
SISTEMI	EMBEDDED

The	C	Pre-processor
Fixed-size	integer	types

Bit	Manipulation

Federico	Baronti Last	version:	20170307

The	C PreProcessor CPP	(1)
• CPP is	a	program	called	by	the	compiler	that	
processes	the	text of	the	program	before	its	actual	
translation

• It	basically	does	the	following	operations:
– Includes	the	content	of	other	files	(usually	header files)
– Expands	the	SYMBOLS	with	their	related	definitions	
– Includes/Excludes	part	of	the	code	to	the	text	that	will	be	
actually	compiled

• These	actions	are	controlled	by	directives
– A	directive	is	a	single code	line	that	starts	with	#
– You	can	use	the	character	\ to	go	to	a	new	line	within	the	
same	directive

The	C	PreProcessor (2)

• Inclusion	of	header	files	(files	with	.h	extension	
that	contains	only	declarations).	E.g.
#include	<stdint.h>
#include	“my_header.h”

• The	file	stdint.h is	searched	in	a	standard	
directory	list;	my_header.h is	searched	in	the	
same	directory	as	the	including	source	file

• The	list	of	directories	searched	for	header	files	
can	be	changed	with	a	compiler	option

The	C	PreProcessor (3)
/*	…	*/
#include	“../FirstNios2_Prog_bsp/system.h”	
/*	…	*/

First_Nios2_Prog.c

/*	…	*/
#include	“system.h”
/*	…	*/	

First_Nios2_Prog.c

Compiling	First_Nios2_Prog.c	(other	compiler	options	omitted)
nios2-elf-gcc	-c	–o	First_Nios2_Prog.o	First_Nios2_Prog.c

Compiling	First_Nios2_Prog.c	(other	compiler	options	omitted)
nios2-elf-gcc	–I../FirstNios2_Prog_bsp/ -c	–o	First_Nios2_Prog.o	
First_Nios2_Prog.c

Header	path	can	be	omitted	by	using	-Idir compiler	option

The	C	PreProcessor (4)

• Macro	is	a	symbol	that	is	replaced	with	its	
definition	before	compilation	(it	can	be	followed	
by	one	or	or	more	arguments).	E.g. of	macro	def.
#define	MASK	0xF
#define	MAX(A,B)	((A)	>	(B)	?	(A)	:	(B))

• The	instructions:
b	=	a	&	MASK;
y	=	1	+	MAX(10,x);

• are	expanded	by	the	preprocessor	to:
b	=	a	&	0xF;
y	=	1	+	((10)	>	(x)	?	(10)	:	(x));

The	C	PreProcessor (5)

• Macro	are	largely	used	in	C	programming	of	
embedded	systems	to	access	peripheral	registers.	
E.g.	of	definition:
#include	“system.h”
#define	RED_LEDS_DATA_REG	 \

(*(volatile	unsigned	int*)	RED_LEDS_BASE)
#define	SLIDER_DATA_REG	 \

(*(volatile	unsigned	int*)	SLIDER_SWITCHES_BASE)

• E.g.	of	use:
RED_LEDS_DATA_REG	=	SLIDER_DATA_REG;
/*	Show	the	status	of	the	slider	switches	on	the	red	leds */

The	C	PreProcessor (6)

• The	macro	name_of_the_macro exists	from	its	
definition	to	the	end	of	the	file	or	when	it	is	
undefined	using	the	directive:
#undef name_of_the_macro

• A	macro	can	also	be	defined	with	an	option	passed	
to	the	compiler:
-D	name_of_the_macro=def

• Do	a	large	use	of	parenthesis	to	avoid	unintended	
behaviors	when	the	MACRO	is	expanded

• Write	macro	SYMBOLS	with	all	CAPITAL	letters

The	C	PreProcessor (7)

• Conditional	compilation	makes	it	possible	to	
include/exclude	code	segments	if	certain	
expressions	evaluated	by	the	preprocessor	are	
true	or	false.	E.g.
#ifdef DEBUG	
printf(“Debug	mode	enabled\n”);
/*	or	any	other	code	that	we	want	to	include
for	debug	purposes	*/

#endif
• #define	DEBUG	1
includes	the	debug	code

The	C	PreProcessor (8)

• A	common	use	of conditional	compilation	is	to	
avoid	multiple	inclusions	of	a	header	file.	To	this	
end,	start	the	header	file,	say	config.h,	with:
#ifndef CONFIG_H_
#define	CONFIG_H_

• and	end	it	with:
#endif /*	CONFIG_H_	*/

• After	the	first	inclusion	of	my_header.h,	the	
symbol	MY_HEADER_H	is	defined.	Thus,	further	
inclusions	are	filtered	out	by	the	conditional	
compilation	directives

Integer	types
• 2	basic	integer	types:	char,	int
• and	some	type-specifiers:
– sign:	signed,	unsigned
– size:	short,	long

• The	actual	size	of	an	integer	type	depends	on	the	
compiler	implementation
– sizeof(type)	returns	the	size	(in	number	of	bytes)	used	to	
represent	the	type	argument

– sizeof(char)	≤	sizeof(short)	≤	sizeof(int)	≤	sizeof(long)...
≤	sizeof(long	long)

Fixed-size	integers	(1)

• In	embedded	system	programming
integer	size	is	important
– Controlling	minimum	and	maximum	values	that	
can	be	stored	in	a	variable

– Increasing	efficiency	in	memory	utilization
–Managing	peripheral	registers

• To	increase	software	portability,	fixed-size	
integer	types	can	be	defined	in	a	header	file	
using	the	typedef keyword

Fixed-size	integers	(2)

• C99 update	of	the	ISO	C	standard defines	a	set	
of	standard	names	for	signed	and	unsigned	
fixed-size	integer	types
– 8-bit:			int8_t,			uint8_t
– 16-bit:	int16_t,	uint16_t
– 32-bit:	int32_t,	uint32_t	
– 64-bit:	int64_t,	uint64_t

• These	types	are	defined	in	the	standard-
library header	file	stdint.h

Fixed-size	integers	(3)	
• Altera	HAL	(Hardware	Abstraction Layer)	also provides the	

header	file	alt_types.h (<project_name_bsp>/HAL/inc/)	
with	definition	of	fixed-size	integer	types:	

typedef signed char alt_8;
typedef unsigned char alt_u8;
typedef signed short alt_16;
typedef unsigned short alt_u16;
typedef signed long alt_32;
typedef unsigned long alt_u32;
typedef long	long alt_64;
typedef unsigned	long	long alt_u64;

• These type definitions are	used in	Altera	HAL	source	files.
• To	increase portability,	you’d better code	using C99

fixed-size integer types (including the	header file	stdint.h)

Logical	operators

• Integer	data	can	be	interpreted	as	logical	values in	
conditions	(if,	while,	...)	or	in	logical	expressions:
=	0,	FALSE
ANY	OTHER	VALUE,	TRUE

• Logical	operators:

• Integer	data	can	store	the	result	of	a	logical	
expressions:	1	(TRUE),	0	(FALSE)

AND &&
OR ||
NOT !

Bitwise	operators	(1)

• Operate	on	the	bits	of	the	operand/s

AND &
OR |
XOR ^
NOT ~
SHIFT	LEFT <<
SHIFT	RIGHT >>

Shift	operators

• A <<	n
– The	result	is	the	bits	of	Amoved	to	the	left	by	n
positions	and	padded	on	the	right	with	0

– It	is	equivalent	to	multiply	A by	2n if	the	result	can	
be	represented

• A >>	n
– The	result	is	the	bits	of	Amoved	to	the	right	by	n
positions	and	padded	on	the	left	with	0 if	type	of	A
is	unsigned or	with	the	MSB	of	A if	type	is	signed

– It	is	equivalent	to	divide	A by	2n

Bit	manipulation	(1)
• << and	| operands	can	be	used	to	create	
expressive	binary	constants by	specifying	the	
positions	of	the	bits	equal	to	1	
– E.g.		(1<<7)	|	(1<<5)	|	(1<<0)	=	0xA1	(10100001)	
– Better	not	to	use	“magic	numbers” as	7,	5	and	0.
Use	instead	symbolic	names to	specify
bit	positions
• For	instance,	the	symbolic	names can	reflect	the	function	of	
the	bit	within	a	peripheral	register

– (1<<x)	can	be	encapsulated	into	a	macro:
• #define	BIT(x)				(1<<(x))

Bit	manipulations	(2)

• Altering	only	the	bits	in	given	positions
– E.g.	bits:	7,	5,	0
– #defineMSK	=	BIT(7)	|	BIT(5)	|	BIT(0)

• Clearing	bits	
– A &=	~MSK;

• Setting	bits
– A |=	MSK;

• Toggling	bits
– A ^=	MSK;

Bit	manipulations	(3)

• Testing	bits
– E.g.	do	something	if	bit	0	(LSB)	of	A	is	set,	
regardeless	of	the	other	bits	of	A

– if (A	&	BIT(0))	{
/*	some	code	here	*/

}

Putting	into	practice	(1)

• Write	a	program	that	shows	on	the	7-seg	
display	HEX3-HEX0	the	sizes	in	number	of	
bytes	of	long	long,	long,	short and	char
integer	data	types

• Do	they	match	with	the	definitions	of
fixed-size	integer	types	in	alt_types.h?

Putting	into	practice	(2)

• 7-seg	display	Parallel	Ports

BASIC COMPUTER SYSTEM FOR THE ALTERA DE2 BOARD For Quartus II 13.0

0x10000000

LEDR0LEDR17

Address

031

0x10000010

1718 . . .Unused

LEDG0LEDG8

031 89 . . .Unused

Data register

Data register

Figure 3. Output parallel ports for LEDR and LEDG.

2.3.2 7-Segment Displays Parallel Port

There are two parallel ports connected to the 7-segment displays on the DE2 board, each of which comprises a 32-bit
write-only Data register. As indicated in Figure 4, the register at address 0x10000020 drives digits HEX3 to HEX0,
and the register at address 0x10000030 drives digits HEX7 to HEX4. Data can be written into these two registers
by using word operations. This data directly controls the segments of each display, according to the bit locations
given in Figure 4. The locations of segments 6 to 0 in each seven-segment display on the DE2 board is illustrated on
the right side of the figure.

0x10000020

...

HEX06-0

...

HEX16-0

...

HEX36-0

Address

07 6815 142431 30

0x10000030

...

HEX26-0

1623 22

...

HEX46-0

...

HEX56-0

...

HEX76-0

07 6815 142431 30
...

HEX66-0

1623 22

Data register

Data register

0

1

2

3

4

5 6

Segments

Figure 4. Bit locations for the 7-segment displays parallel ports.

4 Altera Corporation - University Program
May 2013

Putting	into	practice	(3)

• To	go	on:
1.	Show	on	the	4x	7-Seg	HEX3_HEX0	display the
4	hexadecimal digits	of	the	16-bit	unsigned number
(Sw15-Sw0)

2.	Show	on	the	4x	7-Seg	HEX3_HEX0	display the
4	decimal digits	of	the	16-bit	unsigned number
(Sw15-Sw0)	if	the	number	can	be	represented;	E
otherwise

3.	Allow	the	user	to	choice	the	representation	
between	hexadecimal	and	decimal	by	the	slider	
Sw17

Putting	into	practice	(4)

• To	go	on:
4.	Show	on	the	4x	7-Seg	HEX3_HEX0	display the	
module	of	the	16-bit	signed number	(Sw15-Sw0)	and	
on	LEDG8 the	sign	of	the	number	(LEDG8 is	ON	if	
and	only	if	the	number	is	negative).	Show	the	
module	using	hexadecimal	and	decimal	digits	as	
before

5.	Allow	the	user	to	choice	if	(Sw15-Sw0)	code	an	
unsigned or	signed number	by	the	slider	Sw16

6.	Combine	all	the	features	in	a	single	program

References

• Altera	“Basic	Computer	System	for	the	Altera	
DE2	Board”

• Altera	“Parallel	Port	for	Altera	DE-Series	
Boards”

