
SISTEMI EMBEDDED
AA 2011/2012

SOPC Nios II
Interval Timer Core

Interval timer core (1)

• 32-bit and 64-bit counters
• Control bits to start, stop, and reset the timer
• Two count modes: count down once and continuous count-

down
• Count-down period register
• Option to enable or disable the interrupt request (IRQ)

when timer reaches zero
• Optional watchdog timer feature that resets the system if

timer ever reaches zero
• Optional periodic pulse generator feature that outputs a

pulse when timer reaches zero
• Compatible with 32-bit and 16-bit processors
• Device driver available in the HAL system library

Interval timer core (2)
• Block diagram

– 6x (32-bit counter) or 10x (64-bit counter)
16-bit registers (certain registers may not be present
depending on the configuration)

– Compatible w/ 16- and 32-bit processors

Interval timer core (3)
• Nios II processor writes the core's control register to:

– Start and stop the timer

– Enable/disable the IRQ

– Specify count-down once or continuous count-down mode

• A processor reads the status register for information about current timer activity

• A processor can specify the timer period by writing a value to the period registers

• An internal counter counts down to zero, and whenever it reaches zero, it is
immediately reloaded from the period registers

• A processor can read the current counter value by first writing to one of the snap
registers to request a coherent snapshot of the counter, and then reading the
snap registers for the full value

• When the count reaches zero, one or more of the following events are triggered:

– If IRQs are enabled, an IRQ is generated

– The optional pulse-generator output is asserted for one clock period

– The optional watchdog output resets the system

Interval timer core (4a)

• Instance configuration using SOPC Builder
MegaWizard
– Timeout period: determines the initial value of the

period registers; can be changed if depending on the
writeable period option

– Counter size: 32- or 64-bits

– Hardware options: 3 pre-set configurations
• Simple periodic interrupt

• Full-featured

• Watchdog

• Or custom

Interval timer core (4b)

– Register option

• Writeable period

• Readable snapshot

• Start/Stop control bits

– Output signals

• Timeout pulse (1 clock wide)

• System reset on timeout (watchdog)

Interval timer core (4d)

• Watchdog configuration:

– Set the Timeout Period to the desired "watchdog"
period

– Turn off Writeable period

– Turn off Readable snapshot

– Turn off Start/Stop control bits

– Turn off Timeout pulse

– Turn on System reset on timeout (watchdog)

Interval timer core (4e)

• Watchdog behaviour:
– It comes out of reset stopped
– It can be started by writing a 1 to the control register's

START bit. Once started, the timer can never be stopped
– If the internal counter reaches zero, the watchdog timer

resets the system by generating a pulse on its resetrequest
output.

– To prevent the system from resetting, the
processor/program must periodically reset the timer's
count-down value by writing one of the period registers
(the written value is ignored)

– If the processor fails to access the timer because, for
example, software stopped executing normally, the
watchdog timer resets the system and returns the system
to a defined state

Interval timer core (5a)

• Register map

Interval timer core (5b)

• Status register

Interval timer core (5c)

• Control register

Interval timer core (5d)
• period_n Registers

– The period_n registers together store the timeout period value
– The internal counter is loaded with the value stored in these

registers whenever one of the following occurs:
• A write operation to one of the period_n register
• The internal counter reaches 0

– The timer's actual period is one cycle greater than the value
stored in the period_n registers

– Writing to one of the period_n registers stops the internal
counter, except when the hardware is configured with
Start/Stop control bits off

– When the hardware is configured with Writeable period
disabled, writing to one of the period_n registers causes the
counter to reset to the fixed Timeout Period specified at system
generation time

Interval timer core (5e)

• snap_n registers

– A master peripheral may request a coherent
snapshot of the current internal counter by
performing a write operation (write-data ignored)
to one of the snap_n registers

– When a write occurs, the value of the counter is
copied to the snap_n registers

Interval timer core (6)

• Interrupt Behaviour

– The interval timer core generates an IRQ
whenever the internal counter reaches zero and
the ITO bit of the control register is set to 1

– Acknowledging the IRQ in one of two ways:

• Clear the TO bit of the status register

• Disable interrupts by clearing the ITO bit of the control
register

• Failing to acknowledge the IRQ produces an undefined
result

Software programming model (1)

STATUS
Interval time

core PERIOD_N

CONTROL

SNAP_N

system.h

Device
Driver altera_avalon_timer_regs.h

sys/alt_alarm.h

0

4

8

16

altera_avalon_timer.h

altera_avalon_timer_sc.c

sys/alt_timestamp.h

altera_avalon_timer_ts.c

System clock HAL Timestamp HAL

HAL

Software programming model (2)

• The device model of the interval timer can be
chosen through the BSP editor

• This property is recorded in system.h

/*

 * hal configuration

 *

 */

#define ALT_MAX_FD 32

#define ALT_SYS_CLK INTERVAL_TIMER

#define ALT_TIMESTAMP_CLK none

System clock HAL

• Useful for scheduling periodic tasks

– Can generate the system tick

– The period of the system tick is a multiple of the
Timeout period of the interval timer

• Basic HAL functions:
– int alt_alarm_start(alt_alarm* alarm, alt_u32 nticks,

alt_u32 (*callback) (void* context), void* context);

– void alt_alarm_stop(alt_alarm* alarm);

– alt_u32 alt_ticks_per_second(void);

– alt_u32 alt_nticks(void);

– See the HAL API Reference for how to use these functions!

Timestamp HAL

• Useful for measuring interval times with high
resolution (period of the interval timer clock!)
– The interval timer peripheral must have the

period_n register which is set to the maximum
value by the relevant HAL

• Basic functions:
– int alt_timestamp_start(void);

– alt_u32 alt_timestamp(void);

– alt_u32 alt_timestamp_freq(void);

– See the HAL API Reference for how to use these
functions!

Putting into practice

• Using the Timestamp HAL profile the
wait_ms() function

• Using the System clock HAL make a LED
blinking with a given period

References

• Altera, “Embedded Peripherals IP User Guide,”
ug_embedded_ip.pdf

– 28. Interval Timer

• Altera “Nios II Software Developer’s
Handbook,” n2sw_nii5v2.pdf

– Chapters 6. Developing Programs Using Hardware
Abstraction Layer

