SISTEMI EMBEDDED
AA 2013/2014

SOPC Nios |l
Interval Timer Core

Federico Baronti

DE2 Basic Computer

Host computer

[_/— (USB connection)

L

USB
Blaster

JTAG port

KEY,

Altera DE2 Board

Reset

Nios II processor

RS-22
chip

o
o

Interval
timer

Serial port

|

1T

System On-chip Cyclone I1
ID memory FPGA chip
Parallel Parallel Parallel SRAM SDRAM Parallel Parallel
port ports ports controller controller port ports
Slider switches ~ 7-Segment LEDR 7.9 SRIL\M SD‘?,‘AM Pushbuttons Expansion
SW;7o HEX7-HEX0 LEDGg, cnip cnip KEY;. 1P0, IP1

Interval timer core (1)

 Hardware configuration:
— 32-bit or 64-bit internal

— Two count modes: count down once and continuous count-
down; starting value loaded from the period register

— Option to enable or disable the interrupt request (IRQ) when
timer reaches zero

— Optional watchdog timer feature that resets the system if
counter reaches zero

— Optional periodic pulse generator feature that outputs a
pulse when counter reaches zero

 Compatible with 32-bit and 16-bit processors
* Device driver available in the HAL system library

Interval timer core (2)

* Block diagram

— 6x (32-bit counter) or 10x (64-bit counter) 16-bit
registers (certain registers may not be present
depending on the core configuration)

Avalon-MM
slave interface
to on-chip
logic

<

Counter

\

Register File
status
control

/ Address & period_n
< Data snap_n
IRQ
<
resetrequest CO”W
Logic
(watchdog)

timeout_pulse

>

Interval timer core (3)

Nios Il processor the core's to:
— Start and stop the counter
— Enable/disable the IRQ
— Specify count-down once or continuous count-down mode
A processor to gather current timer activity
A processor can specify the timer period by
a value to the

— An internal counter counts down to zero, and whenever it reaches zero,
it is immediately reloaded from the period registers

When the count reaches zero, one or more of the following events
are triggered:

— If IRQs are enabled, an IRQ is generated

— The optional pulse-generator output is asserted for one clock period

— The optional watchdog output resets the system

Interval timer core (4a)

* Instance configuration using SOPC Builder/Qsys
MegaWizard

'~ Block Diagram

Show signals

Interval_timer
clk
@Jk clk irq
reset
*@Set_n reset_n
s1
ddress[2..0] address
ritedata[15.0] ¥ - ita
addata[15..0] readdata
hpsel&d chipselect
rte_n write_n

irg
ir&

altera_avalon_timer

| [~ Timeout period

Period: 125.0

Units: ms v

'~ Timer counter size
Counter Size: |32 o |

'~ Hardware options
Presets:

: Custom v

'~ Registers
|| Fixed period

Readable snapshot

("] No Start/Stop control bits

'~ Output signals
(| Timeout pulse (1 clock wide)

|| System reset on timeout (Watchdog)

Interval timer core (4b)

 Timeout period: determines the initial value of
the period registers; can be changed depending
on the fixed period option

* Counter size: 32- or 64-bits
 Hardware options: 3 pre- set conﬁgurahons

lllllllllll m] N

— Simple periodic interrupt “= e

— Full-featured

— Watchdog

aaaaaaaaaaaaaaaaa

— Or custom

Interval timer core (4c)

4
l " [~ Timeout period

* Register options

— Writeable period

Presets: | custom

— Readable snapshot

— Start/Stop control bits

* Output signals
— Timeout pulse (1 clock wide)
— System reset on timeout (watchdog)

Interval timer core (4d)

 Watchdog configuration:

— Set the Timeout Period to the desired "watchdog"
period

— Turn off Writeable period

— Turn off Readable snapshot

— Turn off Start/Stop control bits

— Turn off Timeout pulse

— Turn on System reset on timeout (watchdog)

Interval timer core (4d)

 Watchdog behaviour:
— After reset, counter is stopped

— |t must be started by writing a 1 to the control register's
START bit. Once started, the timer can never be stopped

— If the internal counter reaches zero, the watchdog timer
resets the system by generating a pulse on its reset request
output

— To prevent the system from resetting, the processor/
program must periodically reset the counter's count-down
value by writing one of the period registers (the written
value is ignored)

— |If the processor fails to access the timer because, for
example, software has stopped executing normally, the
watchdog timer resets the system and returns the system to
a defined state

Interval timer core (5a)

* Register map (32-bit internal counter)

e Offset must be multiplied by 4 (32-bit Avalon
data bus) and added to the Interval timer BASE
ADDRESS to obtain the register address

Description of Bits
Offset Name R/W
15 4 3 2 1 0

0 status RW (1) RUN TO
1 control RW (1) STOP START CONT ITO
2 periodl RW Timeout Period — 1 (bits [15:0])

3 periodh RW Timeout Period — 1 (bits [31:16])

4 snapl RW Counter Snapshot (bits [15:0])

S snaph RW Counter Snapshot (bits [31:16])

Interval timer core (5b)

* Status register

Bit Name R/W/C Description
The TO (timeout) bit is set to 1 when the internal counter reaches zero. Once set by a timeout
0 TO RC event, the TO bit stays set until explicitly cleared by a master peripheral. Write zero to the
status register to clear the TO bit.
: U R The RUN bit reads as 1 when the internal counter is running; otherwise this bit reads as 0.
The RUN bit is not changed by a write operation to the status register.

Interval timer core (5c¢)

* Control register

Bit

R/W/C

Description

ITO

RW

If the 1TO bit is 1, the interval timer core generates an IRQ when the status register’s To
bit is 1. When the 170 bit is 0, the timer does not generate IRQs.

CONT

RW

The conT (continuous) bit determines how the internal counter behaves when it reaches
zero. If the conT bit is 1, the counter runs continuously until it is stopped by the STOP bit.
If conT is 0, the counter stops after it reaches zero. When the counter reaches zero, it
reloads with the value stored in the period registers, regardless of the CONT bit.

START (1)

Writing a 1 to the START bit starts the internal counter running (counting down). The
START bit is an event bit that enables the counter when a write operation is performed. If
the timer is stopped, writing a 1 to the START bit causes the timer to restart counting from
the number currently stored in its counter. If the timer is already running, writing a 1 to
START has no effect. Writing 0 to the START bit has no effect.

STOP (1)

Writing a 1 to the sToP bit stops the internal counter. The sTOP bit is an event bit that
causes the counter to stop when a write operation is performed. If the timer is already
stopped, writing a 1 to sSTOP has no effect. Writing a 0 to the stop bit has no effect.

If the timer hardware is configured with Start/Stop control bits off, writing the STOP bit
has no effect.

Interval timer core (5d)

Registers
— The registers store the timeout period value

— The internal counter is loaded with the value stored in
these registers whenever one of the following occurs:

* A write operation to one of the register
* The internal counter reaches 0
— Writing to one of the registers stops the

internal counter, except when the hardware is
configured with Start/Stop control bits off

— When the hardware is configured with Writeable period
disabled, writing to one of the registers
causes the counter to reset to the fixed Timeout Period
specified at system generation time

— The timer's actual period is one cycle greater than the
value stored in the registers

Interval timer core (5d)

registers

— The processor may request a coherent snapshot of
the current internal counter by performing a write
operation (write-data ignored) to one of the
registers

— When a write occurs, the value of the counter is
copied to the registers

Interval timer core (6)

— The interval timer core generates an IRQ whenever
the internal counter reaches zero and the ITO bit of
the control registeris setto 1

— Acknowledging the IRQ in one of two ways:

* Clear the TO bit of the status register

* Disable interrupts by clearing the ITO bit of the control
register

— Failing to acknowledge the IRQ produces an
undefined result

Software programming model (1)

HAL
(Custom Device)

- sys/alt_alarm.h

- sys/alt_timestamp.h

- altera_avalon_timer_sc.c - altera_avalon_timer_tc.c

Device
Driver

- altera_up_avalon_timer.h

- altera_up_avalon_timer_regs.h

_________________________________ - system.h

Interval timer
core

Address - base 31
0

4

8

12

16

20

STATUS

CONTROL

PERIOD_L

PERIOD_H

SNAP L

SNAP _H

Software programming model (2a)

o T
C
o T

ne device model of the interval timer can be
nosen through the BSP editor

nis property is recorded in system.h

/%
* hal configuration
*

*/

#define ALT MAX FD 32
#define ALT SYS CLK INTERVAL TIMER
#define ALT TIMESTAMP CLK none

Software programming model (2b
HAL/sys clk _timer mapped to Interval_timer

=-Settings ~ || hal
=H-Common

=-hal Name: hal.sys_clk_timer
-enable_gprof

:-enable_reduced_device_drivers Value: Interval_timer ~
~-enable_sim_optimize

~~enable_small_c_library Description: Slave descriptor of the system dock timer device. This device

stderr = provides a periodic interrupt ("tick™) and is typically required for
--stdin RTOS use. This setting defines the value of ALT_SYS_CLK in
-stdout system.h.

--timestamp_timer

=Hlinker

¢ i-enable_exception_stack
--gnable_interrupt_stack

HAL/ﬁmestamp_ﬁmer mapped to Interval _timer

(=-Settings - || hal

=-Common

© E-hal Name: haltimestamp_timer
---enable_gprof A _
~-enable_reduced_device_drivers Value: Interval_timer «
---enable_sim_optimize ' '
~~enable_small_c_library Description: Slave descriptor of timestamp timer device. This device is used by
~-stderr = Altera HAL timestamp drivers for high-resolution time
=-stdin measurement. This setting defines the value of
...stdout ALT_TIMESTAMP_CLK in system.h.
--sys_clk_timer
=Hlinker

-enable_exception_stack

System clock HAL

» Useful for scheduling periodic tasks
— Can generate the system tick

— The period of the system tick is a multiple of the Timeout
period of the interval timer

 Basic HAL functions:

— int alt_alarm_start(alt_alarm™ alarm, alt_u32 nticks,
alt_u32 (*callback) (void* context), void* “context);

— void alt_alarm_stop(alt_alarm* alarm);
— alt_u32 alt_ticks_per_second(void);
— alt_u32 alt_nticks(void);

— See the HAL API Reference for how to use these
functions!

Timestamp HAL

* Useful for measuring interval times with high
resolution (period of the interval timer clock!)

— The interval timer peripheral must have the period n
register which is set to the maximum value by the
relevant HAL

* Basic HAL functions:
— int alt_timestamp_start(void);
—alt_u32 alt_timestamp(void);
— alt_u32 alt_timestamp_freq(void);

— See the HAL API Reference for how to use these
functions!

Putting into practice

e Use the Timestamp HAL to:

— Check the delay generated by the Wait_ms()
function: displays the result on stdio mapped to
JTAG_UART

Measure the time interval between the activation of a LED
and the pressure of a pushbutton

* Perform a configurable number of trials for each test

Make the time interval between two consecution LED
activations random

Display the result on the host Nios Il Console

References

* Altera, “Embedded Peripherals IP User Guide,”
ug _embedded ip.pdf

— 28. Interval Timer

e Altera “Nios Il Software Developer’s
Handbook,”

— Chapters 6. Developing Programs Using Hardware
Abstraction Layer

