SISTEMI EMBEDDED
AA 2012/2013

Software Exceptions and
Hardware Interrupts

Example of a Nios Il System

SDRAM
Memory

JTAG connection
to software debugger

Flash
Memory

SRAM
Memory

JTAG o ©
— Debug Module
(—————
» TXD
| - s <— RXD
Nios I
Processor Core
-— , Timer1
o
L
S = Timer2
SDRAM - ° me
Controller o
£ |4=p| LCD Display Driver |emp —
= Screen
On-Chip ROM —_— 2
Buttons,
& |4 General-Purpose |/O | iy LEDs, etc.
Tristate bridge to Ethernet
A - =P Ethernet Interface | <l MAC/PHY
s ssssssSs L]
1 External Interrupt 1 CompactFlash Compact
! Controller Interface “ Flash

Nios || Processor Core Architecture

Nios Il Processor Core
General Tightly Coupled
reset Program Purpose ¢ Instruction Memory
dock g Con’goller Registers -
Cpu_resetrequest Address Control Instruction .
< CPu resetiaken Generation Registers Cache .
Tightly Coupled
JTAG = :
. Instruction Memory
interface JTAG _ Shadow
to software “®=| Debug Module Exception Register _
debugger Controller Sets = |nstruction Bus
Internal
- Interrupt
a1 ol Controller
Instruction Memory
eic_port_data[44..0] External Regions Management
" _ > Interrupt Unit
gic_port_valid > Controller I'uht}mc:u_r)-r
Interface Prote(;llon
Unit Translation
Lookaside
Data Buffer
Regions <—P Data Bus
Tightly Coupled
CTf[;Dm | C”Stof"' — Data Memory
Signals | | T cton Arithmetic Data -
09 Logic Unit Cache .
L]
g Tightly Coupled
Data Memory
Required Optional
Module Module

Reset signals

resat

Reset

This is a global hardware reset signal that forces the processor core to reset
immediately.

cpu_resetrequest

Reset

This is an optional, local reset signal that causes the processor to reset without
affecting other components in the Nios 1l system. The processor finishes executing any
instructions in the pipeline, and then enters the reset state. This process can take
several clock cycles, so be sure to continue asserting the cpu resetrequest signal
until the processor core asserts a cpu resettaken signal.

The processor core asserts a cpu_resettaken signal for 1 cycle when the reset is
complete and then periodically if cpu_resetrequest remains asserted. The processor
remains in the reset state for as long as cpu resetrequest is asserted. While the
processor is in the reset state, it periodically reads from the reset address. It discards
the result of the read, and remains in the reset state.

The processor does not respond to cpu resetrequest when the processor is under
the control of the JTAG debug module, that is, when the processor is paused. The
processor responds to the cpu resetrequest signal if the signal is asserted when
the JTAG debug module relinquishes control, both momentarily during each single step
as well as when you resume execution.

Exceptions and Interrupts

* Exception: a transfer of control away from a
program’s normal flow of execution, caused by
an event, either internal or external to the
processor, which requires immediate attention

. an exception caused by an explicit
request signal from an external device
(hardware/interrupt exception)

Exception types (1)

* Reset exception: occurs when the Nios |l
processor is reset. Control is transferred to the
reset address specified when generating the
Nios |l processor core

* Break exception: occurs when the JTAG debug
module requests control. Control is
transferred to the break address specified
when generating the Nios |l processor core

Exception types (2)

* Instruction-related exception: occurs when
any of several internal conditions occurs.
Control is transferred to the general exception
address specified when generating the Nios I
processor core (Software exception)

: occurs when a peripheral
device signals a condition requiring service.
Control is transferred to the general exception
address

Break exceptions

e A is a transfer of control away from a
program’s normal flow of execution for the
purpose of debugging

e Software debugging tools can take control of the
Nios Il processor via the JTAG debug module to
implement debug and diagnostic features, such
as breakpoints and watchpoints

 The processor enters the break processing state
under one of the following conditions:

— The processor executes the break instruction
(software break)

— The JTAG debug module asserts a hardware break

Instruction-related exceptions

e Occur during execution of Nios Il instructions

— Trap instruction: software-invoked exception.
Useful to “call” OS services without knowing the
routine run-time addresses

— Break Instruction
— Illegal instruction
— Unimplemented instruction

— Division error

Interrupt exceptions

* A peripheral device can request an interrupt
by asserting an interrupt request (IRQ) signal.
IRQs interact with the Nios Il processor
through an interrupt controller

 The Nios Il processor can be configured with
either of the following interrupt controller
options:

— The internal interrupt controller

— The external interrupt controller interface

Some definitions

* Exception latency: the time elapsed
between the event that causes the exception
and the

execution of the first instruction at the handler
address

* Exception response time: the time
elapsed between the event that causes the
exception and

the execution of non-overhead exception code,
which is specific to the exception type

Internal interrupt controller

* Non-vectored exception controller to handle
all exception types

* Each exception, including hardware interrupts
(IRQ31-0), causes the processor to transfer
execution to the same general exception
address

* An exception handler at this address
determines the cause of the exception and
dispatches an appropriate exception routine

External interrupt controller interface (1)

e External Interrupt Controller (EIC) can be used to
shorten exception response time

* EIC can monitor and prioritize IRQ signals and
determine which interrupt to present to the Nios Il
processor. An EIC can be software-configurable

* When an IRQ is asserted, the EIC provides the following
data to the Nios Il processor:

— The requested interrupt level (RIL); the interrupt is taken
only when the RIL is greater than the IL field (6-bit) in the
status register

— The requested register set (RRS)
— Requested nonmaskable interrupt (RNMI) mode

External interrupt controller interface (2)

* Requested register set is one of the
implemented shadow register sets

— This way the context switch overhead is
eliminated (useful for high-critical interrupts)

— Less critical interrupts can share the same shadow
register set
* No problem if interrupt pre-emption cannot occur

among these interrupts
— Same priority level or nested interrupts are disabled

e Otherwise the ISR must save its register set on entry
and restore it on exit

External interrupt controller interface (3)

 The Nios Il processor EIC interface connects to a single
EIC, but an EIC can support a daisy-chained
configuration

 Multiple EICs can monitor and prioritize interrupts

 The EIC directly connected to the processor presents
the processor with the highest-priority interrupt from
all EICs in the daisy chain

* An EIC component can support an arbitrary level of
daisy-chaining, potentially allowing the Nios Il
processor to handle an arbitrary number of prioritized
interrupts

Nios Il registers (1)

* General-purpose registers (r0-r31)

Register Name Function
r20 Callee-saved register
r21 Callee-saved register
r22 Callee-saved register
r23 Callee-saved register
r24 et Exception temporary
r25 bt Breakpoint temporary (7)
r26 ap Global pointer
r27 sp Stack pointer
r28 fp Frame pointer
r29 ea Exception return address
r30 ba Breakpoint return address (2)
ril ra Return address

Nios Il registers (2)

* Control registers

Register

status

Register Contents
Refer to Table 3—7 on page 3—12

1 estatus Refer to Table 3-9 on page 3—14
2 bstatus Refer to Table 3—10 on page 3—-15
3 ienable Internal interrupt-enable bits (3)
4

ipending Pending internal interrupt bits (3)

5 cpuid Unique processor identifier

6 Reserved Reserved

7 exception Refer to Table 3—12 on page 3—-16
8 pteaddr (1) Refer to Table 3—13 on page 3—16
9 tlbacc (1) Refer to Table 3—15 on page 3—17
10 tlbmisc (1) Refer to Table 3—17 on page 318
11 Reserved Reserved

12 badaddr Refer to Table 3—19 on page 3-21
13 config (2) Refer to Table 3—21 on page 3-21
14 mpubase (2) Refer to Table 3—23 on page 3—-22
15 mpuacc (2) Refer to Table 3—25 on page 3-23
16-31 Reserved Reserved

Status register (1)

31 (30|29 |28 |27 | 26|25 (24|23 |22 |21 |20 |19 |18 |17 |16 |15 (14 |13 |12 |11 |10| 9 (8 |7 | 6 |5 | 4|3 |2 0
il | rl
Reserved & 3 PRS CRS IL T 5
Bit Description Access Reset | Availahle
EIC
RSIE is the register set interrupt-enahble bit. When set to 1, this bit allows interface
S the processor to service external mtqrrupts_requestlng the_ register set that Read/\Write " andshadow
is currently in use. When set to 0, this bit disallows servicing of such register
interrupts. sets
only (4)
NMI is the nonmaskable interrupt mode bit. The processor sets NMI to 1 . EIC
NMI . : ' Read 0 interface
when it takes a nonmaskable interrupt.
only (3)
DRS is the previous register set field. The processor copies the CRs field to
the PR field upon one of the following events:
m [na processor with no MMU, on any exception
m Ina processor with an MMU, on one of the following:
m Break exception
m Nonbreak exception when status.EH IS zero
The processor copies CRS to PRS immediately after copying the status Shadow
PRS register to estatus, bstatus 0Or sstatus. Read/Write 0 regliter
The number of significant bits in the crs and PRs fields depends on the Sets
number of shadow register sets implemented in the Nios Il core. The value only (3)
of CrS and PRS can range from 0 to n-1, where n is the number of
implemented register sets. The processor core implements the number of
significant bits needed to represent n-1. Unused high-order bits are always
read as 0, and must be written as 0.
| Ensure that system software writes only valid register set numbers to
the PRs field. Processor behavior is undefined with an unimplemented
register set number.

Status register (2)

Bit Description Access Reset | Available
CRS is the current register set field. CRS indicates which register set is
currently in use. Register set 0 is the normal register set, while register sets
1 and higher are shadow register sets. The processor sets CRS to zero on Sha_dow
CRS any noninterrupt exception. Read (1) 0 reg;itser
The number of significant bits in the CrRS and PRS fields depends on the only (3)
number of shadow register sets implemented in the Nios Il core. Unused
high-order bits are always read as 0, and must be written as 0.
IL is the interrupt level field. The IL field controls what level of external EIC
IL maskable interrupts can be serviced. The processor services a maskable Read/Write 0 interface
interrupt only if its requested interrupt level is greater than IL. only (3)
IH is the interrupt handler mode bit. The processor sets IH to one when it : : Elc
IH : Read/Write 0 interface
takes an external interrupt.
only (3)
EH is the exception handler mode bit. The processor sets EH to one when an
exception occurs (including breaks). Software clears EH to zero when ready VMU
EH (2) |to handle exceptions again. EH is used by the MMU to determine whethera | Read/Write 0 only (3)
TLB miss exception is a fast TLB miss or a double TLB miss. In systems y
without an MMU, EH is always zero.
U is the user mode bit. When U = 1, the processor operates in user mode. MMU or
U (2) When U =0, the processor operates in supervisor mode. In systems without | Read/Write 0 MPU
an MMU, U is always zero. only (3)
PIE is the processor interrupt-enable bit. When PIE =0, internal and
maskable external interrupts and noninterrupt exceptions are ignored.
PIE When PIE =1, internal and maskable external interrupts can be taken, Read/Write 0 Always

depending on the status of the interrupt controller. Noninterrupt exceptions
are unaffected by PIE.

Other control registers (1)

The estatus register holds a saved copy of the
status register during nonbreak exception
processing

The bstatus register holds a saved copy of the
status register during break exception processing

The ienable register controls the handling of
internal hardware interrupts

The ipending register indicates the value of the
interrupt signals driven into the processor

Other control registers (2)

* The cpuid register holds a constant value that
is defined in the Nios |l Processor parameter

editor to uniquely identify each processor in a
multiprocessor system

 When the extra exception information option
is enabled, the Nios Il processor provides
information useful to system software for
exception processing in the exception and
badaddr registers when an exception occurs

Masking and disabling interrupts

31 0

ienable Register

m m m m

pd pd -4 Z

= = > >

5] @ 1] [

[- — -

m m m m

External hardware w o = o
interrupt request — — — _
inputs irg[31..0] DE T'EJ T.a g

ipending Register

3 T (T |®T
m m |m m
b zZ |= z
o o (@ O
=z Z |= =
@ N (") o
E 8] == (]
PIE bit
Generate
Hardware

Interrupt

Exception processing flow

* The general exception handler is a routine that
determines the cause of each exception and
then dispatches an exception routine to respond
to the specifics exception (software or hardware)

e The general exception handler is found at the

— At run time this address is fixed, and software cannot
modify it
— Programmers do not directly access exception vectors

and can write programs without awareness of this
address

Determining the exception cause

* |nstruction-related exception

— cause filed of the register exception (if present)

stores the info on what instruction has caused the
exception

— If non-present, the handler must retrieve the
instruction that has caused the exception

Pseudo C code for dispatiching software exceptions
(w/o excepetion register) and

if (estatus.PIE == 1 and ipending !=0)
else {

decode instruction at Sea-4
if (instruction is trap) handle trap exception
else if (instruction is load or store) handle misaligned data address exception
else if (instruction is branch, bret, callr, eret, jmp, or ret)
handle misaligned destination address exception
else if (instruction is unimplemented) handle unimplemented instruction exception
else if (instruction is illegal) handle illegal instruction exception
else if (instruction is divide) {
if (denominator == 0) handle division error exception
else if (instruction is signed divide and numerator == 0x80000000
and denominator == Oxffffffff)
handle division error exception

}

else handle unknown exception

}

Hardware interrupts processing flow w/ EIC

* When the EIC interface presents an interrupt to the
Nios Il processor, the processor uses several criteria, as
follows, to determine whether to take the interrupt:

— Nonmaskable interrupts: the processor takes any NMI as
long as it is not processing a previous NMI

— Maskable interrupts: the processor takes a maskable
interrupt if maskable interrupts are enabled, and if the
requested interrupt level is higher than that of the
interrupt currently being processed (if any)

 However, if shadow register sets are implemented, the processor
takes the interrupt only if the interrupt requests a register set
different from the current register set, or if the register set
interrupt enable flag (status.RSIE) is set

Nested exceptions (1)

* Nested exceptions can occur under the
following circumstances:
— An exception handler enables maskable interrupts
— An EIC is present and an NMI occurs

— An EIC is present and the processor is configured
to keep maskable interrupts enabled when taking
an interrupt

— An exception handler triggers an instruction-
related exception

Nested exceptions (2)

* By default, Nios Il processor disables maskable
interrupts when it takes an interrupt request

* To enable nested interrupts, the ISR itself must
re-enable interrupts after the interrupt is taken

* Alternatively, to take full advantage of nested
interrupts with shadow register sets, system
software can set the config.ANI flag. When
config.ANI = 1, the Nios |l processor keeps
maskable interrupts enabled after it takes an
Interrupt

Interrupt Service Routine (ISR)

* The HAL provides an application
programming interface (API) for writing,
registering and managing ISRs

— This APl is compatible with both internal and
external hardware interrupt controllers

* For back compatibility Altera also supports a
legacy hardware interrupt API
— This APl supports only the IIC

— A custom driver written prior to Nios Il version 9.1
uses the legacy API

HAL API

* Both interrupt APIs include the following types of
routines:
— Routines to be called by a device driver to register an ISR
— Routines to be called by an ISR to manage its environment

— Routines to be called by BSP or application code to control
ISR behavior

* Both interrupt APIs support the following types of
BSPs:
— HAL BSP without an RTOS
— HAL-based RTOS BSP, such as a MicroC/OS-IlI BSP

* When an EIC is present, the controller’s driver provides
functions to be called by the HAL

HAL API selection

e When the SBT creates a BSP, it determines whether the
BSP must implement the legacy interrupt API

— Each driver that supports the enhanced APl publishes this
capability to the SBT through its
<driver name>_sw.tcl file

* The BSP implements the enhanced API if all drivers
support it; otherwise it uses the legacy API

— Altera drivers written for the enhanced API, also support
the legacy one

— Devices whose interrupts are not connected to the Nios Il
processor are ignored

Example DE2 Basic Computer

e system.h

#define ALT DEVICE FAMILY "CYCLONEII"

#define ALT IRQ BASE NULL

#define ALT LEGACY INTERRUPT API PRESENT

#define ALT LOG PORT "/dev/null"

#define ALT LOG PORT BASE 0x0

#define ALT LOG PORT DEV null

#define ALT LOG PORT TYPE ""

#define ALT_NUM_EXTERNAL_INTERRUPT_CONTROLLERS 0
#define ALT_NUM_INTERNAL_INTERRUPT_CONTROLLERS 1
#define ALT_NUM_INTERRUPT_CONTROLLERS 1

avalon_parallel_port_driver and up_avalon_rs232_driver
do not support enhanced API

Enhanced HAL Interrupt API

Function Name Implemented By

alt ic isr register() Interrupt controller driver (7)
alt ic irqg enable() Interrupt controller driver (7)
alt ic irqg disable() Interrupt controller driver (7)
alt ic_irqg enabled() Interrupt controller driver (7)
alt irq disable all() HAL

alt irqg enable all() HAL

alt irqg enabled() HAL

Note to Table 8-1:

(1) If the system is based on an EIC, these functions must be implemented by the EIC driver. If the system is based in
the IIC, the functions are implemented by the HAL. For details about each function, refer to the HAL APl Reference
chapter of the Nios Il Software Developer's Handbook.

* Using the enhanced HAL API to implement ISRs requires
performing the following steps:
— Write the ISR that handles hardware interrupts for a specific device

— Ensure that the main program registers the ISR with the HAL by calling
the alt_ic_isr_register() function (this function also enables the
hardware interrupts)

Legacy HAL Interrupt API

alt_irg_register()
alt_irg_disable()
alt_irg_enable()
alt_irg_disable_all()
alt_irg_enable_all()
alt_irg_interruptible()
alt_irg_non_interruptible()
alt_irg_enabled()

Using the legacy HAL API to implement ISRs requires performing the
following steps:
— Write the ISR that handles hardware interrupts for a specific device
— Ensure that the main program registers the ISR with the HAL by calling the
alt_irg_register() function
— alt_irq_register() enables also hardware interrupts by calling
alt_irg_enable_all()

HAL exception handling w/ IIC

Yes

Hardware
interrupts
pending?

Enter

l

Save context

Hardware

interrupts
enabled?

N

P

Y

Handle
software exception

Handle
hardware interrupts
o=] — E
c (1 'K o
@ | @ 7]
o A

i

Restore context

'

Exit

Software
exception funnel

Harwdare interrupt funnel

After the ISR. ipending
register is scanned again ’l

Call ISR;

i=i+1

from 0, so that higher-

priority interrupts are
ISR code must clear the

always processed before
associated peripheral’s Yes No |
interrupt condition

lower-priority interrupts
Exit

When writing an ISR...

* |ISRs runin a restricted environment. A large number of the
HAL API calls are not available from ISRs

— For example, accesses to the HAL file system are not permitted

* As ageneral rule, never include function calls that can block
for any reason (such as waiting for a hardware interrupt)

— Avoid using the C standard library |/O API, because calling these
functions can result in deadlock within the system, that is, the
system can become permanently blocked in the ISR

— Do not call printf() from within an ISR unless you are certain that
stdout is mapped to a non-interrupt-based device driver

— Otherwise, printf() can deadlock the system, waiting for a

hardware interrupt that never occurs because interrupts are
disabled

Putting into practice (1)

 Make GREEN leds blink using the Interval Timer and
the sys_clk HAL w/ 2 s period

— Map sys_clk HAL to the Interval_timer peripheral using the
BSP editor

— Define a variable of alt_alarm type (you need to include
"sys/alt_alarm.h " header file)

— Start the alarm using the alt_alarm_start() function
passing as parameter the pointer to the callback function
that makes the leds blink

* Prototype of the callback function:
alt_u32 my_alarm_callback(void* context)

* The return value is the time that will pass before the next alarm
event

— Handle the GREEN_LEDS Parallel Port using the related
HAL; see "altera_up_avalon_parallel_port.h " header for
how to use it

Putting into practice (2)

Write a program that reads the pushbutton activity

exploting the related hardware interrupt and turns
on/off some LEDs

#tinclude <sys/alt_irq.h> to use Interrupt HAL API
ISR prototype

— static void pushbutton_ISR(void* context, unsigned long id);

References

e Altera, “Nios Il Processor Reference
Handbook,” n2cpu_nii5v1.pdf
— 2. Processor Architecture
— 3. Programming Model/Exception Processing
e Altera, “Nios Il Software Developer’s
Handbook,” n2sw_nii5v2.pdf
— 8. Exception Handling
— 14. HAL API Reference

