SISTEMI EMBEDDED
AA 2012/2013

JTAG CIRCUITRY
JTAG DEBUG MODULE
JTAG-UART PERIPHERAL

Joint Test Action Group (JTAG) (1)

e Established in 1985 to develop a method to
test populated PCBs

— A way to access IC pins organized in a
boundary-scan
e The method was standardized in 1990 as

IEEE 1149.1 (Standard Test Access Port and
Boundary-Scan Architecture)

— A 1994 addendum defined the Boundary Scan
Description Language (BSDL)

Joint Test Action Group (JTAG) (2)

* Today, JTAG is widely used also as
communication means to access IC sub-blocks:
— For debugging purposes in processors

— For programming purposes in processors, CPLDs,
FPGAS

e JTAG acts as a communication interface to
serially read/write internal registers

JTAG interface
Test Acces Port (TAP)

Adapter

1 1
t-—- TRST = TRST

TMS TMS
TCK

JTAG signals (1)

e TDI (Test Data In): Serial input pin for instructions as
well as (test and programming) data. Bits are shifted in
on the rising edge of TCK.

 TDO (Test Data In): Serial data output pin for
instructions as well as (test and programming) data.
Bits are shifted out on the falling edge of TCK. This pin
is tri-stated if bits are not being shifted out of the
device.

e TMS (Test Mode Select): Input pin that provides the
control signal to determine the transitions of the TAP
controller state machine. Transitions within the state
machine occur at the rising edge of TCK (TMS is
evaluated on the rising edge of TCK). Therefore, TMS
must be set up before the rising edge of TCK.

JTAG signals (2)

* TCK (Test Clock input): The clock input to the BST
circuitry. Some operations occur at the rising
edge, while others occur at the falling edge.

* TRST (Test Reset input): Active-low input to
asynchronously reset the boundary-scan circuit.
(TRST is optional according to IEEE Std. 1149.1).
This pin should be driven low when not in

boundary scan operation and for non-JTAG users
the pin should be permanently tied to GND.

Internal registers:

JTAG circuitry (in Altera devices)

Instruction Register (4)

>

TDI

TMS—P»
TCLK—p»

TRST (1)—P»>

D>

TAP
Controller

* ISP: In-System Programmability
* ICP: In-Circuit Reconfigurability

— -

L I 0@
UPDATEIR L
CLOCKIR :
SHIETIR fgi | L
Instruction Decode
UPDATEDR : Data Registers
CLOCKDR : -
' Bypass Register
SHIFTDR : P 9
Boundary-Scan Register (4)
— see
v T RegEET
‘_'—.‘ oo
. ISP/ICR Registers (5)
.——I eee
o
: °
®
I eee

D—}TDO

Boundary Scan Cell (BSC) (1)

B T Each peripheral

+ element is either an
o

L

®

I/0 pin, dedicated
input pin, or
dedicated
configuration pin.

Internal Logic

—- (LTI 1]|—eeePp[1T]

PDO

TAP Controller

T S S o

TDI TMS TCK TRST (1) TDO

SDI

Boundary Scan Cell (BSC) (2)

0 Functional
MODE = mode

\L 1 Test mode
PDI

0
DO . > PDO
SHIFTDR —
0 D Q D Q
1
—D —
CLOCKDR UPDATEDR

SDI
Each BSC can:

e Capture data on its parallel input PDI

* Update data on its parallel output PDO
e Serially shift SDI to SDO

* Behave transparently PDO = PDI

Boundary Scan Cell (BSC) (3)

INJ
O SDO
oo PIN_IN
)
— 0
= ﬂ] o ale—lp a i
C — —
—
Q
=
-

OEJ

[0 PIN_OE
OUTJ — 1 b aoré b a—° !
"~ > *~> 1
1

* 3-bit BSC for each =T our .
(bidirectional) |/O i@ D Qfe D Q L|1\I| OLEU—; Pin
of a Cyclone FPGA Oulpu

* PDI: OUTJ, OEJ,

Capture Update
Pl N_| N Registers Registers
* PDO: PIN_OUT; sDI SHIFT UPDATE
PIN_OE, INJ CLOCK o

Global Signals
MODE

TAP controller

TMS =1 | SELECT IR_SCAN

SELECT

CAPTURE

RRRRRRRRRRRRRRRRRR

Finite State Machine
(FSM) with 16 states

SHIFT /
PAUSE

UPDATE

UUUUUUUU

Standard instructions
nstruction | Selected Data Regiser / (Mode)

Mandatory
Extest Boundary scan (Test mode)
Bypass Bypass (1-bit bypass register between
TDI and TDO)
Sample/Preload Boundary scan (Functional mode)
Optional
Intest Boundary scan (Test mode)
Idcode IDCODE register
Usercode USERCODE register
Runbist Result register
Clamp Bypass (I/O hold to the state defined by

the boundary scan register)
Highz Bypass (I/0 in Hi-Z)

OEJ

ouTJ

Sample/Preload instructions

Capture phase

B2

:@-@

D Q —l— D Q
— —p
D Qe D Q
> >~
D Q= D Q
> >
Capture Update
Registers Registers
SDI SHIFT UPDATE

CLOCK

MODE

QOEJ

OouTJ

Shift and Update phases

SDO

J,Ul
2

INJ

o
o

g of

SDI

)
(8]

SHIFT

Capture
Registers

CLOCK

Update
Registers

UPDATE

MODE

Extest/Intest instruction

Capture phase

INJ

NN

D Q L D Q
— —
OEJ
D ate+{p @
. > >
ouTJ
D Qe D aQ
~—> [b
Capture Update
Registers Registers
sDI SHIFT UPDATE
CLOCK

MODE

QEJ

ouTJd

Shift and Update phases

INJ
Xty
—p —
0
0
D Q D Q —\—E~
S L b
0 — > I
D Q - D Q
> - p
Capture Update
Registers Registers
SDI SHIFT UPDATE MODE

CLOCK

JTAG Debug Module (1)

* Provides on-chip emulation to control the
processor remotely from a host PC. Software
debugging tools communicate with the JTAG
debug module and make it possible to:

— Download programs to memory

— Start and stop execution

— Set breakpoints and watchpoints

— Analyze registers and memory

— Collect real-time execution trace data

JTAG Debug Module (2)

* Piece of hardware (implemented with FPGA logic
and memory resources) placed between the JTAG
circuitry and the processor

 The JTAG debug module takes control of the
processor by asserting a hardware break or
inserting a break instruction in the program
memory to be executed

— A break causes the software routine located at the
brake address to be executed

— The break address is chosen when the processor is
generated

JTAG-UART Core

* Allows characters to be serially transmitted
between a Nios processor and a host PC using
the JTAG circuitry present in the FPGA and a
download cable such as USB-Blaster

* Hides the complexity of the JTAG circuitry
* |ssupported by HAL system library

— Character-mode generic device model
(Unix-like routines: open, read, write, ...)

— C standard 1/0O functions (printf, getchar,...)

JTAG-UART Core block diagram

JTAG Connection to Host PC

/—"_—_F/\”'—_“‘\
Altera FPGA
JTAG UART Core
JTAG
Controller
Registers

Data | Write FIFO JTAG
Hub

Avalon-MM slave —-~m—t Interface | =t JTAG
interface Control <—| Read FIFO | < Hub

to on-chip

logic < IRQ I

Other Nodes Using JTAG Interface
(for example, another JTAG UART)

. Built-In Feature of Altera FPGA

Automatically Generated by Quartus Il Software

Host-Nios Il processor connection

Altera
Download
Cable

Host PC
[JEDgae:
c | [
Download °c
ownica Interface
JTAG Cable | eff——-
Sarver Driver
AGHEM :
- -

+=++ Debug Data
--——-. Character Stream

JTAG

Altera FPGA

JTAG
Debug
Module

Nios |l
Processor

A

-‘.i.'

|

System Interconnect Fabric

B JTAG

UART

On-Chip
Memory

[M] Avalon-MM master port

Avalon-MM slave port

Hardware configuration (1)

* Read/Write FIFO settings:
— Buffer depth=2NB, N=3-15
— [RQ threshold

* |IRQ is asserted when the number of remaining bytes in the
Read FIFO, which can still be written (filled) by the JTAG
circuitry, equals the IRQ read threshold

* |IRQ is asserted when the number of remaining bytes in the
Write FIFO, which can still be read (emptied) by the JTAG
circuitry, equals the IRQ write_thresold

— Construct using registers instead of memory blocks

e 1 B consumes roughly 11 logic elements (LEs)

Hardware configuration (2)

* Simulation settings:

— These settings control the generation of the JTAG
UART core simulation model
* Fixed input stream loaded in the Read FIFO at reset

* Macros for the ModelSim simulator to generate
Interactive Windows

— To display the content of the Write FIFO
— To also write the Read FIFO instead of the fixed input stream

— They do not affect the hardware generation

Register map (1)

* Data and Control registers

Bit Description

Register
Offset R/W
Name 31 16| 15 |14 11|10 9 7 210
0 data RW RAVAIL RVALID Reserved DATA
1 control RW WSEBACE Reserved AC | WI Reserved WE |RE
* Data register
Bit(s) Name Access Description
The value to transfer to/from the JTAG core. When writing, the paTa field
[7:0] DATA R/W holds a character to be written to the write FIFO. When reading, the DAT2 field
holds a character read from the read FIFO.
Indicates whether the paTx field is valid. If RvaLID=1, the DaTR field is valid,
[15] RVALID R . . :
otherwise DaATA is undefined.
[32:16] RAVAIL R The number of characters remaining in the read FIFO (after the current read).
31

Register map (2)

* Control register

Bit(s) Name Access Description
0 RE R/W Interrupt-enable bit for read interrupts.
1 WE R/W Interrupt-enable bit for write interrupts.
8 RI R Indicates that the read interrupt is pending.
9 WI R Indicates that the write interrupt is pending.
10 A R/C Indicates tha_t there has been JTAG activity since the bit was cleared. Writing 1
to ac clears it to 0.
[3?:16] WSPACE R The number of spaces available in the write FIFO.
51

— AC is set after an application on the host PC has polled the
JTAG UART core via the JTAG interface

— Once set, the AC bit remains set until it is explicitly cleared
via the Avalon interface. Writing 1 to AC clears it

— Embedded software can examine the AC bit to determine
if 2 connection exists to a host PC

Interrupt behaviour

* JTAG can generate an interrupt when the Read
FIFO is almost full (read thresold) or the Write
FIFO is almost empty (write_threshold)

— The write interrupt is cleared by writing characters
to fill the write FIFO beyond the write threshold

— The read interrupt is cleared by reading characters
from the read FIFO

— The read interrupt condition is also set if there is

at least one character in the read FIFO and no
more characters are expected

Software programming model

ANSI C
(Standard Library)

HAL
(Unix-like functions)

streams (using file pointer)

HAL (using file descriptor)

Device
Driver

altera_avalon_jtag uart.c

- altera_avalon_jtag uart.h

- altera_avalon_jtag uart_regs.h

JTAG UART
Core

DATA REGISTER
CONTROL REGISTER

File descriptor/pointer

* File descriptors (integer) are used by low-level
/O functions: open, read, write, close,...

* File pointers manage streams using high-level
functions (buffered operations):
— Unformatted 1/0O: fgetc, foutc
— Formatted |/O: fprintf, fscanf,...

— Eg. stdin, stdout, stderr are specific streams which
do not require open and close operations and for
which are defined printf, getchar, scanf,...
functions are defined

Blocking and Non blocking (1)

* A blocking read waits until the required bytes
are available

* To allow the read function to immediately
return if no data are available the file
descriptor must be opened with NONBLOCK
flag

— fd = open("/dev/<your device name>",
O_NONBLOCK | O_RDWR);

Blocking and Non blocking (2)

When using a file pointer, we need to retrieve the
underlying file descriptor

int fd = fileno(fp);

int flags = fcntl(fd, F_GETFL);

fentl(fd, F_SETFL, flags | O _NONBLOCK);
These header file must be included:

#include <unistd.h>

#include <fcntl.h>

When no data are available to read, EOF is
returned by the read function

Putting into practice (1)

* Write a program that displays the ASCII code
of a character received from the JTAG UART

— stdin, stdout, stderr streams must be disconnected
from JTAG UART device (BSP Editor)

— Use a file pointer to access the JTAG UART device
* fgetc reads a character from the stream
 fprintf sends formatted strings to the Host PC

— Use nios2-terminal to connect to the processor
* The Nios Il console on Eclipse must be turned off!

Putting into practice (2)

— See the effect of blocking read; for example
inserting some other operations in the main loop,
such as reading the DE2 slider switches and
updating the Red LEDs status accordingly

— Try to use the non-blocking flag

References

Altera “IEEE 1149.1 JTAG Boundary-Scan Testing,” AN39
ver. 6.0, June 2005

Altera, “Nios Il Processor Reference Handbook,”

n2cpu_nii5v1.pdf

— Processor Architecture — JTAG Debug Module

Altera “Embedded Peripherals User Guide,”

ug_embedded ip.pdf

— 6. JTAG UART Core

Altera “Nios Il Software Developer’s Handbook,”

n2sw_nii5v2.pdf

— Chapter 6. Developing Programs Using the Hardware
Abstraction Layer

— Chapter 14. HAL API Reference

