Complementi di COSTRUZIONI ELETTRONICHE

III anno della Laurea in Ingegneria Elettronica A.A. 2014/15

Transitorio termico

Federico Baronti

Motivazioni

- In molte applicazioni la potenza dissipata da un componente elettronico non può essere considerata costante. Un esempio sono i convertitori switching.
 - Dimensionare con il valore massimo della potenza dissipata può portare a un sovradimensionamento del dissipatore
 - Dimensionare con il valore medio della potenza massima può portare a sottostimare "pericolosamente" la massima temperatura di giunzione

Impedenza termica (1)

Impedenza termica (2)

- Ottenuta sperimentalmente
- Può essere normalizzata rispetto alla corrispondente resistenza termica
- Adeguata per prevedere comportamento termico in caso di singolo impulso o impulsi periodici con *duty cycle* noto
- In generale, non utilizzabile per un andamento generico nel tempo della potenza dissipata
- Modello termico RC (utilizzabile all'interno di un simulatore elettrico come SPICE)

Modello termico RC (1)

• Due tipiche configurazioni note come:

Modello termico RC (2)

- "Tank" circuit può essere messo in relazione con il trasferimento del calore all'interno del componente. I nodi intermedi della rete possono modellare diversi strati del componenti (Non tiene comunque conto di percorsi multipli)
- "Filter" circuit non ha un significato fisico, ma è molto semplice da analizzare

Modello termico RC (3)

- I parametri dei due circuiti sono ottenuti con tecniche di "curve-fitting" usando i dati sperimentali relativi a una potenza dissipata impulsiva e periodica.
- Entrambi i circuiti possono essere simulati con SPICE
- Il "Filter" circuit è in grado di prevedere accuratamente solo il salto termico tra temperatura di giunzione e ambiente.

Esempio: BUK7Y7R6-40E* (1)

· · · · · · · · · · · · · · · · · · ·	•tran 0 80m	
	R1. C1	
	2.916E-05	
	R2 C2	τ (s)
	<	8.02E-08
	R3 4.154E-02 2.092E-04	9.87E-07
	R4 C4	8.69E-06
	5.616E-02 1.786E-03	1.00E-04
PULSE(0 1 0 1u 1u 1m 5m	R5. C5	7.00E-04
	3.287E-01 2.130E-03	8.59E-03
	R6 1.016E+00 8.451E-03	1.12E-02
	R7. C7.	
		*www.nxp.con

Esempio: BUK7Y7R6-40E (2)

