
Lab 1: NMOS-RF

Consideriamo il transistore *nmosrf* presente nella libreria PRIMLIBRF e configuriamolo con i seguenti parametri geometrici: larghezza del singolo gate finger $W_f = 10 \, \mu \text{m}$; lunghezza di gate $L = 0.35 \, \mu \text{m}$; numero di gate finger ng = 1. Siamo interessati a valutarne le caratteristiche statiche e alcuni parametri dinamici del modello per piccoli segnali.

Guida alla simulazione

Facendo riferimento alla figura, si affrontino i seguenti punti.

- 1. Configurare il controllore di simulazione **DC**, attivando lo *sweep* della variabile V_{ds} tra 0 e 3 V con passo 100 mV.
 - a. Graficare la caratteristica statica I_{DS} – V_{DS} relativa a V_{gs} = 1,5 V.
- 2. Collegare la simulazione DC a una simulazione **Parameter Sweep** (abilitare il relativo controllore mostrato nella figura) con variabile V_{gs} = {0.9, 1.5, 2.1, 2.7, 3.3 } V.
 - a. Graficare la famiglia di caratteristiche statiche I_{DS} – V_{DS} ;
 - b. posizionare **Marker** sul grafico e valutare in una tabella (List) la potenza dissipata dal transistore nel p.to individuato dal Marker (Suggerimento: usare la funzione indep() per ricavare l'ascissa V_{DS} del p.to individuato dal Marker);
 - c. graficare la transcaratteristica $I_{DS} = I_{DS,SAT}(V_{GS})$ per $V_{DS} = 3$ V (suggerimento: usare la funzione $find_index$ () per ricavare l'indice dello sweep per il quale $V_{DS} = 3$ V.
- 3. Inserire e configurare il controllore di simulazione **AC** (Frequency: single point = 2.4 GHz) e collegarlo a una simulazione **Parameter Sweep** (variabile V_{GS} compresa tra 0.9 e 3.3 V; 20 p.ti); mantenendo fisso V_{DS} = 3 V. Conviene impostare l'ampiezza del generatore AC pari a 1 V.
 - a. Graficare $|i_{ds}/v_{gs}|$ in funzione di V_{gs} (Suggerimento: usare la funzione mag() per calcolare modulo).
- 4. Configurare il controllore di simulazione **AC** (Frequency: sweep linear tra 1 GHz e 30 GHz) mantenendo fissi V_{gs} e V_{ds} = 3 V.
 - a. Graficare il guadagno di corrente $A_I = i_{ds}/i_g$ in funzione della frequenza e valutare la frequenza di taglio f_T t.c. $|A_I| = 1$ (Suggerimento: usare un **measurement equation** per calcolare A_I).