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Mo(vazioni	  

•  In	  molte	  applicazioni	  la	  potenza	  dissipata	  da	  
un	  componente	  ele1ronico	  non	  può	  essere	  
considerata	  costante.	  Un	  esempio	  sono	  i	  
conver7tori	  switching.	  
– Dimensionare	  con	  il	  valore	  massimo	  della	  
potenza	  dissipata	  può	  portare	  a	  un	  
sovradimensionamento	  del	  dissipatore	  

– Dimensionare	  con	  il	  valore	  medio	  della	  potenza	  
massima	  può	  portare	  a	  so1os7mare	  
“pericolosamente”	  la	  massima	  temperatura	  di	  
giunzione	  



Tj temp. massima in un periodo, quando si è 
raggiunta la condizione di regime periodico 

Impedenza	  termica	  (1)	  
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5. Thermal characteristics
 

 

Table 5. Thermal characteristics
Symbol Parameter Conditions Min Typ Max Unit
Rth(j-mb) thermal resistance from junction to 

mounting base
see Figure 4 - - 0.65 K/W

Rth(j-a) thermal resistance from junction to ambient vertical in still air - 60 - K/W

Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration
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Impedenza	  termica	  (2)	  
•  O>enuta	  sperimentalmente	  
•  Può	  essere	  normalizzata	  rispe>o	  alla	  
corrispondente	  resistenza	  termica	  

•  Adeguata	  per	  prevedere	  comportamento	  
termico	  in	  caso	  di	  singolo	  impulso	  o	  impulsi	  
periodici	  con	  duty	  cycle	  noto	  

•  In	  generale,	  non	  u(lizzabile	  per	  un	  andamento	  
generico	  nel	  tempo	  della	  potenza	  dissipata	  

•  Modello	  termico	  RC	  (u(lizzabile	  all’interno	  di	  
un	  simulatore	  ele>rico	  come	  SPICE)	  



Modello	  termico	  RC	  (1)	  
•  Due	  (piche	  configurazioni	  note	  come:	  

– “Tank”	  o	  “Cauer	  circuit	  

– “Filter”	  o	  Foster	  circuit	  
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waves, the peak power is the height of the individual pulses
(note also that the average power will be d*Pp, the duty cycle
times the peak power). Note that to calculate peak
temperature rise, one must use the peak power for the pulse,
not the average power.3

The most common mistake made in using duty−cycle
curves, is that they may only be applied for situations where
the original single−pulse curve was the “correct” curve for
the application environment under consideration. This
means that it must end up at the correct steady state value.
If the single pulse curve was for a min−pad board, for
example, then none of the resulting duty cycle curves may
be used for a 1″ pad application, regardless of how short the
pulses or what the duty cycle. To understand this, it may be
helpful to consider the mathematical expression typically
used to derive these curves:

R(t, d) ! (1−d) · R(t) " d · R(#) (eq. 22)

If d is vanishingly small, then the result is the original
curve (which is clearly valid only until environmental
effects come into play). For any finite d, however,
regardless of how short the pulses of interest (i.e. “on” time),
the duty cycle curve carries along a contribution from the
steady state end of the original curve, i.e. R (#).

Given the appropriate single−pulse curve, if the pulse
train is periodic (even if not square), the square−wave duty
cycle curves may provide a time−saving approximation. For
instance, pulses that are trapezoidal or triangular in shape,
partial sinusoids, etc., may be approximated by square
pulses with the same total energy (i.e. area under the pulse),
where the height and width of the equivalent square pulse are
adjusted such that the end of the pulse coincides with the
moment of peak temperature – though this itself may require
some experience to judge when that is likely to occur.

Thermal RC Network Models
Thermal RC network models are an alternative way of

describing the same transient thermal response previously
discussed (see AND8214/D and AND8221/D). An entire
transient response curve can usually be represented in just a
handful of resistor and capacitor elements. If the correct
computational tools are readily available, RC networks may
therefore be a convenient and compact representation. Two
general forms of RC networks are possible, those with
grounded capacitors, and those in which the capacitors are
not grounded. These will be discussed in turn.
3  (Think peak power for peak temperature, if that helps. But to see why
this must be so, think about that single−pulse curve being the equivalent
of the 0% duty cycle case. For a given pulse width, if the only thing that
changed was the period, you’d be staying at the same position on the
x−axis while you moved from one curve to another. As the period went to
infinity, you’d end up on the 0%, or single−pulse, curve; but if the power
you multiplied by was the average power, you’d also be moving toward a
zero−power average, hence the temperature rise would approach zero
for a fixed pulse width. Obviously this would be incorrect − because
the whole point of the single−pulse curve is to give you the actual
temperature rise based on the power level of the pulse while it’s on, so
clearly you’re supposed to be using the instantaneous power level, not
the average power level.)
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Figure 7. Grounded Capacitor Thermal Network
(“Cauer” Ladder)
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Figure 8. RC Network Schematic
Capacitors (not shown) tie each node to ground

Figures 7 and 8 illustrate a typical “grounded−capacitor”
thermal ladder network. In fact, any network topology of
resistors might be chosen to represent a physical thermal
system (i.e. not just a linear string of resistors, but just as well
a star, a bridge, or whatever). The main advantage of a
grounded−capacitor network is that it derives from the
fundamental heat−transfer physics. Every node in the
network is connected to thermal ground through a capacitor.
If a simple chain of nodes is used, it is convenient to draw
the network as shown in Figure 7 because it resembles a
ladder, though because the lower edge of each rung attaches
directly to ground, the connections between the rungs are
essentially through the resistors. Often for clarity, the
capacitors are omitted entirely, in which case Figure 8 is an
equivalent model. A grounded capacitor network such as
shown in Figure 7 or 8 is known as a Cauer ladder.
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Because this network derives from the real physics, there
is at least a chance that experimental data from various
points within the physical system can be correlated with
specific individual nodes of the network model. As we move
from junction to ambient, for instance, we might find
physical locations corresponding to nodes in this order:
silicon junction, back of silicon chip, edge of leadframe, lead
(at package boundary), lead (at board interface), board (at
some distance from package), and finally ambient. Of
course, we may not have any intermediate location data to
correlate with, or the intermediate data we have might not
happen to land “on” a node of the model (rather, somewhere
in between nodes). Also, the physical system might not be
well represented by such a simple chain of resistors, so no
correlation might be possible except at the junction itself.
(This is actually quite typical, for in many environments, the
heat flow follows at least two separate and distinct paths
from junction to ambient, e.g. upward through the case,
outward through the leads into the board, and downward
through the air gap and thus directly to ambient on the back
side of the board. When the heat flow is believed or known
to flow along multiple parallel paths, it clearly would be
better to model the system with a more complex network.
Likewise, one would not expect to find a nodal correlation
with physical locations if the network was willfully chosen
as a simple ladder, when multiple significant parallel paths
were present.) Only in the case where a single path to ground
dominates heavily, would such a simple linear resistor
topology be expected to yield good correlations at the
intermediate nodes. Nevertheless, the point is that there
could be such a correlation.
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Figure 9. Non−Grounded Capacitor Thermal Ladder
(“Foster” Ladder)

Non−Grounded Capacitor Networks
Contrast the grounded network of Figure 7, with the

non−grounded−capacitor network of Figure 9.  Figure 9 is a
true “ladder” of resistors and capacitors, and is sometimes
known as a Foster ladder. Each rung is joined to the next
rung (and only to the next rung) through both the resistor and
the capacitor; only the final capacitor is directly connected
to thermal ground.

Difficult though it may be to grasp at first, this network has
no physical basis. In the thermal/electrical analogy, a
thermal capacitor is simply an element that stores energy

based only on one temperature, that is, the temperature of the
node whose thermal mass it represents. (In contrast, an
electrical capacitor stores energy based on the difference in
voltage between its two terminals.) Hence a thermal
capacitor whose energy storage is based on a difference in
temperature between two ungrounded nodes in a network
(as is the case of most of the capacitors in Figure 9) has no
physical meaning. However, there is a mathematical
simplicity underlying Foster ladders. In their mathematical
description, one finds that each resistor−capacitor pair
contributes an “amplitude” to the overall system response,
and a unique time constant associated with that amplitude.
Indeed, a Foster ladder may be viewed as nothing more than
a schematic of the mathematical fit to a real transient
response curve. Given a transient response curve of junction
temperature vs. time, a series of exponential terms
consisting of amplitudes and time constants may be fit to the
curve to whatever degree of accuracy is desired. (More
terms usually implies a better fit.) Once done, the terms may
be interpreted as an RC ladder (i.e. the Foster ladder) where
each amplitude is a resistor, and each time constant is the
product of its associated resistor and a capacitor in parallel
with it.

Comparison and Contrast of Cauer and Foster
Ladders

Clearly, the mathematical terms representing (or
represented by) a Foster ladder may be added together in any
order to achieve the same sum. Thus the rungs (RC pairs) of
the schematic may be listed (or diagrammed) in any order
and still represent the same response! Because the overall
response (from junction to ambient) is immune to reordering
of the individual rungs (as long as each RC pair remains a
pair), the temperature that might be calculated at any other
node between any two rungs is physically meaningless. By
contrast, though a Cauer network must necessarily have a
mathematical representation comprising amplitudes and
time constants, one finds that every amplitude and every
time constant depends on every resistor and every capacitor,
in a highly complicated and algebraically intractable tangle
intimately dependent on the physical location of the
elements in the network.

Even so, Foster networks are typically drawn with the
rungs placed in order from junction to ambient with the
smallest values (i.e. fastest responding rung) at the junction
end, and the largest values (i.e. slowest responding rung) at
the ambient end. This is superficially similar in appearance
to a typical Cauer ladder, which almost always (and
necessarily) has the smallest elements nearest the junction,
and the largest elements nearest thermal ground. But in the
Cauer ladder, the choice is not arbitrary; rather it is imposed
by the intrinsic relationship between time response and
location in the model.



Modello	  termico	  RC	  (2)	  
•  “Tank”	  circuit	  può	  essere	  messo	  in	  relazione	  
con	  il	  trasferimento	  del	  calore	  all’interno	  del	  
componente.	  I	  nodi	  intermedi	  della	  rete	  
possono	  modellare	  diversi	  stra(	  del	  
componen(	  (Non	  (ene	  comunque	  conto	  di	  
percorsi	  mul(pli)	  

•  “Filter”	  circuit	  non	  ha	  un	  significato	  fisico,	  ma	  
è	  molto	  semplice	  da	  analizzare	  



Modello	  termico	  RC	  (3)	  
•  I	  parametri	  dei	  due	  circui(	  sono	  o>enu(	  con	  
tecniche	  di	  “curve-‐fi_ng”	  usando	  i	  da(	  
sperimentali	  rela(vi	  a	  una	  potenza	  dissipata	  
impulsiva	  e	  periodica.	  

•  Entrambi	  i	  circui(	  possono	  essere	  simula(	  con	  
SPICE	  

•  Il	  “Filter”	  circuit	  è	  in	  grado	  di	  prevedere	  
accuratamente	  solo	  il	  salto	  termico	  tra	  
temperatura	  di	  giunzione	  e	  ambiente.	  



Esempio:	  	  BUK7Y7R6-‐40E*	  (1)	  

τ	  (s)	  
8.02E-‐08	  

9.87E-‐07	  

8.69E-‐06	  

1.00E-‐04	  

7.00E-‐04	  

8.59E-‐03	  

1.12E-‐02	  

*www.nxp.com 



Esempio:	  	  BUK7Y7R6-‐40E	  (2)	  
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