
LABORATORIO ELETTRONICA DIGITALE:	03_09	Data:	30/06/2009
Nome_		Esito:	
Tempo a disposizione: 1 ora			

TEMA

Si consideri la porta NAND realizzata in tecnologia bipolare "ED", il cui schema elettrico è riportato nella figura più in basso. Si richiede di completare la scheda con i risultati ottenuti dalle opportune simulazioni effettuate.

a. Analisi statica a vuoto: si faccia variare l'ingresso A, mantenendo l'ingresso B sul livello neutro della porta. Si valuti la potenza dissipata staticamente *PDS* e le correnti *I_{IL}*, *I_{IH}* considerando 0.4 V e 5 V come livelli rispettivamente basso e alto in ingresso.

b. Analisi statica a carico: si valuti il FAN—OUT della porta, garantendo un margine di rumore residuo pari a 0.5 V. Si considerino in ingresso alla porta pilota i livelli elettrici 0.4 V e 5 V e si modelli l'ingresso delle porte pilotate con un generatore di corrente di valore *I*_{IL} e *I*_{IH} sul livello basso e su quello alto, rispettivamente.

FAN-OUT	
·	

c. Analisi dinamica: valutare i tempi di transizione dell'uscita dal livello alto a quello basso e viceversa, t_{HL} e t_{LH} . Si colleghi una capacità $C_L = 0.5$ pF in uscita e si faccia variare il segnale d'ingresso A tra 0.4 V e 5 V con tempi di salita e discesa uguali e pari a 1 ns, mantenendo l'altro ingresso sul livello neutro della porta.

$t_{HL} (C_L = 0.5 \text{ pF})$	
$t_{LH} (C_L = 0.5 \text{ pF})$	

d. Dimensionare le resistenze R_1 e R_2 , mantenendo la loro somma costante e pari a 5 k Ω , in modo tale che il FAN-OUT, valutato come al punto b, risulti uguale a 20.