
SISTEMI EMBEDDED
AA 2012/2013

SOPC Nios II

Interval Timer Core

DE2 Basic Computer

Interval timer core (1)

• Hardware configuration:
– 32-bit or 64-bit internal counter

– Two count modes: count down once and continuous count-
down; starting value loaded from the period register

– Option to enable or disable the interrupt request (IRQ) when
timer reaches zero

– Optional watchdog timer feature that resets the system if
counter reaches zero

– Optional periodic pulse generator feature that outputs a
pulse when counter reaches zero

• Compatible with 32-bit and 16-bit processors

• Device driver available in the HAL system library

Interval timer core (2)

• Block diagram

– 6x (32-bit counter) or 10x (64-bit counter) 16-bit
registers (certain registers may not be present
depending on the core configuration)

Interval timer core (3)
• Nios II processor writes the core's control register to:

– Start and stop the counter
– Enable/disable the IRQ
– Specify count-down once or continuous count-down mode

• A processor reads the status register to gather current timer activity
• A processor can specify the timer period by writing

a value to the period registers
– An internal counter counts down to zero, and whenever it reaches zero,

it is immediately reloaded from the period registers

• A processor can read the current counter value by first writing to
one of the snap registers to request a coherent snapshot of the
counter, and then reading the snap registers for the full value

• When the count reaches zero, one or more of the following events
are triggered:
– If IRQs are enabled, an IRQ is generated
– The optional pulse-generator output is asserted for one clock period
– The optional watchdog output resets the system

Interval timer core (4a)
• Instance configuration using SOPC Builder/Qsys

MegaWizard
DE2 Basic Computer configuration

Interval timer core (4b)

• Timeout period: determines the initial value of
the period registers; can be changed depending
on the fixed period option

• Counter size: 32- or 64-bits

• Hardware options: 3 pre-set configurations

– Simple periodic interrupt

– Full-featured

– Watchdog

– Or custom

Interval timer core (4c)

• Register options

– Writeable period

– Readable snapshot

– Start/Stop control bits

• Output signals

– Timeout pulse (1 clock wide)

– System reset on timeout (watchdog)

Interval timer core (4d)

• Watchdog configuration:

– Set the Timeout Period to the desired "watchdog"
period

– Turn off Writeable period

– Turn off Readable snapshot

– Turn off Start/Stop control bits

– Turn off Timeout pulse

– Turn on System reset on timeout (watchdog)

Interval timer core (4d)
• Watchdog behaviour:

– After reset, counter is stopped
– It must be started by writing a 1 to the control register's

START bit. Once started, the timer can never be stopped
– If the internal counter reaches zero, the watchdog timer

resets the system by generating a pulse on its reset request
output

– To prevent the system from resetting, the
processor/program must periodically reset the counter's
count-down value by writing one of the period registers (the
written value is ignored)

– If the processor fails to access the timer because, for
example, software has stopped executing normally, the
watchdog timer resets the system and returns the system to
a defined state

Interval timer core (5a)

• Register map (32-bit internal counter)

• Offset must be multiplied by 4 (32-bit Avalon
data bus) and added to the Interval timer BASE
ADDRESS to obtain the register address

Interval timer core (5b)

• Status register

Interval timer core (5c)

• Control register

Interval timer core (5d)

• period_n Registers
– The period_n registers store the timeout period value
– The internal counter is loaded with the value stored in

these registers whenever one of the following occurs:
• A write operation to one of the period_n register
• The internal counter reaches 0

– Writing to one of the period_n registers stops the
internal counter, except when the hardware is
configured with Start/Stop control bits off

– When the hardware is configured with Writeable period
disabled, writing to one of the period_n registers
causes the counter to reset to the fixed Timeout Period
specified at system generation time

– The timer's actual period is one cycle greater than the
value stored in the period_n registers

Interval timer core (5d)

• snap_n registers

– A master peripheral may request a coherent
snapshot of the current internal counter by
performing a write operation (write-data ignored)
to one of the snap_n registers

– When a write occurs, the value of the counter is
copied to the snap_n registers

Interval timer core (6)

• Interrupt Behaviour

– The interval timer core generates an IRQ whenever
the internal counter reaches zero and the ITO bit of
the control register is set to 1

– Acknowledging the IRQ in one of two ways:

• Clear the TO bit of the status register

• Disable interrupts by clearing the ITO bit of the control
register

– Failing to acknowledge the IRQ produces an
undefined result

Software programming model (1)

STATUS

Interval timer
core

system.h

Device
Driver

HAL
(Custom Device)

altera_up_avalon_timer_regs.h

sys/alt_alarm.h

altera_avalon_timer_sc.c

0
4
8

12

altera_up_avalon_timer.h

sys/alt_timestamp.h

altera_avalon_timer_tc.c

Address - base 31 15 0

CONTROL
PERIOD_L
PERIOD_H

SNAP_L

SNAP_H

16
20

Software programming model (2a)

• The device model of the interval timer can be
chosen through the BSP editor

• This property is recorded in system.h

/*

* hal configuration

*

*/

#define ALT_MAX_FD 32

#define ALT_SYS_CLK INTERVAL_TIMER

#define ALT_TIMESTAMP_CLK none

Software programming model (2b)
• HAL/sys_clk_timer mapped to Interval_timer

• HAL/timestamp_timer mapped to Interval_timer

System clock HAL
• Useful for scheduling periodic tasks

– Can generate the system tick
– The period of the system tick is a multiple of the Timeout

period of the interval timer

• Basic HAL functions:
– int alt_alarm_start(alt_alarm* alarm, alt_u32 nticks,

alt_u32 (*callback) (void* context), void* context);
– void alt_alarm_stop(alt_alarm* alarm);
– alt_u32 alt_ticks_per_second(void);
– alt_u32 alt_nticks(void);
– See the HAL API Reference for how to use these

functions!

Timestamp HAL

• Useful for measuring interval times with high
resolution (period of the interval timer clock!)

– The interval timer peripheral must have the period_n
register which is set to the maximum value by the
relevant HAL

• Basic HAL functions:

– int alt_timestamp_start(void);

– alt_u32 alt_timestamp(void);

– alt_u32 alt_timestamp_freq(void);

– See the HAL API Reference for how to use these
functions!

Putting into practice

• Use the Timestamp HAL to:

– check the delay generated by the Wait_ms() function:
displays the result on stdio mapped to JTAG_UART

– measure reaction times

• int printf(const char* format,…)

– Format examples:

• %d integer decimal

• %u unsigned decimal

• %x unsigned hex

• %f double

• …

References

• Altera, “Embedded Peripherals IP User Guide,”
ug_embedded_ip.pdf

– 28. Interval Timer

• Altera “Nios II Software Developer’s
Handbook,” n2sw_nii5v2.pdf

– Chapters 6. Developing Programs Using Hardware
Abstraction Layer

