
SISTEMI EMBEDDED
AA 2012/2013

Software Exceptions and
Hardware Interrupts

Example of a Nios II System

External Interrupt
Controller

Nios II Processor Core Architecture

Reset signals

Exceptions and Interrupts

• Exception: a transfer of control away from a
program’s normal flow of execution, caused by
an event, either internal or external to the
processor, which requires immediate attention

• Interrupt: an exception caused by an explicit
request signal from an external device
(hardware/interrupt exception)

Exception types (1)

• Reset exception: occurs when the Nios II
processor is reset. Control is transferred to the
reset address specified when generating the
Nios II processor core

• Break exception: occurs when the JTAG debug
module requests control. Control is
transferred to the break address specified
when generating the Nios II processor core

Exception types (2)

• Instruction-related exception: occurs when
any of several internal conditions occurs.
Control is transferred to the general exception
address specified when generating the Nios II
processor core (Software exception)

• Interrupt exception: occurs when a peripheral
device signals a condition requiring service.
Control is transferred to the general exception
address

Break exceptions

• A break is a transfer of control away from a
program’s normal flow of execution for the
purpose of debugging

• Software debugging tools can take control of the
Nios II processor via the JTAG debug module to
implement debug and diagnostic features, such
as breakpoints and watchpoints

• The processor enters the break processing state
under one of the following conditions:
– The processor executes the break instruction

(software break)
– The JTAG debug module asserts a hardware break

Instruction-related exceptions

• Occur during execution of Nios II instructions

– Trap instruction: software-invoked exception.
Useful to “call” OS services without knowing the
routine run-time addresses

– Break Instruction

– Illegal instruction

– Unimplemented instruction

– Division error

– …

Interrupt exceptions

• A peripheral device can request an interrupt
by asserting an interrupt request (IRQ) signal.
IRQs interact with the Nios II processor
through an interrupt controller

• The Nios II processor can be configured with
either of the following interrupt controller
options:

– The internal interrupt controller

– The external interrupt controller interface

Some definitions

• Exception (interrupt) latency: the time elapsed
between the event that causes the exception
(assertion of an interrupt request) and the
execution of the first instruction at the handler
address

• Exception (interrupt) response time: the time
elapsed between the event that causes the
exception (assertion of an interrupt request) and
the execution of non-overhead exception code,
which is specific to the exception type (device)

Internal interrupt controller

• Non-vectored exception controller to handle
all exception types

• Each exception, including hardware interrupts
(IRQ31-0), causes the processor to transfer
execution to the same general exception
address

• An exception handler at this address
determines the cause of the exception and
dispatches an appropriate exception routine

External interrupt controller interface (1)

• External Interrupt Controller (EIC) can be used to
shorten exception response time

• EIC can monitor and prioritize IRQ signals and
determine which interrupt to present to the Nios II
processor. An EIC can be software-configurable

• When an IRQ is asserted, the EIC provides the following
data to the Nios II processor:
– The requested handler address (RHA)
– The requested interrupt level (RIL); the interrupt is taken

only when the RIL is greater than the IL field (6-bit) in the
status register

– The requested register set (RRS)
– Requested nonmaskable interrupt (RNMI) mode

External interrupt controller interface (2)
• Requested register set is one of the

implemented shadow register sets

– This way the context switch overhead is
eliminated (useful for high-critical interrupts)

– Less critical interrupts can share the same shadow
register set

• No problem if interrupt pre-emption cannot occur
among these interrupts
– Same priority level or nested interrupts are disabled

• Otherwise the ISR must save its register set on entry
and restore it on exit

External interrupt controller interface (3)

• The Nios II processor EIC interface connects to a single
EIC, but an EIC can support a daisy-chained
configuration

• Multiple EICs can monitor and prioritize interrupts

• The EIC directly connected to the processor presents
the processor with the highest-priority interrupt from
all EICs in the daisy chain

• An EIC component can support an arbitrary level of
daisy-chaining, potentially allowing the Nios II
processor to handle an arbitrary number of prioritized
interrupts

Nios II registers (1)

• General-purpose registers (r0-r31)

…

Nios II registers (2)
• Control registers accessible only by the special instructions rdctl and

wrctl that are only available in supervisor mode

Status register (1)

Status register (2)

Other control registers (1)

• The estatus register holds a saved copy of the
status register during nonbreak exception
processing

• The bstatus register holds a saved copy of the
status register during break exception processing

• The ienable register controls the handling of
internal hardware interrupts

• The ipending register indicates the value of the
interrupt signals driven into the processor

Other control registers (2)

• The cpuid register holds a constant value that
is defined in the Nios II Processor parameter
editor to uniquely identify each processor in a
multiprocessor system

• When the extra exception information option
is enabled, the Nios II processor provides
information useful to system software for
exception processing in the exception and
badaddr registers when an exception occurs

• …

Masking and disabling interrupts

status register

Exception processing flow

• The general exception handler is a routine that
determines the cause of each exception and
then dispatches an exception routine to respond
to the specifics exception (software or hardware)

• The general exception handler is found at the
general exception address
– At run time this address is fixed, and software cannot

modify it

– Programmers do not directly access exception vectors
and can write programs without awareness of this
address

Determining the exception cause

• Instruction-related exception

– cause filed of the register exception (if present)
stores the info on what instruction has caused the
exception

– If non-present, the handler must retrieve the
instruction that has caused the exception

/* With an internal interrupt controller, check for interrupt exceptions. With an external interrupt
* controller, ipending is always 0, and this check can be omitted. */

if (estatus.PIE == 1 and ipending != 0) handle hardware interrupt
else {

/* Decode exception from instruction */
decode instruction at $ea-4
if (instruction is trap) handle trap exception
else if (instruction is load or store) handle misaligned data address exception
else if (instruction is branch, bret, callr, eret, jmp, or ret)

handle misaligned destination address exception
else if (instruction is unimplemented) handle unimplemented instruction exception
else if (instruction is illegal) handle illegal instruction exception
else if (instruction is divide) {

if (denominator == 0) handle division error exception
else if (instruction is signed divide and numerator == 0x80000000

and denominator == 0xffffffff)
handle division error exception

}
/* Not any known exception */
else handle unknown exception
}

Pseudo C code for dispatiching software exceptions
(w/o excepetion register) and hardware interrupts

Hardware interrupts processing flow w/ EIC

• When the EIC interface presents an interrupt to the
Nios II processor, the processor uses several criteria, as
follows, to determine whether to take the interrupt:
– Nonmaskable interrupts: the processor takes any NMI as

long as it is not processing a previous NMI

– Maskable interrupts: the processor takes a maskable
interrupt if maskable interrupts are enabled, and if the
requested interrupt level is higher than that of the
interrupt currently being processed (if any)
• However, if shadow register sets are implemented, the processor

takes the interrupt only if the interrupt requests a register set
different from the current register set, or if the register set
interrupt enable flag (status.RSIE) is set

Nested exceptions (1)

• Nested exceptions can occur under the
following circumstances:

– An exception handler enables maskable interrupts

– An EIC is present and an NMI occurs

– An EIC is present and the processor is configured
to keep maskable interrupts enabled when taking
an interrupt

– An exception handler triggers an instruction-
related exception

Nested exceptions (2)

• By default, Nios II processor disables maskable
interrupts when it takes an interrupt request

• To enable nested interrupts, the ISR itself must
re-enable interrupts after the interrupt is taken

• Alternatively, to take full advantage of nested
interrupts with shadow register sets, system
software can set the config.ANI flag. When
config.ANI = 1, the Nios II processor keeps
maskable interrupts enabled after it takes an
interrupt

Interrupt Service Routine (ISR)

• The HAL provides an enhanced application
programming interface (API) for writing,
registering and managing ISRs
– This API is compatible with both internal and

external hardware interrupt controllers

• For back compatibility Altera also supports a
legacy hardware interrupt API
– This API supports only the IIC

– A custom driver written prior to Nios II version 9.1
uses the legacy API

HAL API

• Both interrupt APIs include the following types of
routines:
– Routines to be called by a device driver to register an ISR

– Routines to be called by an ISR to manage its environment

– Routines to be called by BSP or application code to control
ISR behavior

• Both interrupt APIs support the following types of
BSPs:
– HAL BSP without an RTOS

– HAL-based RTOS BSP, such as a MicroC/OS-II BSP

• When an EIC is present, the controller’s driver provides
functions to be called by the HAL

HAL API selection

• When the SBT creates a BSP, it determines whether the
BSP must implement the legacy interrupt API
– Each driver that supports the enhanced API publishes this

capability to the SBT through its
<driver name>_sw.tcl file

• The BSP implements the enhanced API if all drivers
support it; otherwise it uses the legacy API
– Altera drivers written for the enhanced API, also support

the legacy one

– Devices whose interrupts are not connected to the Nios II
processor are ignored

Example DE2 Basic Computer

• system.h
/*

* System configuration

*/

#define ALT_DEVICE_FAMILY "CYCLONEII"

#define ALT_IRQ_BASE NULL

#define ALT_LEGACY_INTERRUPT_API_PRESENT

#define ALT_LOG_PORT "/dev/null"

#define ALT_LOG_PORT_BASE 0x0

#define ALT_LOG_PORT_DEV null

#define ALT_LOG_PORT_TYPE ""

#define ALT_NUM_EXTERNAL_INTERRUPT_CONTROLLERS 0

#define ALT_NUM_INTERNAL_INTERRUPT_CONTROLLERS 1

#define ALT_NUM_INTERRUPT_CONTROLLERS 1

avalon_parallel_port_driver and up_avalon_rs232_driver
do not support enhanced API

Enhanced HAL Interrupt API

• Using the enhanced HAL API to implement ISRs requires
performing the following steps:
– Write the ISR that handles hardware interrupts for a specific device
– Ensure that the main program registers the ISR with the HAL by calling

the alt_ic_isr_register() function (this function also enables the
hardware interrupts)

Legacy HAL Interrupt API

• alt_irq_register()
• alt_irq_disable()
• alt_irq_enable()
• alt_irq_disable_all()
• alt_irq_enable_all()
• alt_irq_interruptible()
• alt_irq_non_interruptible()
• alt_irq_enabled()

• Using the legacy HAL API to implement ISRs requires performing the
following steps:
– Write the ISR that handles hardware interrupts for a specific device
– Ensure that the main program registers the ISR with the HAL by calling the

alt_irq_register() function
– alt_irq_register() enables also hardware interrupts by calling

alt_irq_enable_all()

HAL exception handling w/ IIC
General exception funnel

Software
exception funnel

Hardware
exception funnel

Harwdare interrupt funnel

In the HAL funnel,
hardware interrupt 0 has
the highest priority, and
31 the lowest

After the ISRi ipending
register is scanned again
from 0, so that higher-
priority interrupts are
always processed before
lower-priority interrupts

ISR code must clear the
associated peripheral’s
interrupt condition

When writing an ISR...

• ISRs run in a restricted environment. A large number of the
HAL API calls are not available from ISRs
– For example, accesses to the HAL file system are not permitted

• As a general rule, never include function calls that can block
for any reason (such as waiting for a hardware interrupt)
– Avoid using the C standard library I/O API, because calling these

functions can result in deadlock within the system, that is, the
system can become permanently blocked in the ISR

– Do not call printf() from within an ISR unless you are certain that
stdout is mapped to a non-interrupt-based device driver

– Otherwise, printf() can deadlock the system, waiting for a
hardware interrupt that never occurs because interrupts are
disabled

Putting into practice (1)
• Make GREEN leds blink using the Interval Timer and

the sys_clk HAL w/ 2 s period
– Map sys_clk HAL to the Interval_timer peripheral using the

BSP editor
– Define a variable of alt_alarm type (you need to include

"sys/alt_alarm.h " header file)
– Start the alarm using the alt_alarm_start() function

passing as parameter the pointer to the callback function
that makes the leds blink
• Prototype of the callback function:

alt_u32 my_alarm_callback(void* context)
• The return value is the time that will pass before the next alarm

event

– Handle the GREEN_LEDS Parallel Port using the related
HAL; see "altera_up_avalon_parallel_port.h " header for
how to use it

Putting into practice (2)

• Write a program that reads the pushbutton activity
exploting the related hardware interrupt and turns
on/off some LEDs

• #include <sys/alt_irq.h> to use Interrupt HAL API

• ISR prototype
– static void pushbutton_ISR(void* context, unsigned long id);

• Use the ISR context argument to pass the pointer to
a struct that containts, as fields, pointers to the
parallel port devices (puhbuttons and LEDs) and the
LEDs status and mask

References

• Altera, “Nios II Processor Reference
Handbook,” n2cpu_nii5v1.pdf

– 2. Processor Architecture

– 3. Programming Model/Exception Processing

• Altera, “Nios II Software Developer’s
Handbook,” n2sw_nii5v2.pdf

– 8. Exception Handling

– 14. HAL API Reference

