
SISTEMI EMBEDDED
AA 2012/2013

System Interconnect Fabric



System Interconnect Fabric

• Interconnect and logic resources to manage 
whole connectivity among all components in a 
Altera SoPC system

• Is automatically generated by the SoPC Builder

– Components must comply w/ the standardized
Avalon® interfaces, which are specialized for:

• Reading and writing registers and memory

• Streaming high-speed data

• Controlling off-chip devices



Example of a SoPC system 
Custom logic can be connected 
to a SoPC system by:
• An Avalon interface to the 

System Interconnect Fabric
• A PIO peripheral



Avalon interfaces (1)

• Avalon Memory Mapped Interface (Avalon-MM)

– An address-based read/write interface typical of 
master–slave connections

• Avalon Streaming Interface (Avalon-ST)

– Supports unidirectional flow of data, including 
multiplexed streams, packets, and DSP data

• Avalon Interrupt Interface

– An interface that allows components to signal events 
to other components



Avalon interfaces (2)
• Avalon Clock Interface

– An interface that drives or receives clocks (all Avalon 
interfaces are synchronous)

• Avalon Reset Interface
– An interface that provides reset connectivity

• Avalon Conduit Interface
– An interface type that accommodates individual signals or 

groups of signals that do not fit into any of the other Avalon 
types

• Avalon Tri-State Conduit Interface (Avalon-TC) 
– An interface to support connections to off-chip peripherals. 

Multiple peripherals can share pins through signal 
multiplexing, reducing the pin count of the FPGA and the 
number of traces on the PCB Avalon Interrupt Interface



Example of component 
interconnections within 
a Nios II system



Avalon Memory Mapped (MM) (1)

• Interconnect fabric based on Avalon MM 
interfaces supports

– Any number of master and slave components

• The master-to-slave relationship can be one-to-one, one-to-
many, many-to-one, or many-to-many

– Connection to both on- and off-chip devices 
(microprocessors, memories, UARTs, DMAs, timers,…)

– Master and slaves of different data widths

– Components operating in different clock domains

– Components using multiple Avalon-MM ports



Avalon Memory Mapped (MM) (2)

Example of a
Avalon MM-based 
interconnect fabric system



Avalon Memory Mapped (MM) (3)

Example of a Avalon MM slave component (write operation)



Functions of Avalon MM fabric

• Address Decoding

• Datapath Multiplexing

• Wait State Insertion

• Pipelined Read Transfers

• Arbitration for Multimaster Systems

• Burst Adapters



Address decoding (1)

• Address decoding logic forwards appropriate 
addresses to each slave

• Address decoding logic simplifies component 
design in the following ways:
– The system interconnect fabric selects a slave 

whenever it is being addressed by a master. Slave 
components do not need to decode the address to 
determine when they are selected

– Slave addresses are properly aligned to the slave 
interface

– Changing the system memory map does not involve 
manually editing HDL



Address decoding (2)

• Example of address decoding in case of
1 master and 2 slave

• The address decoding logic is controlled by the 
Base address setting in the SoPC Builder



Data path multiplexing
• Drives the writedata signal from the granted master to the selected 

slave, and the readdata signal from the selected slave back to the 
requesting master

• Example of the data path multiplexing logic for 1 master and 2 slaves

• In SOPC Builder, the generation of data path multiplexing logic is 
specified using the connections panel on the System Contents tab



Wait state insertion

• Wait states extend the duration of a transfer by one or 
more clock cycles

• Wait state insertion logic accommodates the timing 
needs of each slave or the wait due to arbitration in a 
multi-master system

• System interconnect fabric also inserts wait states in 
cases when slave read_enable and write_enable signals 
have specific setup or hold time requirements



Pipelined read transfer

• The Avalon-MM interface supports pipelined read 
transfers, allowing a pipelined master to start multiple 
read transfers in succession without waiting for the 
prior transfers to complete

• Pipelined transfers allow master-slave pairs to achieve 
higher throughput, even though the slave requires one 
or more cycles of latency to return data for each 
transfer

• SOPC Builder generates logic to handle pipeline latency 
based on the properties of the master and slaves in the 
system. When configuring a system in SOPC Builder, 
there are no settings that directly control the pipeline 
management logic in the system interconnect fabric



Read/Write transfers

Pipelined w/ waitrequest and fixed wait states (readWaitTime =2)

Fixed wait states at the slave interface (readWaitTime = 1; writeWaitTime = 2)

Generated by
the slave



Interrupts (1)

• In systems where components have interrupt 
request (IRQ) sender interfaces, the system 
interconnect fabric includes interrupt 
controller logic

• A separate interrupt (controller) router is 
generated for each interrupt receiver

• The interrupt controller aggregates IRQ signals 
from all interrupt senders, and maps them to 
user-specified values on the receiver inputs



Interrupts (2)

• Individual Requests IRQ Scheme

Router

Within the System 
Interconnect Fabric

Within the Nios II
processor



Reset distribution

• SOPC Builder generates the logic to drives the reset pulse 
to all components

• The system interconnect fabric distributes the reset signal 
conditioned for each clock domain
– The duration of the reset signal is at least one clock period

• The system interconnect fabric asserts the system-wide 
reset in the following conditions:
– The global reset input to the SOPC Builder system is asserted
– Any component asserts its resetrequest signal (eg. Watchdog)

• The global reset and reset requests are ORed together. This 
signal is then synchronized to each clock domain associated 
to an Avalon-MM port, which causes the asynchronous 
resets to be de-asserted synchronously



Component development flow
• Specification and definition

– Define the functionality of the component
– Determine component interfaces, such as Avalon-MM, 

Avalon-ST, interrupt, or other interfaces
– Determine the component clocking requirements; what 

interfaces are synchronous to what clock inputs
– If you want a microprocessor to control the component, 

determine the interface to software, such as the register 
map

• Implement the component in VHDL or Verilog HDL
• Import the component into SOPC Builder

– Use the component editor to create a _hw.tcl file that 
describes the component

– Instantiate the component into an SOPC Builder system



References

• Altera, “Avalon Interface Specifications,” 
mnl_avalon_spec.pdf

• Altera, “SoPC Builder User Guide,” 
ug_sopc_builder.pdf

– 2. System Interconnect Fabric for Memory-
Mapped Interfaces


