
SISTEMI EMBEDDED
AA 2012/2013

SOPC Nios II
Hardware Abstraction Layer

Layered software

Hardware Abstraction Layer (1)

• Isolates User Program from hardware
implementation

• Uses the services provided by the Device Driver Layer
to create a standard interface (API: Application
Programming Interface) towards the User Program

• Automatically generated by the Board Support
Package (BSP) from specific hardware configuration
contained in the SOPC information file (.sopcinfo)

• Integrated w/ Standard C Library
– Peripherals can share the same API (eg. printf(), fopen(),

fwrite(), …)

Hardware Abstraction Layer (2)

• Pros:

– Speed-up software development

– Code reusability

– Tolerance to hardware changes during software
developing

• Cons:

– Less optimized code

• Larger memory footprint

• Slower performances

Hardware Abstraction Layer (3)

• HAL additional services:

– System Initialization

• Performs initialization tasks for the processor and the
runtime environment before main()

– Device Initialization

• Instantiates and initializes each device in the system
before main()

Generic Device Models

• Character-mode devices: Hardware peripherals that send and/or receive
characters serially, such as a UART

• Timer devices: Hardware peripherals that count clock ticks and can
generate periodic interrupt requests

• File subsystems: A mechanism for accessing files stored in physical
device(s)

• Ethernet devices: Devices that provide access to an Ethernet connection
for a networking stack such as the Altera-provided NicheStack® TCP/IP
Stack - Nios II Edition

• Direct memory access (DMA) devices: Peripherals that perform bulk data
transactions from a data source to a destination

• Flash memory devices: Nonvolatile memory devices that use a special
programming protocol to store data

Benefits of a Device Model

• HAL defines a set of functions to initialize and
access each class of device

• Application use a standard API independent
of the device driver implementation (e.g.
printf(), fopen(),... for character-mode devices
and file subsystems)

• Device driver provides a set of driver functions
according to the device class that are used by
the standard API to manipulate the peripheral
of the specific class

Peripherals supported by HAL (1)

• Character mode devices:
– UART core
– JTAG UART core
– LCD 16207 display controller

• Timer devices:
– Timer core

• File subsystems:
– Altera host based file system
– Altera read-only zip file system

• Ethernet devices:
– Triple Speed Ethernet MegaCore® function
– LAN91C111 Ethernet MAC/PHY Controller

• DMA devices:
– DMA controller core
– Scatter-gather DMA controller core

• Flash memory devices:
– Common flash interface compliant flash chips
– Altera’s erasable programmable configurable serial (EPCS) serial configuration device

controller

Peripherals supported by HAL (2)

• All peripherals (both from Altera and third party vendors)
must provide a header file that defines the peripheral’s
low-level interface to hardware

• Some peripherals might not provide device drivers. If
drivers are not available, use only the definitions provided
in the header files to access the hardware. Do not use
unnamed constants, such as hard-coded addresses, to
access a peripheral

• Some peripherals provide dedicated functions that are not
based on the HAL generic device models. For example,
Altera provides a general-purpose parallel I/O (PIO) core for
use with the Nios II processor system. The PIO peripheral
does not fit in any class of generic device models provided
by the HAL, and so it provides a header file and a few
dedicated functions only

Structure of a project w/ HAL (1)

Structure of a project w/ HAL (2)

• Two projects:
– User application project

– BSP project

• The executable image (.elf) is the result of
building both projects

• The BSP project incorporates the HAL and device
drivers relevant to the specific hardware system
defined by .sopcinfo file

• The BSP can be update when hardware system
changes

System description file (1)

• system.h contains all information related to
the hardware system

– The hardware configuration of the peripheral

– The base address

– Interrupt request (IRQ) information (if any)

– A symbolic name for the peripheral

• Generated automatically from .sopcinfo file
and HAL BSP properties

System description file (2)

• Extracts from system.h related to the DE2 Basic
Computer

/*

* Pushbuttons configuration

*

*/

#define ALT_MODULE_CLASS_Pushbuttons altera_up_avalon_parallel_port

#define PUSHBUTTONS_BASE 0x10000050

#define PUSHBUTTONS_IRQ 1

#define PUSHBUTTONS_IRQ_INTERRUPT_CONTROLLER_ID 0

#define PUSHBUTTONS_NAME "/dev/Pushbuttons"

#define PUSHBUTTONS_SPAN 16

#define PUSHBUTTONS_TYPE "altera_up_avalon_parallel_port"

System description file (3)
/*

* Interval_timer configuration

*

*/

#define ALT_MODULE_CLASS_Interval_timer altera_avalon_timer

#define INTERVAL_TIMER_ALWAYS_RUN 0

#define INTERVAL_TIMER_BASE 0x10002000

#define INTERVAL_TIMER_COUNTER_SIZE 32

#define INTERVAL_TIMER_FIXED_PERIOD 0

#define INTERVAL_TIMER_FREQ 50000000u

#define INTERVAL_TIMER_IRQ 0

#define INTERVAL_TIMER_IRQ_INTERRUPT_CONTROLLER_ID 0

#define INTERVAL_TIMER_LOAD_VALUE 6249999ull

#define INTERVAL_TIMER_MULT 0.0010

#define INTERVAL_TIMER_NAME "/dev/Interval_timer"

#define INTERVAL_TIMER_PERIOD 125.0

#define INTERVAL_TIMER_PERIOD_UNITS "ms"

#define INTERVAL_TIMER_RESET_OUTPUT 0

#define INTERVAL_TIMER_SNAPSHOT 1

#define INTERVAL_TIMER_SPAN 32

#define INTERVAL_TIMER_TICKS_PER_SEC 8u

#define INTERVAL_TIMER_TIMEOUT_PULSE_OUTPUT 0

#define INTERVAL_TIMER_TYPE "altera_avalon_timer"

HAL API (1)

• Unix-style functions

– Facilitate portability of existing programs to Nios II

• HAL API can be further encapsulated by the C
standard library

– E.g. HAL API functions are used by the C standard
library defined in stdio.h to perform underlying
device access

– Programmer can use both the C standard library
or the HAL API functions

HAL API (2)
• Most commonly-used HAL API functions:

int open(const char* pathname, int flags,
mode_t mode)

Opens a file or device and returns a file
descriptor

int close(int fd) Closes the file descriptor fd

int read(int fd, void *ptr, size_t len) Reads a block of data from a file or device

int write(int fd, const void *ptr, size_t len) Writes a block of data to a file or device

off_t lseek(int fd, off_t ptr, int whence) Moves the read/write pointer associated with
the file descriptor fd

int fstat(int fd, struct stat *st) Obtains information about the capabilities of
an open file descriptor

int ioctl(int fd, int req, void* arg) Allows application code to manipulate the I/O
capabilities of a device driver in driver-specific
ways

Example (1)

• Using character-mode devices

– A character-mode device (e.g. JTAG-UART) can be
attached to stdin, stdout, stderr streams (BSP
property)

• printf() is available to access stdout!

#include <stdio.h>

int main ()

{

printf ("Hello world!");

return 0;

}

Example (2)

• Writing characters to the UART device “/dev/uart1”

#include <stdio.h>

#include <string.h>

int main (void) {

char* msg = "hello world";

FILE* fp;

fp = fopen ("/dev/uart1", "w");

if (fp!=NULL) {

fprintf(fp, "%s",msg);

fclose (fp);

}

return 0;

}

Null device

• /dev/null

• Included by all HAL-based systems

• It is not connected to any hardware (virtual
device)

• Writing to /dev/null has no effect and all data
are discarded

• Used for safe I/O redirection during system
startup and to sink unwanted data

Device implementation

• alt_dev.h

typedef struct alt_dev_s alt_dev;

struct alt_dev_s {

alt_llist llist; /* for internal use */

const char* name;

int (*open) (alt_fd* fd, const char* name, int flags, int mode);

int (*close) (alt_fd* fd);

int (*read) (alt_fd* fd, char* ptr, int len);

int (*write) (alt_fd* fd, const char* ptr, int len);

int (*lseek) (alt_fd* fd, int ptr, int dir);

int (*fstat) (alt_fd* fd, struct stat* buf);

int (*ioctl) (alt_fd* fd, int req, void* arg);

};

Parallel Port HAL structure

DATA

Parallel
Port INTERRUPTMASK

DIRECTION

EDGECAPTURE

system.h

Device
Driver

HAL
(Custom Device)

altera_up_avalon_parallel_port_regs.h

altera_up_avalon_parallel_port.h

altera_up_avalon_parallel_port.c

0

4

8

12

Parallel Port Device Driver
• altera_up_avalon_parallel_port_regs.h

#ifndef __ALTERA_UP_AVALON_PARALLEL_PORT_REGS_H__

#define __ALTERA_UP_AVALON_PARALLEL_PORT_REGS_H__

#include <io.h>

// Data Register

#define ALT_UP_PARALLEL_PORT_DATA 0

#define IOADDR_ALT_UP_PARALLEL_PORT_DATA(base) \

__IO_CALC_ADDRESS_NATIVE(base, ALT_UP_PARALLEL_PORT_DATA)

#define IORD_ALT_UP_PARALLEL_PORT_DATA(base) \

IORD(base, ALT_UP_PARALLEL_PORT_DATA)

#define IOWR_ALT_UP_PARALLEL_PORT_DATA(base, data) \

IOWR(base, ALT_UP_PARALLEL_PORT_DATA, data)

/* ... */

#endif /* __ALTERA_UP_AVALON_PARALLEL_PORT_REGS_H__ */

Parallel Port HAL
• altera_up_avalon_parallel_port.h

– Declares/Defines functions/MACROS to manage the device by the user
application: open device, read and write data, …

– Defines ancillary structure and MACROS to be used by the HAL
runtime environment for device initialization

• altera_up_avalon_parallel_port.c

– Defines:
alt_up_parallel_port_dev*alt_up_parallel_port_open_dev(const char* name);

HAL runtime environment

• alt_sys_init.c

– Allocates the device structures for the peripherals
present in the hardware system

– Initializes all the device

• The device structures are managed by a list

References

• Altera “Nios II Software Developer’s
Handbook,” n2sw_nii5v2.pdf

– Section II. (Chapters 5, 6, 7) Hardware Abstraction
Layer,

– Chapter 14. HAL API Reference

