
SISTEMI EMBEDDED
AA 2012/2013

Fixed-size integer types
Bit Manipulation

Integer types

• 2 basic integer types: char, int

• and some type-specifiers:
– sign: signed, unsigned

– size: short, long

• The actual size of an integer type depends on the
compiler implementation
– sizeof(type) returns the size (in number of bytes) used to

represent the type argument

– sizeof(char) ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)...
≤ sizeof(long long)

Fixed-size integers (1)

• In embedded system programming
integer size is important

– Controlling minimum and maximum values that
can be stored in a variable

– Increasing efficiency in memory utilization

– Managing peripheral registers

• To increase software portability, fixed-size
integer types can be defined in a header file
using the typedef keyword

Fixed-size integers (2)

• C99 update of the ISO C standard defines a set
of standard names for signed and unsigned
fixed-size integer types

– 8-bit: int8_t, uint8_t

– 16-bit: int16_t, uint16_t

– 32-bit: int32_t, uint32_t

– 64-bit: int64_t, uint64_t

• These types are defined in the library header
file stdint.h

Fixed-size integers (3)

• Altera HAL provides the header file alt_types.h
with definition of fixed-size integer types:

typedef signed char alt_8;

typedef unsigned char alt_u8;

typedef signed short alt_16;

typedef unsigned short alt_u16;

typedef signed long alt_32;

typedef unsigned long alt_u32;

typedef long long alt_64;

typedef unsigned long long alt_u64;

Logical operators

• Integer data can be interpreted as logical values in
conditions (if, while, ...) or in logical expressions:

– =0, FALSE

– ANY OTHER VALUE, TRUE

• Logical operators:

• Integer data can store the result of a logical
expressions: 1 (TRUE), 0 (FALSE)

AND &&

OR ||

NOT !

Bitwise operators (1)

• Operate on the bits of the operand/s

AND &

OR |

XOR ^

NOT ~

SHIFT LEFT <<

SHIFT RIGHT >>

Shift operators

• A << n
– The result is the bits of A moved to the left by n

positions and padded on the right with 0

– It is equivalent to multiply A by 2n if the result can
be represented

• A >> n
– The result is the bits of A moved to the right by n

positions and padded on the left with 0 if type of A
is unsigned or with the MSB of A if type is signed

– It is equivalent to divide A by 2n

Bit manipulation (1)

• << and | operands can be used to create
expressive binary constants by specifying the
positions of the bits equal to 1
– E.g. (1<<7) | (1<<5) | (1<<0) = 0xA1 (10100001)

– Better not to use “magic numbers” as 7, 5 and 0.
Use instead symbolic names to specify
bit positions
• For instance, the symbolic names can reflect the function of

the bit within a peripheral register

– (1<<X) can be encapsulated into a macro:
• #define BIT(X) (1<<(X))

Bit manipulations (2)

• Altering only the bits in given positions
– E.g. bits: 7, 5, 0

– #define MSK = BIT(7) | BIT(5) | BIT(0)

• Clearing bits
– A &= ~MSK;

• Setting bits
– A |= MSK;

• Toggling bits
– A ^= MSK;

Bit manipulations (3)

• Testing bits

– E.g. do something if bit 0 (LSB) of A is set,
regardeless of the other bits of A

– if (A & BIT(0)) {
/* some code here */

}

Accessing Memory-mapped regs

• E.g. PIO peripheral (full set of regs)

• We can define a C struct that overlays the
peripherals regs

C struct overlay (1)

typedef struct {
uint32_t data; / *offset 0 */
uint32_t direction; / *offset 4 */
uint32_t int_mask; / *offset 8 */
uint32_t edge_capture; / *offset 12 */
uint32_t outset; / *offset 16 */
uint32_t outclear; / *offset 20 */

} volatile pio_t;

/* Define a pointer to MyPio PIO peripheral */
#define MY_PIO_BASE_ADDRESS 0x10000000 /* Base address of MyPio */

pio_t *pMyPio = (pio_t *) MY_PIO_BASE_ADDRESS;

C struct overlay (2)

• What about?

/* Setting bit 7 without altering the other bits */
pMyPio->outset = BIT(7);

/* Clearing bit 3 without altering the other bits */
pMyPio->outclear = BIT(3);

/* Do something if bit 5 of the edge_capture reg is set*/
if(pMyPio->edge_capture & BIT(5)) {

/* Some code here */
}

/* Setting bit 7 without altering the other bits */
pMyPio->data |= BIT(7);

/* Clearing bit 3 without altering the other bits */
pMyPio->data &= BIT(3);

