
SISTEMI EMBEDDED
AA 2011/2012

Nios II processor

Reducing code size

Controlling code size (1)

• Very important to reduce memory costs

• The HAL environment includes only the
features used by the application

– If the Nios II hardware system contains exactly the
peripherals used by the application, the HAL
contains only the drivers necessary to control the
hardware

Controlling code size (2)

• Available options to reduce code footprint (size)

– Compiler optmisation

• Some optimisation flags which control the trade-off
between increasing speed and reducing memory use

– Reduced device driver

• Lighter device driver version (slower and less functions)

Controlling code size (3)

• Available options to reduce code footprint (size)
– Reduce the File Descriptor Pool

• The file descriptors that access character mode devices and
files are allocated from a file descriptor pool. It can be changed
through a BSP setting. The default is 32

– Use /dev/null
• At boot time, standard input, standard output, and standard

error are all directed towards the null device, that is, /dev/null.
After all drivers are installed, these streams are redirected to
the channels configured in the HAL

• The footprint of the code that performs this redirection is
small, but you can eliminate it entirely by selecting null for
stdin, stdout, and stderr when stdio is not used

• You can control the assignment of stdin, stdout, and stderr
channels by manipulating BSP settings

Controlling code size (4)

• Available options to reduce code footprint (size)

– Use the Small newlib C Library. Some limitations:

• No floating-point support for printf() family of routines

• No support for scanf() family of routines

• No support for seeking

• No support for opening/closing FILE *. Only pre-opened stdout,
stderr, and stdin are available

• No buffering of stdio.h output routines

• No stdio.h input routines

• …

– Use UNIX-Style File I/O fully omitting the C library

• Standard I/O C functions can be emulated by application code

Controlling code size (5)

• Available options to reduce code footprint (size)
– Use the Minimal Character-Mode API

• If you can limit your use of character-mode I/O to very
simple features, you can reduce code footprint by using
the minimal character-mode API

• This API includes the following functions:
– alt_printf()

– alt_putchar()

– alt_putstr()

– alt_getchar()

• These functions are appropriate if the program only needs
to accept command strings and send simple text
messages.

Memory usage

Corresponds to physical
memories created w/

SoPC Builder.

Corresponds to virtual memories
where the linker place code, data,

stack, heap,...

Mapping

Automatic code placement

• The reset handler code is always placed at the
base of the .reset partition. The general exception
funnel code is always the first code in the section
that contains the exception address. By default,
the remaining code and data are divided into the
following output sections:
– .text All remaining code

– .rodata The read-only data

– .rwdata Read-write data

– .bss Zero-initialized data

Manually-controlled placement

• In your program source code, you can specify a
target memory section for each piece of code. In
C or C++, you can use the section attribute. This
attribute must be placed in a function prototype;
you cannot place it in the function declaration
itself

/* data should be initialized when using the section attribute */

int foo __attribute__ ((section (".ext_ram.rwdata"))) = 0;

void bar (void) __attribute__ ((section (".sdram.txt")));

void bar (void)

{

foo++;

}

Stack and heap placement

• By default, the heap and stack are placed in the same memory partition as
the .rwdata section

• The stack grows downwards (toward lower addresses) from the end of the
section

• The heap grows upwards from the last used memory in the .rwdata
section

• You can control the placement of the heap and stack by manipulating BSP
settings

• By default, the HAL performs no stack or heap checking. This makes
function calls and memory allocation faster, but it means that malloc() (in
C) and new (in C++) are unable to detect heap exhaustion

• You can enable run-time stack checking by manipulating BSP settings.
With stack checking on, malloc() and new() can detect heap exhaustion

• Stack checking has performance costs. If you choose to leave stack
checking turned off, you must code your program so as to ensure that it
operates within the limits of available heap and stack memory

