by well-known regression
techniques.
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[52] K.-R. Müller, A.J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, V.N. Vapnik,
Predicting time series with support vector machines, in: W. Gerstner, A. Germond,
M. Hasler, J.-D. Nicoud (Eds.), Artificial Neural Networks, Lecture Notes in
Computer Science, ICANN’97, vol. 1327, Springer, Berlin, 1997, pp. 999–1004.
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