
SISTEMI EMBEDDED
AA 2012/2013

JTAG CIRCUITRY

JTAG DEBUG MODULE

JTAG-UART PERIPHERAL

Joint Test Action Group (JTAG) (1)

• Established in 1985 to develop a method to
test populated PCBs

– A way to access IC pins organized in a
boundary-scan

• The method was standardized in 1990 as
IEEE 1149.1 (Standard Test Access Port and
Boundary-Scan Architecture)

– A 1994 addendum defined the Boundary Scan
Description Language (BSDL)

Joint Test Action Group (JTAG) (2)

• Today, JTAG is widely used also as
communication means to access IC sub-blocks:

– For debugging purposes in processors

– For programming purposes in processors, CPLDs,
FPGAs

– …

• JTAG acts as a communication interface to
serially read/write internal registers

JTAG interface
Test Acces Port (TAP)

DEV 1

TMS
TCK

TDI

TRST

TDO

DEV 2

TMS
TCK

TDI

TRST

TDO

TDI (Test Data In)

TDO (Test Data Out)

TMS (Test Mode Select)

TCK (Test Clock)

TRST (Test Reset) optional

JTAG
Adapter

JTAG signals (1)

• TDI (Test Data In): Serial input pin for instructions as
well as (test and programming) data. Bits are shifted in
on the rising edge of TCK.

• TDO (Test Data In): Serial data output pin for
instructions as well as (test and programming) data.
Bits are shifted out on the falling edge of TCK. This pin
is tri-stated if bits are not being shifted out of the
device.

• TMS (Test Mode Select): Input pin that provides the
control signal to determine the transitions of the TAP
controller state machine. Transitions within the state
machine occur at the rising edge of TCK (TMS is
evaluated on the rising edge of TCK). Therefore, TMS
must be set up before the rising edge of TCK.

JTAG signals (2)

• TCK (Test Clock input): The clock input to the BST
circuitry. Some operations occur at the rising
edge, while others occur at the falling edge.

• TRST (Test Reset input): Active-low input to
asynchronously reset the boundary-scan circuit.
(TRST is optional according to IEEE Std. 1149.1).
This pin should be driven low when not in
boundary scan operation and for non-JTAG users
the pin should be permanently tied to GND.

JTAG circuitry (in Altera devices)

Internal registers:
• ISP: In-System Programmability
• ICP: In-Circuit Reconfigurability
• ...

Boundary Scan Cell (BSC) (1)

BSC

SDI

SDO

PDOPDI

Control
signals

Boundary Scan Cell (BSC) (2)

D Q
0
1

CLOCKDR

D Q

UPDATEDR

SHIFTDR

PDI

SDI

SDO
0
1

MODE

0 Functional
mode

1 Test mode

PDO

Each BSC can:
• Capture data on its parallel input PDI
• Update data on its parallel output PDO
• Serially shift SDI to SDO
• Behave transparently PDO = PDI

Boundary Scan Cell (BSC) (3)

In
te

rn
al

 lo
gi

c

• 3-bit BSC for each
(bidirectional) I/O
of a Cyclone FPGA

• PDI: OUTJ, OEJ,
PIN_IN

• PDO: PIN_OUT,
PIN_OE, INJ

1

TAP controller

Finite State Machine
(FSM) with 16 states

SELECT

CAPTURE

SHIFT /
PAUSE

UPDATE

Standard instructions
Instruction Selected Data Register / (Mode)

Mandatory

Extest Boundary scan (Test mode)

Bypass Bypass (1-bit bypass register between
TDI and TDO)

Sample/Preload Boundary scan (Functional mode)

Optional

Intest Boundary scan (Test mode)

Idcode IDCODE register

Usercode USERCODE register

Runbist Result register

Clamp Bypass (I/O hold to the state defined by
the boundary scan register)

HighZ Bypass (I/O in Hi-Z)

Sample/Preload instructions

Capture phase Shift and Update phases

Extest/Intest instruction

Capture phase Shift and Update phases

JTAG Debug Module (1)

• Provides on-chip emulation to control the
processor remotely from a host PC. Software
debugging tools communicate with the JTAG
debug module and make it possible to:

– Download programs to memory

– Start and stop execution

– Set breakpoints and watchpoints

– Analyze registers and memory

– Collect real-time execution trace data

JTAG Debug Module (2)

• Piece of hardware (implemented with FPGA logic
and memory resources) placed between the JTAG
circuitry and the processor

• The JTAG debug module takes control of the
processor by asserting a hardware break or
inserting a break instruction in the program
memory to be executed
– A break causes the software routine located at the

brake address to be executed

– The break address is chosen when the processor is
generated

JTAG-UART Core

• Allows characters to be serially transmitted
between a Nios processor and a host PC using
the JTAG circuitry present in the FPGA and a
download cable such as USB-Blaster

• Hides the complexity of the JTAG circuitry

• Is supported by HAL system library

– Character-mode generic device model
(Unix-like routines: open, read, write, …)

– C standard I/O functions (printf, getchar,…)

JTAG-UART Core block diagram

Host-Nios II processor connection

Hardware configuration (1)

• Read/Write FIFO settings:

– Buffer depth = 2N B, N = 3 – 15 (default: 64; N=6)

– IRQ threshold (default: 8)

• IRQ is asserted when the number of remaining bytes in the
Read FIFO, which can still be written (filled) by the JTAG
circuitry, equals the IRQ read_threshold

• IRQ is asserted when the number of remaining bytes in the
Write FIFO, which can still be read (emptied) by the JTAG
circuitry, equals the IRQ write_thresold

– Construct using registers instead of memory blocks

• 1 B consumes roughly 11 logic elements (LEs)

Hardware configuration (2)

• Simulation settings:

– These settings control the generation of the JTAG
UART core simulation model

• Fixed input stream loaded in the Read FIFO at reset

• Macros for the ModelSim simulator to generate
Interactive Windows
– To display the content of the Write FIFO

– To also write the Read FIFO instead of the fixed input stream

– They do not affect the hardware generation

Register map (1)

• Data and Control registers

• Data register

31

Register map (2)
• Control register

– AC is set after an application on the host PC has polled the
JTAG UART core via the JTAG interface

– Once set, the AC bit remains set until it is explicitly cleared
via the Avalon interface. Writing 1 to AC clears it

– Embedded software can examine the AC bit to determine
if a connection exists to a host PC

31

Interrupt behaviour

• JTAG can generate an interrupt when the Read
FIFO is almost full (read_thresold) or the Write
FIFO is almost empty (write_threshold)
– The write interrupt is cleared by writing characters

to fill the write FIFO beyond the write_threshold

– The read interrupt is cleared by reading characters
from the read FIFO

– The read interrupt condition is also set if there is
at least one character in the read FIFO and no
more characters are expected

Software programming model

DATA REGISTERJTAG UART
Core CONTROL REGISTER

system.h

Device
Driver

HAL
(Unix-like functions)

altera_avalon_jtag_uart_regs.h

altera_avalon_jtag_uart.c

altera_avalon_jtag_uart.h

ANSI C
(Standard Library)

streams (using file pointer)
fopen(), fread(), fwrite(),
fclose(), fprintf()...

Eg. FILE *fp;
fp=fopen(…);
fread(...,fp);

HAL (using file descriptor)
open(), read(), write(),
close(), ioctl(), ...

Eg. int fd;
fd = open(…);
read(fd,…);

File descriptor/pointer

• File descriptors (integer) are used by low-level
I/O functions: open, read, write, close,...

• File pointers manage streams using high-level
functions (buffered operations):
– Unformatted I/O: fgetc, fputc

– Formatted I/O: fprintf, fscanf,…

– Eg. stdin, stdout, stderr are specific streams which
do not require open and close operations and for
which are defined printf, getchar, scanf,…
functions are defined

Blocking and Non blocking (1)

• A blocking read waits until the required bytes
are available

• To allow the read function to immediately
return if no data are available the file
descriptor must be opened with NONBLOCK
flag

– fd = open("/dev/<your device name>",
O_NONBLOCK | O_RDWR);

Blocking and Non blocking (2)

• When using a file pointer, we need to retrieve the
underlying file descriptor

int fd = fileno(fp);
int flags = fcntl(fd, F_GETFL);
fcntl(fd, F_SETFL, flags | O_NONBLOCK);

• These header file must be included:
#include <unistd.h>
#include <fcntl.h>

• When no data are available to read, EOF is
returned by the read function

Putting into practice (1)

• Write a program that displays the ASCII code
of a character received from the JTAG UART
– stdin, stdout, stderr streams must be disconnected

from JTAG UART device (BSP Editor)
• Note that printf is no longer available!

– Use a file pointer to access the JTAG UART device
• fgetc reads a character from the stream

• fprintf sends formatted strings to the Host PC

– Use nios2-terminal to connect to the processor
• The Nios II console on Eclipse must be turned off!

Putting into practice (2)

• Write a program that displays the ASCII code
of a character received from the JTAG UART

– See the effect of blocking read; for example
inserting some other operations in the main loop,
such as reading the DE2 slider switches and
updating the Red LEDs status accordingly

– Try to use the non-blocking flag

References

• Altera “IEEE 1149.1 JTAG Boundary-Scan Testing,” AN39
ver. 6.0, June 2005

• Altera, “Nios II Processor Reference Handbook,”
n2cpu_nii5v1.pdf
– Processor Architecture – JTAG Debug Module

• Altera “Embedded Peripherals User Guide,”
ug_embedded_ip.pdf
– 6. JTAG UART Core

• Altera “Nios II Software Developer’s Handbook,”
n2sw_nii5v2.pdf
– Chapter 6. Developing Programs Using the Hardware

Abstraction Layer
– Chapter 14. HAL API Reference

