SISTEMI| EMBEDDED
AA 2011/2012

SOPC Nios |l
Interval Timer Core



Interval timer core (1)

32-bit and 64-bit counters
Control bits to start, stop, and reset the timer

Two count modes: count down once and continuous count-
down

Count-down period register

Option to enable or disable the interrupt request (IRQ)
when timer reaches zero

Optional watchdog timer feature that resets the system if
timer ever reaches zero

Optional periodic pulse generator feature that outputs a
pulse when timer reaches zero

Compatible with 32-bit and 16-bit processors
Device driver available in the HAL system library



Interval timer core (2)

* Block diagram

— 6x (32-bit counter) or 10x (64-bit counter)
16-bit registers (certain registers may not be present
depending on the configuration)

— Compatible w/ 16- and 32-bit processors

Register File

status

control

period_n

snap_n

T

Counter

Address &
Data
Avalon-MM <
slave interface IRQ
to on-chip resetrequest
logic <

(watchdog)

Control
Logic

timeout_pulse

>



Interval timer core (3)

Nios Il processor the core's to:

— Start and stop the timer
— Enable/disable the IRQ
— Specify count-down once or continuous count-down mode

A processor reads the status register for information about current timer activity
A processor can specify the timer period by a value to the

An internal counter counts down to zero, and whenever it reaches zero, it is
immediately reloaded from the period registers

A processor can read the current counter value by first writing to one of the snap
registers to request a coherent snapshot of the counter, and then reading the
snap registers for the full value
When the count reaches zero, one or more of the following events are triggered:
— If IRQs are enabled, an IRQ is generated
— The optional pulse-generator output is asserted for one clock period
— The optional watchdog output resets the system



Interval timer core (4a)

* |Instance configuration using SOPC Builder
MegaWizard

— Timeout period: determines the initial value of the
period registers; can be changed if depending on the
writeable period option

— Counter size: 32- or 64-bits

— Hardware options: 3 pre-set configurations
e Simple periodic interrupt
* Full-featured

* Watchdog
* Or custom



Interval timer core (4b)

— Register option
* Writeable period
* Readable snapshot
 Start/Stop control bits
— Output signals
* Timeout pulse (1 clock wide)
» System reset on timeout (watchdog)



Interval timer core (4d)

 Watchdog configuration:

— Set the Timeout Period to the desired "watchdog"
period

— Turn off Writeable period

— Turn off Readable snapshot

— Turn off Start/Stop control bits

— Turn off Timeout pulse

— Turn on System reset on timeout (watchdog)



Interval timer core (4e)

 Watchdog behaviour:
— |t comes out of reset stopped

— |t can be started by writing a 1 to the control register's
START bit. Once started, the timer can never be stopped

— If the internal counter reaches zero, the watchdog timer
resets the system by generating a pulse on its resetrequest
output.

— To prevent the system from resetting, the
processor/program must periodically reset the timer's
count-down value by writing one of the period registers
(the written value is ignored)

— If the processor fails to access the timer because, for
example, software stopped executing normally, the
watchdog timer resets the system and returns the system
to a defined state



Interval timer core (5a)

* Register map

Description of Bits
Offset Name R/W
15 4 3 2 1 0

0 status RW (1) RUN TO
1 control RW (1) STOP START CONT ITO
2 periodl RW Timeout Period — 1 (bits [15:0])

3 periodh RW Timeout Period — 1 (bits [31:16])

4 snapl RW Counter Snapshot (bits [15:0])

5 snaph RW Counter Snapshot (bits [31:16])




Interval timer core (5b)

* Status register

Bit Name R/W/C Description
The To (timeout) bitis set to 1 when the internal counter reaches zero. Once set by a timeout

0 TO RC event, the To bit stays set until explicitly cleared by a master peripheral. Write zero to the
status register to clear the To bit.

’ UN R The RUN bit reads as 1 when the internal counter is running; otherwise this bit reads as 0.
The rRUN bit is not changed by a write operation to the status register.




Interval timer core (5c)

* Control register

Bit Name R/W/C Description

If the 170 bit is 1, the interval timer core generates an IRQ when the status register’s To

0 110 RW bit is 1. When the 1T0 bit is 0, the timer does not generate IRQs.
The coNT (continuous) bit determines how the internal counter behaves when it reaches
1 CONT RW zero. If the cont bit is 1, the counter runs continuously until it is stopped by the sToP bit.

If conT is 0, the counter stops after it reaches zero. When the counter reaches zero, it
reloads with the value stored in the period registers, regardless of the conT bit.

Writing a 1 to the sTART bit starts the internal counter running (counting down). The
START bit is an event bit that enables the counter when a write operation is performed. If
2 | START (1) W the timer is stopped, writing a 1 to the START bit causes the timer to restart counting from
the number currently stored in its counter. If the timer is already running, writing a 1 to
START has no effect. Writing O to the sTART bit has no effect.

Writing a 1 to the sTop bit stops the internal counter. The sTop bit is an event bit that
causes the counter to stop when a write operation is performed. If the timer is already
3 | STOP (1) W stopped, writing a 1 to sTop has no effect. Writing a 0 to the stop bit has no effect.

If the timer hardware is configured with Start/Stop control hits off, writing the sTop bit
has no effect.




Interval timer core (5d)

* period_n Registers
— The period_n registers together store the timeout period value

— The internal counter is loaded with the value stored in these
registers whenever one of the following occurs:
* A write operation to one of the period_n register
* The internal counter reaches O

— The timer's actual period is one cycle greater than the value
stored in the period_n registers

— Writing to one of the period_n registers stops the internal
counter, except when the hardware is configured with
Start/Stop control bits off

— When the hardware is configured with Writeable period
disabled, writing to one of the period_n registers causes the
counter to reset to the fixed Timeout Period specified at system
generation time



Interval timer core (5e)

* snap_n registers

— A master peripheral may request a coherent
snapshot of the current internal counter by
performing a write operation (write-data ignored)
to one of the snap _n registers

— When a write occurs, the value of the counter is
copied to the snap_n registers



Interval timer core (6)

* Interrupt Behaviour

— The interval timer core generates an IRQ
whenever the internal counter reaches zero and
the ITO bit of the control register is set to 1

— Acknowledging the IRQ in one of two ways:
* Clear the TO bit of the status register

* Disable interrupts by clearing the ITO bit of the control
register

 Failing to acknowledge the IRQ produces an undefined
result



Software programming model (1)

System clock HAL Timestamp HAL
- sys/alt_alarm.h - sys/alt_timestamp.h
HAL
- altera_avalon_timer_sc.c - altera_avalon_timer_ts.c
- altera_avalon_timer.h
Device
Driver - altera_avalon_timer_regs.h
_________________________________ - system.h
0 STATUS
Interval time 4 CONTROL
core 8 PERIOD_N
16 SNAP_N




Software programming model (2)

ne device model of the interval timer can be
nosen through the BSP editor

nis property is recorded in system.h

/%
* hal configuration
*

*/

#define ALT MAX FD 32
#define ALT SYS CLK INTERVAL TIMER
#define ALT TIMESTAMP CLK none



System clock HAL

» Useful for scheduling periodic tasks
— Can generate the system tick

— The period of the system tick is a multiple of the
Timeout period of the interval timer

e Basic HAL functions:

— int (alt_alarm™ alarm, alt_u32 nticks,
alt_u32 (*callback) (void* context), void™* context );

— void (alt_alarm™ alarm);
— alt_u32 (void);
— alt_u32 (void);

— See the HAL API Reference for how to use these functions!



Timestamp HAL

e Useful for measuring interval times with high
resolution (period of the interval timer clock!)

— The interval timer peripheral must have the
period _n register which is set to the maximum
value by the relevant HAL

 Basic functions:

— int (void);
—alt_u32 (void);
—alt_u32 (void);

— See the HAL API Reference for how to use these
functions!



Putting into practice

e Using the Timestamp HAL profile the
wait_ms() function

e Using the System clock HAL make a LED
blinking with a given period



References

* Altera, “Embedded Peripherals IP User Guide,”
ug_embedded ip.pdf

— 28. Interval Timer

* Altera “Nios Il Software Developer’s
Handbook,” n2sw nii5v2.pdf

— Chapters 6. Developing Programs Using Hardware
Abstraction Layer



