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Mo(vazioni	
  

•  In	
  molte	
  applicazioni	
  la	
  potenza	
  dissipata	
  da	
  
un	
  componente	
  ele1ronico	
  non	
  può	
  essere	
  
considerata	
  costante.	
  Un	
  esempio	
  sono	
  i	
  
conver7tori	
  switching.	
  
– Dimensionare	
  con	
  il	
  valore	
  massimo	
  della	
  
potenza	
  dissipata	
  può	
  portare	
  a	
  un	
  
sovradimensionamento	
  del	
  dissipatore	
  

– Dimensionare	
  con	
  il	
  valore	
  medio	
  della	
  potenza	
  
massima	
  può	
  portare	
  a	
  so1os7mare	
  
“pericolosamente”	
  la	
  massima	
  temperatura	
  di	
  
giunzione	
  



Tj temp. massima in un periodo, quando si è 
raggiunta la condizione di regime periodico 

Impedenza	
  termica	
  (1)	
  

PSMN005-75P_1 © NXP B.V. 2009. All rights reserved.

Product data sheet Rev. 01 — 17 November 2009 5 of 13

NXP Semiconductors PSMN005-75P
N-channel TrenchMOS SiliconMAX standard level FET

5. Thermal characteristics
 

 

Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unit
Rth(j-mb) thermal resistance from junction to 

mounting base
see Figure 4 - - 0.65 K/W

Rth(j-a) thermal resistance from junction to ambient vertical in still air - 60 - K/W

Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration
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Impedenza	
  termica	
  (2)	
  
•  O>enuta	
  sperimentalmente	
  
•  Può	
  essere	
  normalizzata	
  rispe>o	
  alla	
  
corrispondente	
  resistenza	
  termica	
  

•  Adeguata	
  per	
  prevedere	
  comportamento	
  
termico	
  in	
  caso	
  di	
  singolo	
  impulso	
  o	
  impulsi	
  
periodici	
  con	
  duty	
  cycle	
  noto	
  

•  In	
  generale,	
  non	
  u(lizzabile	
  per	
  un	
  andamento	
  
generico	
  nel	
  tempo	
  della	
  potenza	
  dissipata	
  

•  Modello	
  termico	
  RC	
  (u(lizzabile	
  all’interno	
  di	
  
un	
  simulatore	
  ele>rico	
  come	
  SPICE)	
  



Modello	
  termico	
  RC	
  (1)	
  
•  Due	
  (piche	
  configurazioni	
  note	
  come:	
  

– “Tank”	
  o	
  “Cauer	
  circuit	
  

– “Filter”	
  o	
  Foster	
  circuit	
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waves, the peak power is the height of the individual pulses
(note also that the average power will be d*Pp, the duty cycle
times the peak power). Note that to calculate peak
temperature rise, one must use the peak power for the pulse,
not the average power.3

The most common mistake made in using duty−cycle
curves, is that they may only be applied for situations where
the original single−pulse curve was the “correct” curve for
the application environment under consideration. This
means that it must end up at the correct steady state value.
If the single pulse curve was for a min−pad board, for
example, then none of the resulting duty cycle curves may
be used for a 1″ pad application, regardless of how short the
pulses or what the duty cycle. To understand this, it may be
helpful to consider the mathematical expression typically
used to derive these curves:

R(t, d) ! (1−d) · R(t) " d · R(#) (eq. 22)

If d is vanishingly small, then the result is the original
curve (which is clearly valid only until environmental
effects come into play). For any finite d, however,
regardless of how short the pulses of interest (i.e. “on” time),
the duty cycle curve carries along a contribution from the
steady state end of the original curve, i.e. R (#).

Given the appropriate single−pulse curve, if the pulse
train is periodic (even if not square), the square−wave duty
cycle curves may provide a time−saving approximation. For
instance, pulses that are trapezoidal or triangular in shape,
partial sinusoids, etc., may be approximated by square
pulses with the same total energy (i.e. area under the pulse),
where the height and width of the equivalent square pulse are
adjusted such that the end of the pulse coincides with the
moment of peak temperature – though this itself may require
some experience to judge when that is likely to occur.

Thermal RC Network Models
Thermal RC network models are an alternative way of

describing the same transient thermal response previously
discussed (see AND8214/D and AND8221/D). An entire
transient response curve can usually be represented in just a
handful of resistor and capacitor elements. If the correct
computational tools are readily available, RC networks may
therefore be a convenient and compact representation. Two
general forms of RC networks are possible, those with
grounded capacitors, and those in which the capacitors are
not grounded. These will be discussed in turn.
3  (Think peak power for peak temperature, if that helps. But to see why
this must be so, think about that single−pulse curve being the equivalent
of the 0% duty cycle case. For a given pulse width, if the only thing that
changed was the period, you’d be staying at the same position on the
x−axis while you moved from one curve to another. As the period went to
infinity, you’d end up on the 0%, or single−pulse, curve; but if the power
you multiplied by was the average power, you’d also be moving toward a
zero−power average, hence the temperature rise would approach zero
for a fixed pulse width. Obviously this would be incorrect − because
the whole point of the single−pulse curve is to give you the actual
temperature rise based on the power level of the pulse while it’s on, so
clearly you’re supposed to be using the instantaneous power level, not
the average power level.)
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Figure 7. Grounded Capacitor Thermal Network
(“Cauer” Ladder)
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Figure 8. RC Network Schematic
Capacitors (not shown) tie each node to ground

Figures 7 and 8 illustrate a typical “grounded−capacitor”
thermal ladder network. In fact, any network topology of
resistors might be chosen to represent a physical thermal
system (i.e. not just a linear string of resistors, but just as well
a star, a bridge, or whatever). The main advantage of a
grounded−capacitor network is that it derives from the
fundamental heat−transfer physics. Every node in the
network is connected to thermal ground through a capacitor.
If a simple chain of nodes is used, it is convenient to draw
the network as shown in Figure 7 because it resembles a
ladder, though because the lower edge of each rung attaches
directly to ground, the connections between the rungs are
essentially through the resistors. Often for clarity, the
capacitors are omitted entirely, in which case Figure 8 is an
equivalent model. A grounded capacitor network such as
shown in Figure 7 or 8 is known as a Cauer ladder.
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Because this network derives from the real physics, there
is at least a chance that experimental data from various
points within the physical system can be correlated with
specific individual nodes of the network model. As we move
from junction to ambient, for instance, we might find
physical locations corresponding to nodes in this order:
silicon junction, back of silicon chip, edge of leadframe, lead
(at package boundary), lead (at board interface), board (at
some distance from package), and finally ambient. Of
course, we may not have any intermediate location data to
correlate with, or the intermediate data we have might not
happen to land “on” a node of the model (rather, somewhere
in between nodes). Also, the physical system might not be
well represented by such a simple chain of resistors, so no
correlation might be possible except at the junction itself.
(This is actually quite typical, for in many environments, the
heat flow follows at least two separate and distinct paths
from junction to ambient, e.g. upward through the case,
outward through the leads into the board, and downward
through the air gap and thus directly to ambient on the back
side of the board. When the heat flow is believed or known
to flow along multiple parallel paths, it clearly would be
better to model the system with a more complex network.
Likewise, one would not expect to find a nodal correlation
with physical locations if the network was willfully chosen
as a simple ladder, when multiple significant parallel paths
were present.) Only in the case where a single path to ground
dominates heavily, would such a simple linear resistor
topology be expected to yield good correlations at the
intermediate nodes. Nevertheless, the point is that there
could be such a correlation.
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Figure 9. Non−Grounded Capacitor Thermal Ladder
(“Foster” Ladder)

Non−Grounded Capacitor Networks
Contrast the grounded network of Figure 7, with the

non−grounded−capacitor network of Figure 9.  Figure 9 is a
true “ladder” of resistors and capacitors, and is sometimes
known as a Foster ladder. Each rung is joined to the next
rung (and only to the next rung) through both the resistor and
the capacitor; only the final capacitor is directly connected
to thermal ground.

Difficult though it may be to grasp at first, this network has
no physical basis. In the thermal/electrical analogy, a
thermal capacitor is simply an element that stores energy

based only on one temperature, that is, the temperature of the
node whose thermal mass it represents. (In contrast, an
electrical capacitor stores energy based on the difference in
voltage between its two terminals.) Hence a thermal
capacitor whose energy storage is based on a difference in
temperature between two ungrounded nodes in a network
(as is the case of most of the capacitors in Figure 9) has no
physical meaning. However, there is a mathematical
simplicity underlying Foster ladders. In their mathematical
description, one finds that each resistor−capacitor pair
contributes an “amplitude” to the overall system response,
and a unique time constant associated with that amplitude.
Indeed, a Foster ladder may be viewed as nothing more than
a schematic of the mathematical fit to a real transient
response curve. Given a transient response curve of junction
temperature vs. time, a series of exponential terms
consisting of amplitudes and time constants may be fit to the
curve to whatever degree of accuracy is desired. (More
terms usually implies a better fit.) Once done, the terms may
be interpreted as an RC ladder (i.e. the Foster ladder) where
each amplitude is a resistor, and each time constant is the
product of its associated resistor and a capacitor in parallel
with it.

Comparison and Contrast of Cauer and Foster
Ladders

Clearly, the mathematical terms representing (or
represented by) a Foster ladder may be added together in any
order to achieve the same sum. Thus the rungs (RC pairs) of
the schematic may be listed (or diagrammed) in any order
and still represent the same response! Because the overall
response (from junction to ambient) is immune to reordering
of the individual rungs (as long as each RC pair remains a
pair), the temperature that might be calculated at any other
node between any two rungs is physically meaningless. By
contrast, though a Cauer network must necessarily have a
mathematical representation comprising amplitudes and
time constants, one finds that every amplitude and every
time constant depends on every resistor and every capacitor,
in a highly complicated and algebraically intractable tangle
intimately dependent on the physical location of the
elements in the network.

Even so, Foster networks are typically drawn with the
rungs placed in order from junction to ambient with the
smallest values (i.e. fastest responding rung) at the junction
end, and the largest values (i.e. slowest responding rung) at
the ambient end. This is superficially similar in appearance
to a typical Cauer ladder, which almost always (and
necessarily) has the smallest elements nearest the junction,
and the largest elements nearest thermal ground. But in the
Cauer ladder, the choice is not arbitrary; rather it is imposed
by the intrinsic relationship between time response and
location in the model.



Modello	
  termico	
  RC	
  (2)	
  
•  “Tank”	
  circuit	
  può	
  essere	
  messo	
  in	
  relazione	
  
con	
  il	
  trasferimento	
  del	
  calore	
  all’interno	
  del	
  
componente.	
  I	
  nodi	
  intermedi	
  della	
  rete	
  
possono	
  modellare	
  diversi	
  stra(	
  del	
  
componen(	
  (Non	
  (ene	
  comunque	
  conto	
  di	
  
percorsi	
  mul(pli)	
  

•  “Filter”	
  circuit	
  non	
  ha	
  un	
  significato	
  fisico,	
  ma	
  
è	
  molto	
  semplice	
  da	
  analizzare	
  



Modello	
  termico	
  RC	
  (3)	
  
•  I	
  parametri	
  dei	
  due	
  circui(	
  sono	
  o>enu(	
  con	
  
tecniche	
  di	
  “curve-­‐fi_ng”	
  usando	
  i	
  da(	
  
sperimentali	
  rela(vi	
  a	
  una	
  potenza	
  dissipata	
  
impulsiva	
  e	
  periodica.	
  

•  Entrambi	
  i	
  circui(	
  possono	
  essere	
  simula(	
  con	
  
SPICE	
  

•  Il	
  “Filter”	
  circuit	
  è	
  in	
  grado	
  di	
  prevedere	
  
accuratamente	
  solo	
  il	
  salto	
  termico	
  tra	
  
temperatura	
  di	
  giunzione	
  e	
  ambiente.	
  



Esempio:	
  	
  BUK7Y7R6-­‐40E*	
  (1)	
  

τ	
  (s)	
  
8.02E-­‐08	
  

9.87E-­‐07	
  

8.69E-­‐06	
  

1.00E-­‐04	
  

7.00E-­‐04	
  

8.59E-­‐03	
  

1.12E-­‐02	
  

*www.nxp.com 



Esempio:	
  	
  BUK7Y7R6-­‐40E	
  (2)	
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