
SISTEMI	EMBEDDED

System	Interconnect	Fabric
Avalon-ST:	Streaming	Interface

Video	out:	Pixel	Buffer	DMA	component

Federico	Baronti Last	version:	20160503

Avalon	Streaming	Interface

• Low	latency,	high	throughput,	unidirectional	
point-to-point	(from	a	source to	a	sink
interface)	data	transfer	(stream)

• Support	for	complex	protocols:
– Packet transfers	with	packets	interleaved	across	
multiple	channels

– Sideband	(from	source	to	sink)	signalling	of	
channels,	errors,	start	and	end	of	packets

Example:	Avalon-MM and	Avalon-ST

Some	terminology
• Symbol:	A	symbol	is	the	smallest	unit	of	data.	For	most	

packet	interfaces,	a	symbol	is	a	byte.	One	or	more	symbols	
make	up	the	single	unit	of	data	transferred	in	a	cycle	or	a	
beat

• Beat:	A	single	cycle	transfer	between	a	source	and a	sink	
interface	consisting	of	one	or	more	symbols

• Channel:	A	channel	is	a	physical	or	logical	path	or	link	
through	which	information	passes	between	two	ports

• Packet:	A	packet	is	an	aggregation	of	data	and	control info	
that	are	transmitted	together
– A	packet	may	contain	a	header	to	help	routers	and	other	

network	devices	direct	the	packet	to	the	correct	destination
– The	packet	format	is	defined	by	the	application,	not	by	the	

Avalon	specification

Avalon-ST	Interface	Signal Roles (1)

Avalon-ST	Interface	Signal Roles (2)

• All	transfers	of	an	Avalon-ST	connection	are	synchronous	with	the	rising	
edge	of	the	associated	clock	signal

• All	outputs	from	a	source	interface	to	a	sink	interface,	including		the	data,	
channel,	and	error	signals,	must	be	registered	on	the	rising	edge	of	clock

• Inputs	to	a	sink	interface	do	not	have	to	be	registered
• Registering	signals only	at	the	source	provides	for	high	frequency	

operation	while	eliminating	back-to-back	registers	with	no	intervening	
logic

Avalon-ST	Interface	Properties

Example	of	a	Source-Sink connection

Data	layout
• Example: data	width	=	32	bits;

dataBitsPerSymbol =	8	
firstSymbolInHighOrderBits =	true

Symbol	0
31 24

Symbol	1
23 16

Symbol	2
15 8

Symbol	3
7 0

Data	Transfer	without	Backpressure
• When	the	source	interface	wants	to	send	data,	it	
drives	the	data and	the	optional	channel and	error
signals	and	asserts	valid

• The	sink	interface	samples	these	signals	on	the	rising	
edge	of	the	reference	clock	when	valid is	asserted

Sink	Interface	sampling	cycles

Data	Transfer	with	Backpressure	(1)
• The	sink	indicates	to	the	source	that	it	is	ready	for	an	active	cycle	by	asserting	ready

for	a	single	clock	cycle.	Cycles	during	which	the	sink	is	ready	for	data	are	called	
ready	cycles

• During	a	ready	cycle,	the	source	may	assert	valid	and	provide	data	to	the	sink.	If	it	
has	no	data	to	send,	 it	deasserts valid	and	can	drive	data	to	any	value

• Each	interface	that	supports	 backpressure	defines	 the	readyLatency parameter	to	
indicate	the	number	of	cycles	from	the	time	that	ready is	asserted	until	 valid	data	can	
be	driven

• If	readyLatency has	a	nonzero	value,	the	source	interface	must	consider	cycle
<n	+	readyLatency>	to	be	a	ready	cycle	if	ready is	asserted	on	cycle	<n>

• When	readyLatency =	0,	data	is	transferred	only	when	ready	and	valid	are	asserted	
on	the	same	cycle.	In	this	mode	of	operation,	 the	source	does	not	receive	the	sink’s	
ready	signal	before	 it	begins	 sending	valid	data.	The	source	provides	 the	data	and	
asserts	valid	whenever	 it	can	and	waits	for	the	sink	to	capture	the	data	and	assert	
ready.	The	source	can	change	the	data	it	is	providing	 at	any	time.	The	sink	only	
captures	input	data	from	the	source	when	ready and	valid are	both	asserted

• When	readyLatency >=	1,	the	sink	asserts	ready before	 the	ready	cycle	itself.	The	
source	can	respond	 during	 the	appropriate	cycle	by	asserting	valid.	It	may	not	assert	
valid	during	 a	cycle	that	is	not	a	ready	cycle

Data	Transfer	with	Backpressure	(2)

• readyLatency =	4

Data	Transfer	with	Backpressure	(3)
• readyLatency =	0

• readyLatency =	1

Packet	Data	Transfer	(1)

• Three	additional	signals:
– startofpacket,	endofpacket,	
empty

• Both	source	and	sink	
interfaces	must	include	
these	additional	signals

• No	automatic	adaptation	
(by	system	interconnect	
fabric)

Packet	Data	Transfer	(2)
• startofpacket is	required	by	all	the	interfaces	supporting	packet	

transfers	and	marks	the	active	cycle	containing	the	start	of	the	
packet.	This	signal	is	only	interpreted	when	valid is	asserted

• endofpacket is	required	by	all	interfaces	supporting	packet	transfer	
and	marks	the	active	cycle	containing	the	end	of	the	packet.	This	
signal	is	only	interpreted	when	valid is	asserted.	

• empty is	optional	and	indicates	the	number	of	symbols	that	are	
empty	during	the	cycles	that	mark	the	end	of	a	packet.	The	sink	
only	checks	the	value	of	the	empty	during	active	cycles	that	have	
endofpacket asserted
– The	empty symbols	are	always	the	last	symbols	in	data,	those	carried	

by	the	low-order	bits	when	firstSymbolInHighOrderBits =	true
– The	empty	signal	is	required	on	all	packet	interfaces	whose	data	signal	

carries	more	than	one	symbol	of	data	and	have	a	variable	length	
packet	format

– The	size	of	the	empty	signal	in	bits	is	ceiling(log2(<symbols	per	cycle>))

Packet	Data	Transfer	(3)
• Transfer	of	a	17-byte	packet	

(readyLatency =	0)
• Data	transfer	occurs	on	cycles	2,	3,	5,	

6,	and	7,	when	both	ready and	valid
are	asserted

• During	cycle	1,	startofpacket is	
asserted,	and	the	first	4	bytes	of	
packet	are	transferred

• During	cycle	6,	endofpacket is	
asserted,	and	empty	has	a	value	
of	3,	indicating	that	this	is	the	
end	of	the	packet	and	that	3	of	
the	4	symbols	are	empty

• D16	is	transmitted	over	
data[31:24]	
(firstSymbolInHighOrderBits =	
true)	

Avalon-ST:	Adapters
• Adapters	are	configurable	Qsys/SOPC	Builder	
components	that	are	part	of	the	streaming	
interconnect	fabric.	They	are	used	to	connect	source	
and	sink	interfaces	that do	not	match	exactly	

• Qsys includes	the	following	four	adapters:
– Data	Format	Adapter
– Timing	Adapter
– Channel	Adapter
– Error	Adapter

• If	you	connect	mismatched	Avalon-ST	sources	and	sinks	
in	Qsyswithout	inserting	adapters,	Qsys generates	
error	messages

Example	of	Avalon-ST	Component
• Pixel	Buffer	DMA	Controller

– The	DMA	controller	uses	its	Avalon-MM	master	interface	to	
read	video	frames	from	an	external	memory.	Then,	it	sends	the	
video	frames	out	via the	Avalon-ST	interface.	The	controller’s	
Avalon-MM	slave	interface	is	used	to read/write	the	controller’s	
internal	registers	by	the	processor

Pixel	Buffer	DMA	Controller	(1)
• Avalon-MM	Slave	interface:

Pixel	Buffer	DMA	Controller	(1)
• The	Buffer register	holds	the	32-bit	address	of	the	start	of	the	

memory	buffer.	This	register	is	read-only,	and	shows	the	
address	of	the	first	pixel	of	the	frame	currently	being sent	out	
via	the	Avalon-ST

• The	BackBuffer register	allows	the	start	address	of	the	frame	to	
be	changed	under	program	control
– To	change	the	frame	being	displayed,	the	desired	frame’s	start	address	

is	first	written	into	the	BackBuffer register
– Then,	a	second	write	operation	is	performed	on	the	Buffer register.	The	

value	of	the	data	provided	in	this	second	write	operation	is	discarded.	
Instead,	it	interprets	a	write	to	the	Buffer	register	as	a	request	to	swap	
the	contents	of	the	Buffer and	BackBuffer registers.

– The	swap	does	not	occur	immediately. Instead,	the	swap	is	done	after	
the	Pixel	Buffer reaches	the	last	pixel	associated	with	the	current	frame.	
In	the	meantime,	bit	S	of	the	Status	register	will	be	set	to	1.	After	the	
current	frame	is	finished,	the	swap	is	performed	and	bit	S	is	cleared.

Pixel	Buffer	DMA	Controller	(1)
module VGA_Pixel_Buffer	(

//	Inputs
clk,
reset,

slave_address,
slave_byteenable,
slave_read,
slave_write,
slave_writedata,

master_readdata,
master_readdatavalid,
master_waitrequest,

stream_ready,
//....

//	Bi-Directional

//	Outputs
slave_readdata,

master_address,
master_arbiterlock,
master_read,

stream_data,
stream_startofpacket,
stream_endofpacket,
stream_empty,
stream_valid

);

Pixel	Buffer	DMA	Controller	(2)

18

q[17..0]

q[17]

q[16]

q[15..0]

stream_endofpacket

stream_startofpacket

stream_data

stream_empty0

16

FIFO:	Image_Buffer

FSM Avalon-MM
Slave	IF

fif
o_
re
ad

fif
o_
em

pt
y

stream_ready

stream_valid

fif
o_
al
m
os
t_
fu
ll

fif
o_
al
m
os
t_
em

pt
y18

d[17..0]Avalon-MM
Master	IF

16

d[15..0]

FSM	manages	Avalon-MM	Master	transfers	to	keep	FIFO	level	between	
almost-full	and	almost-empty

d[16]

st
ar
to
fp
ac
ke
t

d[17]

en
do
fp
ac
ke
t

VGA_Pixel_Buffer.v

References

• Altera,	“Avalon	Interface	Specifications,”	
mnl_avalon_spec.pdf
– 5.	Avalon	Streaming	Interfaces

