
Elettronica dei Sistemi Wireless - Prova pratica del 16 dicembre 2014

La tensione di alimentazione Vcc del circuito è pari a 3 V e le resistenze di sorgente e di carico, non mostrate in figura, sono uguali tra loro e pari a 50 Ω . I transistori bipolari HBT npn121 (disponibili nella libreria PRIMLIB del design kit AMS S35) sono tra loro identici e la loro **lunghezza di emettitore è fissata a 10 \mum**. Il dimensionamento del circuito e il calcolo dei parametri di merito dell'LNA devono essere eseguiti alla **frequenza centrale** $f_0 = 2,44$ GHz e alla temperatura di 25 °C, se non specificato diversamente nel seguito.

Facendo riferimento ai punti sotto elencati completare la scheda riportata sul retro del foglio.

- 1. Matching integrato e valutazione parametri di merito lineari (18,5 punti)
 - a. Dimensionare la corrente di polarizzazione Ipol e la molteplicità M dei transistori, al fine di ottimizzare le prestazioni in termini di rumore dell'LNA. Si proceda valutando la densità di corrente ottima di collettore J_{Copt} di un singolo transistore (M=1) nella configurazione a emettitore comune, mediante il circuito mostrato in figura (b). Il valore della resistenza RB è dato dall'espressione RB=140/IE, dove IE è il valore in ampere del generatore indipendente di corrente IE.
 - b. Estrarre nel punto di lavoro "ottimo", i parametri g_m , c_π , c_μ , f_T (r_b può essere trascurata) del circuito per piccoli segnali relativo a un singolo transistore (M = 1). Riportate per f_T il valore calcolato analiticamente a partire dagli altri parametri forniti nel punto di riposo dettagliato.
 - c. Dimensionare con analisi parametrica, a partire dai valori calcolabili analiticamente, *LE* e *LB* in modo tale da avere il massimo trasferimento di potenza dalla sorgente all'amplificatore.
 - d. Sul circuito dimensionato valutare: l'impedenza di ingresso Zin, quella di uscita Zout il guadagno di trasduttore G_T e, alla temperatura standard di 16,85 °C, la cifra di rumore NF, la cifra di rumore minima NFmin e la corrispondente impedenza ottima di sorgente Zopt.
 - e. Supponendo che l'LNA sia seguito da un mixer alimentato con un'oscillazione locale a 2,55 GHz, determinare il guadagno di trasduttore alla frequenza immagine f_{IM} .
- 2. Analisi della linearità con la tecnica Harmonic Balance (9 punti)
 - a. Valutare il punto di compressione a 1 dB in ingresso iCP1dB e in uscita oCP1dB.
 - b. Valutare il punto di intercetta del terzo ordine iIP3, utilizzando due toni f_1 , f_2 centrati a f_0 e separati tra loro 1 MHz ($f_1 < f_2$). Indicare la potenza disponibile P_{AIN} utilizzata per i due toni in ingresso, la potenza sul carico P_{out1} alla frequenza f_1 e quella P_{ou21} alla frequenza $2f_1 f_2$.
 - c. Considerando i due toni in ingresso specificati al punto precedente, valutare la potenza sul carico P_{out1} alla frequenza f_1 , nel seguente caso: $P_{AIN1} = -30$ dBm e $P_{AIN2} = 0$ dBm.
- 3. Adattamento dell'impedenza di uscita (3,5 punti)
 - a. Dimensionare, se possibile, LM e CM affinché si abbia il massimo trasferimento di potenza in uscita sul carico $Z_L = 500$ –j 600Ω . Riportare il valore dell'impedenza di uscita Zout ottenuto e valutare il guadagno di trasduttore G_T in questa condizione.

Prova pratica Es	SW del	16/12/2014	1	Nome:					
Valutazione (m									
Tempo a dispos									
1. Matching inte	grato e v	valutazione	param	etri di n	nerito	lineari (18,5 punt	i)	
	Singolo transistore (M							LN	NA
I_{Copt}		J_{Copt}	N.	Fopt		Zopt	I	pol	M
]	Parametri pi	iccolo se	egnale d	el sing	olo trans	istore (M	= 1)	
g_m			c_{π}			c_{μ}		f_T ((analitico)
Dim	ensionan	nento analit	ico			Dimensi	ionamento	con analisi	parametrica
LE		LB	1	$n^{(a)}$		LE			LB
Zin		Zout	G_T	, N	F @ 1	6,85 °C	NFmin (d	0) 16,85 °C	Zopt @ 16,85 °C
				11	1 66 1	0,00	111 11111 (6	9 10,00 0	20pt @ 10,02 C
		f_{IM}					($G_T @ f_{IM}$	
		, 1171				1 0 7			
	• • • •	(0 (1)							
2. Analisi della li									
	iC	P1dB					(CP1dB	
f_{I}	f_2	1	AIN	P_{oi}	tl Pout21 iIP3		iIP3	oIP3	
		D	. (a) D		IRm o	D 0) dBm		
		Γ _{out}	I W I AIN	-30 (ıbiii e	$P_{AIN2} = 0$, udili		
3. Adattamento	dell'imp	edenza di ı	ıscita (3	,5 punt	i)				
LM			CM			Zoi	ut	$G_T(\widehat{a})$	$Z_{\rm L} = 500 - \rm j600 \ \Omega$
									

 $^{^{(}a)}$ Risultato ottenuto dalla simulazione del circuito, utilizzando per i parametri circuitali LE e LB i valori calcolati analiticamente.

Prova pratica ESW del 16/12/2014	Nome: SOLUZIONE
Valutazione (max 31 punti)	
Tempo a disposizione: 2 ore	

1. Matching integrato e valutazione parametri di merito lineari (18,5 punti)

	Singolo transist	LN	NA .		
I_{Copt}	J_{Copt}	NFopt	Zopt	Ipol	M
459 μΑ	114,75 μA/μm ²	0,809 dB	$505 + j389 \Omega$	4,59 mA	10

Parametri piccolo segnale del singolo transistore (M = 1)						
g_m c_{π} c_{μ} f_T (analitico)						
16,7 mS	109 fF	17 fF	21,1 GHz			

Dime	nsionamento analit	ico	Dimensionamento	con analisi parametrica
LE	LB	Zin ^(a)	LE	LB
377 pH	3,523 nH	$42,5 + j12,4 \Omega$	456 pH	2,738 nH

Zin	Zout	G_T	<i>NF</i> @ 16,85 °C	<i>NFmin</i> @ 16,85 °C	Zopt @ 16,85 °C
$50 - j0,1 \Omega$	2083 – j11 Ω	16,8 dB	0,976 dB	0,933 dB	48,3 – j16,6 Ω

f_{IM}	$G_T @ f_{IM}$
2,66 GHz	16,0 dB

2. Analisi della linearità (9 punti)

iCP1dB	oCP1dB
-15,6 dBm	0,2 dBm

f_{I}	f_2	P_{AIN}	P_{out1}	P_{out21}	iIP3	oIP3
2,4395 GHz	2,4405 GHz	-30 dBm	-13,2 dBm	-71,4 dBm	-1 dBm	15,8 dBm

P_{out1} @ P_{AIN1} = -30 dBm e P_{AIN2} = 0 dBm	
-15,6 dBm	

3. Adattamento dell'impedenza di uscita (3,5 punti)

LM	СМ	Zout	G_T @ $Z_L = 500 - j600 \Omega$
11,469 nH	0,225 pF	$500 + j600 \Omega$	27,2 dB

⁽a) Risultato ottenuto dalla simulazione del circuito, utilizzando per i parametri circuitali LE e LB i valori calcolati analiticamente.