Combining Abstract Interpretation and Model
Checking for Analysing Security Properties of
Java Bytecode

Cinzia Bernardeschi and Nicoletta De Francesco

Dipartimento di Ingegneria della Informazione
Universita di Pisa, Via Diotsalvi 2, 56126 Pisa, Italy
{cinzia, nico}@iet.unipi.it

Abstract. We present an approach enabling end-users to prove secu-
rity properties of the Java bytecode by statically analysing the code
itself, thus eliminating the run time check for the access permission. The
approach is based on the combination of two well-known techniques:
abstract interpretation and model checking. By means of an operational
abstract semantics of the bytecode, we built a finite transition system em-
bodying security informations and abstracting from actual values. Then
we model check it against some formulae expressing security properties.
We use the SMV model checker. A main point of the paper is the defini-
tion of the properties that the abstract semantics must satisfy to ensure
the absence of security leakages.

1 Introduction and Motivation

Java Virtual Machine Language (referred to hereafter as JVML) [12] is becom-
ing a widely used medium for distributing platform-independent programs. In
multilevel secure systems, the problem of the disclosure of sensitive information
of programs written in JVML is particularly important. One of the main moti-
vations is avoiding the damages produced by malicious programs which try to
broadcast secret information. Mobile Java bytecode is checked by the Virtual
Machine for safety properties: a bytecode Verifier enforces static constraints on
Java bytecode to rule out type errors, access control violation, object initial-
isation failure and other dynamic errors. Moreover, to protect end-users from
hostile programs, Java security model assigns access privileges to code and pro-
vides a customisable ”sandbox” in which Java bytecode runs. At run-time a Java
bytecode can do anything within the boundaries of its sandbox, but it can not
take any action outside those boundaries.

This paper presents an approach enabling end-users to prove security proper-
ties of the Java bytecode by statically analysing the code itself, thus eliminating
the run time check for the access permission. The approach is based on the
combination of two well-known techniques: abstract interpretation and model
checking. Abstract interpretation [7] is a method for analyzing programs by col-
lecting approximate information about their run-time behavior. It is based on

a non-standard semantics, that is a semantic definition in which simpler (ab-
stract) domains replace the standard (concrete) ones, and the operations are
interpreted on the new domains. Using this approach different analyses can be
systematically defined. In particular we refer to abstract interpretation based on
operational semantics [7,15]. Model checking [6] is an automatic technique for
verifying finite state systems. This is accomplished by checking whether a struc-
ture, representing the system, satisfies a temporal logic formula describing the
expected behavior. The approach combining abstract interpretation and model
checking has been defined in [16, 17].

In [4] we defined an abstract interpretation based method to check secure
information flow of a subset of JVML. The secure information flow property [9,
1,18, 3] requires that information at a given security level does not flow to lower
levels. A program, in which every variable is assigned a security level, has secure
information flow if, when the program terminates, the value of each variable does
not depend on the initial value of the variables with higher security level. Let us
suppose that variable y has security level higher than that of variable x. Examples
of violation of secure information flow in high level languages are: x:=y and if
y=0 then x:=1 else x:=0.In the first case, there is an ezplicit information flow
from y to x, while, in the second case there is an implicit information flow: in
both cases, observing the final value of x reveals information on the value of the
higher security variable y. In [4] a concrete operational semantics of the language
is defined, able to keep information flow during execution. The basic ideas on
which the semantics is based are: i) values carry a security level which changes
dynamically, depending on how the values are manipulated, and ii) implicit flows
are modeled by an environment under which the instructions are executed; the
environment, at every step of the computation, records the security level of the
open implicit flows. Then an abstract operational semantics is defined, which
disregards the numerical part of the values, and operates only on their security
levels. By examining the final states of the abstract semantics it is possible to
check secure information flow.

Other security leakages may occur when high level information is revealed
not only by the value of the variables, but by the behavior of the program [10,
19]. These leakages are also known as covert channels. Consider the program
while (y > 0) do skip, where y is an high variable. It loops indefinitely when
y is greater than zero. Thus high level information can be leaked by examining
the termination behavior of the program. Another leakage is when high level
information affects the number of instructions executed during the computations.
For example, information on the initial value of the high security variable y can
be leaked by observing the number of instructions executed by the program if
y=0 then { x:=1; skip } else x:=1 .

Covert channels do not concern the input-output behavior of the program,
but its dynamic behavior. They can be checked only by examining the interme-
diate states of the computations. In the present paper we define an approach to
check security of programs, and in particular covert channels, which combines
abstract interpretation with model checking: once built the abstract semantics

of the program, we inspect it for the security properties. In such a way we fully
exploit the information embodied in the abstract semantics, which, being oper-
ational, shows (the abstraction of) all possible execution paths of the program.
The main point of the paper is the definition of the properties that the abstract
semantics must satisfy to ensure the absence of covert channels. The properties
are then expressed as temporal logic formualae, and checked by using the SMV
model checker [11].

The paper is organised as follows: Section 2 presents the language and the
security model. Section 3 defines the concrete and abstract semantics. Section 4
introduces the program security properties and our method. Section 5 concludes
the work.

2 The language and the security model

Given a set A, A* denotes the set of finite sequences of elements of A; X indicates
the empty sequence; if w is a finite sequence, fw denotes the length of w, i.e.
the number of elements of w; - denotes both the concatenation of a value to a
sequence and the standard concatenation operation between sequences. Finally,
ifi € {1,...,tw}, with w[i] we denote the i-th element of w. We represent stacks
by sequences, with the convention that, if w is a nonempty stack, w[1] is the top
element.

Our language is the subset of JVML called JVMLO in [20]. It has an operand
stack, a memory containing the local variables, simple arithmetic instructions
and conditional/unconditional jumps. The instructions are reported in Fig. 1,
where x ranges over a set var of local variables and op over a set of binary arith-
metic operations (add, sub, ..). Note that the language supports subroutine
calls via the jsr and ret instructions.

op pop two operands off the stack, perform the operation,
and push the result onto the stack
pop discard the top value from the stack
push k push the constant k onto the stack
load z push the value of the variable x onto the stack
store x pop off the stack and store the value into variable x
if j pop off the stack and jump to j if non-zero
goto j jump to j
jsr j at address p, jump to address j and push
return address p 4+ 1 onto the operand stack
ret x jump to the address stored in x
halt stop

Fig. 1. Instruction set

A program is a sequence ¢ of instructions, numbered starting from address 1;
Vi e {1,---,4c}, c[i] is the instruction at address 7. In the following, we denote by

Var(c) the variable names occurring in ¢. We assume that a program is always
executed starting from the instruction ¢[1] and with an empty operand stack.
Moreover, we assume that programs respect the following static constraints,
checked the Java bytecode Verifier: no stack overflow and underflow occur, and
executions will not jump to undefined addresses.

We give the standard semantics of the language in terms of a Kripke structure
[6]. A Kripke structure K = (Q, Q°, AP, L, —) is a 5-tuple where:

@ is a set of states;

Q° C Q is a set of initial states;

AP is a finite set of atomic propositions;

L : Q — 247 is a function that labels each state with the set of atomic
propositions true in that state;

—C @ x @ is a total transition relation on) which gives the possible tran-
sitions between states.

The semantics uses the domain V¢ of constant values, ranged over by v,v’, ..
and A¢ of addresses, ranged over by i, 7, ... VU A€ is ranged over by k, k', ... For
each X C var, M5 = X — (VU A°) is the domain of memories defined on
X, ranged over by m,m/',.... S = (V¢ U A°)* is the domain of stacks, ranged
over by s,s’,.... In the following, M = UxcyarM% and, given m € M% and
Y C X, mly is the restriction of m to Y.

The domain of the states of the standard semantics is Q° = A® x M*® X
S¢. A state is given by the value of three variables, PC, MEM and STACK,
where PC' is the program counter, M EM is the memory, and STACK is the
operand stack. Each state is labeled by an atomic proposition for each variable,
expressing its value. We denote by (i, m, s) the state labeled by PC =i, MEM =
m,STACK = s.

Given a program c and a memory mg € M¢, the standard semantics of the
program is the structure (Q¢, (1,mg,\), AP, L, —€), where —*¢ is defined in
Fig. 2. The notation m[k / z] is used in the figure to indicate the memory m/
which agrees with m for all variables, except for x, for which it is m/(z) = k.
Since the program is deterministic, the corresponding structure has only one,
possibly infinite, path. We call final a state such that PC' = ¢ with ¢[i] = halt.
Note that self loops on these states are necessary to respect the totality of the
transition relation.

We now recall the notion of control flow graph of a program, containing the
control flow information among the instructions of the program, and the notion
of postdomination and immediate postdomination in directed graphs [2].

Definition 1 (control flow graph). Given a program c, the control flow graph
of the program is the directed graph (V,E), where V = {1,..,fc+ 1} is the set of
nodes; and E C V xV contains the edge (i,7) if and only if (a) the instruction at
address j can be immediately executed after that at address i; or (b) c[i] = halt
and j = fc + 1. The node fc + 1 is the final node of the graph and does not
correspond to any instruction.

cli] = op: (i,m, k1 - ka-s) —° (i+1,m, (k1 op k2) - s)

ci] = pop : (t,m ky - s) —° (i+1,m,s)
c[i] = push k : (i,m,s) —(i+1,m,k-s)
c[i] = load x : (i,m, sy —° (i +1,m,m(x) - s)

cli] =storexz : (i,m,k-s) —° (i+1,mlk / z],s)

il =gotoj: (i,m,s) —* (j,m,s)
cfi] = if j : (i,m,0- sy —< (i +1,m, s)
il =ifj5: (iym,(k#0)-s) —* (jm,s)
il =jsrj: (iymys) —° (G,m,(i+1)s)
il =reto: (i,m,s) — (m(z),m,s)

c[i] = halt : (i,m, s) —* (i, m, 5)

Fig. 2. Standard semantics

Definition 2 (postdomination). Let i and j be nodes of the control flow graph
of a program. We say that node j postdominates i, denoted by j pd i, if j # i
and j is on every path from i to the final node. We say that node j immediately
postdominates i, denoted by j =ipd(i), if j pd i and there is no node r such that
jpdropdi.

3 Abstract interpretation

This section presents an instrumented concrete operational semantics of the lan-
guage, embodying annotations on the information flow, and then an abstraction
of this semantics, concentrating only on the information flow aspects and ignor-
ing actual values. We assume a set £ = {l, h} of security levels, ordered by | C h,
and with U we denote the upper bound between levels. We consider annotated
programs, where each variable is associated with a security level. A program P
is a triple (¢, H, L) where ¢ is a sequence of instructions, and and H and L are
the high and low variables of P, respectively, with H U L = Var(c).

The semantics handles values enriched with a security level. During the exe-
cution of a program, the security level of a value indicates the least upper bound
of the security levels of the explicit and implicit information flows, on which the
value depends. Moreover, the semantics executes instructions under a security
environment, which is a security level. At each moment during the execution,

the security environment represents the least upper bound of the security levels
of the open implicit flows.

We now introduce the domains of the concrete semantics. ¥V = (V¢ x £) is
the domain of concrete values. Concrete values are pairs (v,o), where v € V¢
and o € L. Low (high) values are those with the form (v,l) (resp. (v,h)). The
concrete domain of addresses is A = (A x £). Note that also addresses need
to be annotated, since the decision on the address to jump to, can be made
depending on high information. For each z € var, Mx = X — (VU A) is the
domain of concrete memories, ranged over by M, M’ ---and S = (VUA)* are the
concrete operand stacks, ranged over by S, S’, - - -. The domain of concrete states
is @ =Lx A x M xS x (A°U {0}). Each state is a configuration the state
variables (ENV, PC,MEM,STACK, IPD), where ENV is the environment
and contains a security level, PC, M EM and ST ACK are the program counter,
the memory and the operand stack, respectively, and IPD is a flag used to
handle high implicit flow, as explained below. The transition relation — on the
concrete states is shown in Fig. 3.

To keep the security level of a value equal to the security level of the infor-
mation on which it depends, the semantics modifies the security level of each
value pushed onto the operand stack according to the present environment. For
example, the execution of load x assigns to the value pushed onto the stack the
least upper bound between the security level of M (z) and the environment. Note
that jsr associates the return address pushed onto the stack with the security
level of the present environment.

An implicit flow is entered with an if or a ret instruction. We use the
notion of immediate postdomination to control implicit flows. Given an if (ret)
instruction at address 4, ipd(i) is the first instruction not affected by the implicit
flow, since it represents the point in which the different branches join. Consider
an if instruction at address i. If this instruction is executed under the low
security environment and the value on top of the operand stack is high, then
the environment is upgraded to h and ipd(i) is recorded in IPD. Moreover
the security level is upgraded of each value held by a variable assigned by a
store instruction in at least one of the two branches. More precisely, let W =
{z|c[j] = store z and j belongs to a path of the control flow graph starting at 4
and ending at ipd(i), excluding ipd(i)}. For each « € W, if M (z) = (k, o), then
upm (M, i)(x) = (k,h). The contents of the variables not in W is not changed.
Upgrading the memory in this way takes into account the fact that a variable
may be modified in one branch and not in the other one. Similarly, the security
level of each value present in the operand stack is upgraded to h by applying the
function ups. We upgrade the operand stack on entering an implicit flow to take
into account the fact that the stack may be manipulated in different ways by the
two branches. When the instruction c[ipd(i)] is executed, i.e. when PC = IPD,
the environment is downgraded and IPD is reset to 0 (corresponding to no
instruction). The ret z instruction is handled similarly, taking into account the
security level of the address stored in z. Note that having only two security levels
simplifies the semantics. In fact, if we consider whatever number of levels, ITPD

. .
1=1
<07i7M)S7i,> — (l,i,M,S,O)

Z[Z]é l: op, S = (ki,71) - (k2,72) - S : (0,4, M, S,7') — (0,5 + 1, M, (k1 op k2,71 UT2) - S, 7")
c[i] = pop, S = (k,7)- S : (0,8, M, S,i'y — (o,i+ 1, M, S',i")
cli] =push k : (0,i,M,S,i'y — (o,i+ 1, M, (k,o) - S,i")
cli] = load z, M(z) = (k,7) : (0,8, M,S,i'y — {o,i+ 1, M, (k,cUT)-S,i)
c[i] = store z,S = (k,7)- 5" : (0,8, M, S,i'y — (o,i+ 1, M|[(k,T)/x],S",i")
cli] = goto j : (0,8, M, S,y — (0,5, M, S,i)
cfi] =if 5,8 =(k#0,7)- 5" : (0,3, M, S,y — ((c = 1) A (T =h))?
(h, 3, upar (M, 3), ups (S),ipd(i)) : (o U T,i+ 1, M, S, i)
cfil =if 5,8 =(0,7)- S : (0,8, M, S,y — ((c = 1) A(T =h))?
(hyi+ 1, upn (M, 3), ups(S),ipd(i)) : (U T, +1,M,S,i)
cli] = jsrj: (0,8, M, S,y — (0,5, M, (i + 1,0) - S,i')
cli] =ret z, M(z) = (j, 1) : (0,8, M, S,y — ((c = 1) A (T = h))?

(h, j,upnrr (M, i), ups(S),ipd(i)) : (o U, j,M,S,i')

cfi] = halt : (0,i, M, S,i')y — (0,4, M, S,i)

Fig. 3. Concrete semantics

would be a stack of addresses, instead of a single address. In our case, a high
if that depends on another high if is already in a high region and the region
terminates at the ipd of the outermost if. For the same reason, the upgrading
of environment, memory and stack, and the modification of IPD is performed
only when an if (ret z) instruction is executed in the low environment, and
with a high value on the top of the stack (resp. a high address stored in z).

Given a program P = (¢, H, L) and a memory My € M, the concrete seman-
tics of P is the structure with (I,1, My, A,0) as the initial state: it consists of
the low environment, the address of the first instruction, the given memory, the
empty operand stack and the IPD flag equal to 0.

If we ignore information on security, then the concrete semantics is isomor-
phic to the standard semantics of the language. The concrete semantics has an
only extra case (case ¢ = i’ in Fig. 3) concerning the handling of IPD. It is ap-
plied when PC' = IPD and has the effect of downgrading the environment and
resetting IPD. Given a memory m € M¢% and a concrete memory M € Mx,
we say that they are consistent (M + m) if Ve € X : M(z) = (m(z),7), for
some 7. Given a stack s € §¢ and a concrete stack S € S, we say that they are
consistent (S < s) if fs =4S and Vi € {1,..,4S}, S[i] = (s[i], 7), for some 7.

Theorem 1 (standard and concrete semantics consistency). Given a

program P = (c,H, L), let My € My q,(c) and mg € M€ such that My < my.
(la 17 MOa)\7 0> L><7-7 i: M7 S:J) Zf and Only Zf <la mo,)‘> L;(ia m, S>
with M < m and S < s.

The purpose of abstract interpretation (or abstract semantics) [7,8] is to
correctly approximate the concrete semantics of all executions in a finite way.
We now present an abstract operational semantics which is an abstraction of the
concrete semantics: concrete values are abstracted by keeping only their security
level and disregarding their numerical part. Addresses maintain their identity.
All other structures are abstracted consequently.

The domain of values V = V¢ x L is abstracted in the following way: (V¢)? =
{®} and £F = £. Thus V¥ = {®} x £ which is isomorphic to £. For every
concrete value (k, o) € V, its abstraction is given by ay ((k,0)) = (®,0) = ¢. The
domain of addresses A = A€ x L is abstracted in the following way: (A°)% = A°
and thus A% = A x L% and a4((j,0)) = (j,o). The abstract memories Mg(:
X — (VhU AY) are the functions from variable identifiers to abstract values and
addresses. The abstraction function on memories aps : Mx — M?X assigns the
abstraction of M (x) to M?(z), for each z € X. The domain of stacks S is defined
analogously. The abstract states, QF, contains the abstractions of the components
of Q: ag : Q — Q% is defined as ag({o,i, M, S, j)) = (0,i,apm (M), as(S),j).

The abstract semantics is defined by the same rules of the concrete semantics,
used on the abstract domains. The transition relation of the abstract semantics is
denoted by —1. Note that, for if instructions both alternative branches are exe-
cuted, since every value is abstracted to ”®”. Moreover, since addresses maintain
their identity, also all possible return points are explored. Given P = (¢, H, L)
we denote by A(P) the abstract transition system defined by the abstract rules

and starting from the state (l,l,Mg,)\,()) where Mg € Myar(c) is such that

Ve € L: M¥z)=1and Vo € H : Mg (z) = h. The following theorem states that
the abstract semantics mimics all possible concrete executions: the abstraction
of every path of a concrete semantics is a path of the abstract one.

Theorem 2 (correctness of the abstract semantics). Given two concrete
states Q,Q" € Q, @ — Q' implies ag(Q) —7 ag(Q').

Note that the abstract semantics is finite. In fact, since security levels, envi-
ronments and abstract values are finite, then abstract memories are finite too.
Abstract operand stacks are finite because we assume stack boundedness.

4 Model checking the abstract semantics

In this section we define some security properties guaranteeing the absence of
different security leakages and we show how it is possible to prove them for a
program P by model checking the abstract semantics of P for a set of logic
formulae.

In the following, we assume a program P = (¢, H, L). The following property
states that the final value of each low variable does not depend on the initial
value of the high variables.

Definition 3 (secure information flow). P satisfies the secure information
flow property (SIF) if for each pair of memories my,my € Mﬁ,ar(with
midr=molr,

if (1,m1,A) =5 (i1, m), s1) and (1,ma, \) == (is,mb, s2) with c[i1] = clis] =
halt,

then m! | ,=mb L.

c)?

The second property we consider concerns the timing flows due to termination
observation [10,19]: it is not possible to leak high information by observing the
termination of the program.

Definition 4 (termination agreement). P satisfies the termination agree-
ment property (TERM) if for each pair of memories my, mo € M;M(c), with
mylr=malL,

if (1,ma, Ay == (i1, m}, s1) with cli1] = halt, then (1,ma, Ay == (iz,mb,)
with c[iz] = halt.

The third property concerns timing channels where the number of instruc-
tions executed in a computation may reveal information on the value of the high
variables.

Definition 5 (timing agreement). We say that P satisfies the timing agree-
ment property (TIME) if for each pair of memories my,ms € Mﬁ,w(c), with
midr=malr, .

if (1,m1,A)— (ix,m4,s1) with c[iy] = halt, and (1,mg,\) = (iz,m}, s2)
with c[iz] = halt, then the two computations have the same length.

The following theorems relate the abstract semantics with the above proper-
ties.

Theorem 3. P satisfies SIF if for each state of A(P) such that ¢[PC] = halt,
then Vo € L, MEM|[z] =1 or MEM|[x] = (i,l) for some i.

Theorem 4. P satisfies TERM if every state of A(P) such that ENV = h
does not belong to a cycle.

Theorem 5. P satisfies TIME if:

all paths in A(P) starting from a state satisfying STACK[1] = h and PC =i
where c[i] = if and ending with a state satisfying PC = ipd(i) have the same
length.

all paths in A(P) starting from a state satisfying PC =i and MEM|[z] =
(j, h) where c[i] = ret x and ending with a state satisfying PC = ipd(i) have
the same length.

Theorem 3 states that to check STF' it suffices to examine the final states
of the abstract semantics, and, in particular, to check that in these states the
low variables hold low values and the stack contains only low values. Theorem 4
says that TERM can be controlled by checking that no instruction is executed
more than once under a high environment. Theorem 5 states that, to ensure
TIME, the branches starting from an if instruction at address ¢ with an high
condition (the value on top of the stack is h) must have the same length until
ipd(i) is reached. A similar condition is stated for ret instructions with high
return address.

The proof of the above theorems is based on a set of properties of the con-
crete semantics that we now briefly show. We need some definitions. Two con-
crete values (kyi, 01), (ka,02) € (VU .A) are low equivalent ((ky,01) ~Y (k2,02))
if and only if if either they are equal or 07y = o5 = h. Two concrete mem-
ories M, M' € Mx are low equivalent (M ~™ M’) if and only if for each
r € X,M(z) ~Y M'(z). To define low equivalence of operand stacks, we repre-
sent them in a canonical form. Each S € § is uniquely representable in canonical
form as S = u - w, where w contains only high values and the bottom element
of u is a low value. Two concrete operand stacks S = u-w and S’ = u' - w' are
low equivalent (S ~S S') if and only if
fu = fu' and Vi € {1, ... fu} : ufi] ~Y u'[i].

Two operand stacks are low equivalent if and only if the u parts of their
canonical representation have the same length and hold low equivalent values in
the same positions.

The following lemma states that, if the environment is low, two concrete
transitions starting from the same instruction and low equivalent memories and
operand stacks, maintain low equivalence of memories and stacks. Moreover,
after the transitions, the environments are equal. Finally, if the environment is
still low, then also the contents of the program counter is the same and IPD.
Instead, if the environment becomes high, then ipd(i) is stored into IPD.

Lemma 1. Let My ~™ M, and S; ~5 S,.
(l,i,M1,51,0> b <T,Z.1,M{,Si,j> implies <l,i,M2,SQ,0> b <T,Z.2,M£,Sé,j>
with M| ~™M M}, St ~° Sb, and,
if =1, then iy =iy and j = 0; if T = h, then j = ipd(i)

The following lemma states that, in each transition executed under the high
security environment, the memory and the operand stack before and after the
transition are low equivalent to each other. Moreover, the environment is down-
graded only when the instruction at address IPD is executed, and in this case
IPD is reset to 0.

Lemma 2. (h,i,M,S,j) — (r,i',M',S',j') implies M ~M M' S ~° S' and,
if =1, theni' = j and j' = 0.

The proofs of the Theorems 3, 4 and 5 is based on the following informal
reasoning. Consider two standard computations starting from memories that
agree on the value of low variables. Consider the corresponding concrete compu-
tations, existing by Theorem 1. By Lemma 1, until the environment is low, the
two computations perform the same instructions, keep low quivalence of memo-
ries and operand stacks, and maintain the same environment and IPD = 0. By
the same lemma, if one of them upgrades the environment, also the other one do.
While executing in the high environment, low equivalence of memory and stacks
is maintained by Lemma 2. The proof then follows by considering the abstract
computations corresponding to the concrete ones, existing by Theorem 2, and
the conditions expressed by the theorems.

4.1 Implementation in SMV

We have used the SMV tool [11] to implement our method. SMV is a tool for
checking finite state systems against specifications in the temporal logic CTL
[6]. The specifications are assertions on the state variables and on the paths of
the system. Using the SMV model checker, the three conditions above can be
written as follows:

osir = Aeet AG((PC = i) A cfi] = halt) — (MEM[z] =) V (MEM[z] = (j,1)));
orerm =AG((PC = i) A (ENV = h)) = AG(PC! = i));

priaee = AG(((PC =) A (STACK(1] = 1) A ((cl] =)
— vr:l,..n (Zpd())
NAG(((PC =i) N(MEM|[z] = (j, h) A (c[i] = ret x))
= Vy=1, 2 X" (PC =ipd(i))
where n = fc and X" = X...X r times.

We recall that in CTL a state @ satisfies A ¢ if ¢ is true in all paths starting
from Q; @ satisfies G ¢ if ¢ is true in all states reachable from @Q;) satisfies
X ¢ if ¢ is true in all states reachable from) by only one transition. The three

formulae are the translation in the logic of SM'V of the conditions expressed by
Theorems 3, 4 and 5. In @773 E, to check that the lengths of the paths from a
state to another one are all equal, we use the sequences of the X operator with
length < fec : the formula is true if r < fe exists such that X" (PC = ipd(i)) is
true; in this case all paths have length r.

4.2 Examples

Consider programs with L = {x} and H = {y}. Fig. 4 shows a non-secure implicit
flow. It corresponds to the program: if y=0 then x:=1 else x:=0.Fig.
4(c) shows the abstract structure of the program. A(P) does not satisfy psp
nor ¢rrymE, while orgra is satisfied. Fig. 4(b) shows a concrete computation
violating STF.

1 load y
2if 5
3push 1
4 goto 6
5 push 0
6 store =
7 halt

(a)

(ENV, PC,[MEM (z) MEM (y)], STACK,IPD)
(1,1, [(H(R)]; A, 0)

<l7 17 [(57l)(17h)]7)‘7 0> wl«load
~Lload (l) 27 [(l) (h)]7 (h)’ 0)
<l7 2, [(57 l)(17 h)]: (17 h)7 O> v iferue \‘iffalse
‘l’iftrue <h7 5, [(l)(h)]a A, 6) (ha 3, [(l) (h)]7 A 6>
<h75’ [(5’l)(17h)]’>" 6> ~Lpush
lpush lpush (h,4,[(1)(R)], R, 6)
<h767 [(57l)(17h)]7 (O7h)76> J«gf’to
lipd (h, 6, [(D)(R)], (h),6)
<l767 [(57l)(17h)]7 (O7h)70> J«iPd
Jstore (1,6,[(D(R)], (R),0)
(1,7,[(0,h)(1,)], A, 0) Istore
Ihatt T (1, 7,[(h)(R)], A, 0)
{halt
(b)
(c)

Fig. 4. A program not satisfying STF

The program in Fig. 5 is an example of violation of termination agreement.
This program terminates depending on the value non-zero or zero of the high
security level variable y. It corresponds to the high level program: while (y)
do skip. Fig. 5(b) shows the abstract semantics of the program. Note that it
satisfies pgrp, but not prgras: there is a cycle including states with ENV = h.

Fig. 6 shows an example of not secure program due to to a timing channel.
The number of steps of the program depends on the value of the high security
level variable y. When the program terminates the low variable x always holds
1. Fig. 6 (b) shows the abstract semantics of the program. It satisfies ¢g;p and
YwTERM, but it does not satisfy prrye.

5 Conclusions

The work [5] presents an approach, based on abstract interpretation and model
checking, enabling a smart card issuer to verify that a new applet securely inter-
acts with already downloaded applets. The work concentrates on applet inter-
faces, therefore the security levels correspond to the possible interactions among
applets. Covert channels are not handled and in general the formulae are not
general but specific for the particular applet to be verified.

An alternative approach to check secure information flow in assembly code
may be developed by defining a typing system for this purpose. Typing systems
have been defined for high level languages for example in [19,14]. Typing sys-
tems for assembly code have been defined, for example, in [13,20, 21], but they
check safety and do not handle secure information flow. An advantage of our
approach with respect to those based on typing is that it is semantics based and
thus keeps information on the dynamic behavior of programs, allowing to check
more precisely the desired properties. A further advantage is flexibility: different
security properties can be checked on the abstract semantics by expressing them
as temporal logic formulae. For example, the condition that a low variable never
holds a high value during the computations can be expressed by the formula:
NeeL AG(MEM](z] = 1). This condition, that ensures secure information flow,
corresponds to that checked by the typing approaches and it is stronger than
that expressed in Theorem 3.

References

1. G. R. Andrews, R. P. Reitman. An axiomatic approach to information flow in
programs. ACM Transactions on programming languages and systems, 2(1), 1980,
pp. 56-76.

2. T. Ball. What’s in a region? Or computing control dependence regions in near-
linear time for reducible control flow. ACM Letters on Programming languages
and Systems, Vol. 2, N. 1-4, 1993, pp. 1-16.

3. R. Barbuti, C. Bernardeschi, N. De Francesco. Abstract Interpretation of Opera-
tional Semantics for Secure Information Flow. To appear on Information Processing
Letters.

N O O W N

(ENV, PC,[MEM (y)], STACK, IPD)

(1, 1,[(h)], A, 0)

J(load
(1,2, [(R)], (h),0)
1load y iftalse Niferue
2if 1 (h, 1, [(M)], A, 3) |
3 halt Joad |
(h,2,[(R)], h, 3) |
(a) l/lffal se \“ftrue |
(h,3,[(R)], A, 3)
lipd
(1,3, [(R)], A, 0)
dhalt T
(b)

Fig. 5. A program not satisfying TERM

(ENV, PC,[MEM (z) MEM y)], STACK,IPD)

(I, 1, (D), A, 0)

J(load
(1,2,[(D(R)], (h), 0)
load y v ifatoe Liferue
if 5 (h,3,[(1)(h)], A, B)
push 0 Ipush
pop (h, 4, [(1)(R)], I, 5)
push 1 N\pop
store x <h7 5, [(l)(h)]’ >" 5)
halt lipd
(.5, [(j)(h)], A, 0)
(L6, [il‘i?in, 1,0)
(L7, 1O (0], A,0)
Lhalt t
(b)

Fig. 6. A program not satisfying TIME

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. R. Barbuti, C. Bernardeschi, N. De Francesco. Checking Security of Java Bytecode
by Abstract Interpretation. Proceedings of the Special Track on Security at the
ACM Symposium on Applied Computing (SAC2002), March 10-14, Spain 2002,
(to appear).

P. Bieber, J. Cazin, P. Girard, J-L. Lanet, V.Wiels, G. Zanon. Checking Secure
Interactions of Smart Card Applets. Proceedings of ESORICS 2000.

E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on pro-
gramming Languages and Systems, vol. 8, n. 2, 1986, 244-263.

P. Cousot, R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2, 1992, pp. 511-547.

P. Cousot, R. Cousot. Inductive Definitions,Semantics and Abstract interpre-
tations. Proc. 19th ACM Symposium on Principles of programming languages,
POPL’92, 1992, pp. 83-94.

D. E. Denning, P. J. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7), 1977, pp. 504-513.

B.W. Lampson. A note on the confinement problem. Communications of the ACM,
Vol. 16, n. 10, 1973, pp. 613-615.

K.L. McMillan. The SMV language. Cadence Berkeley Labs, Cadence Design
Systems, Berkeley, March 1999.

Lindholm T., F. Yellin. The java virtual machine specification. Addison-Wesley,
1996.

G. Morrisett, D. Walker, K. Crary, N. Glew. From System F to Typed Assembly
Language. ACM Transactions on Programming Languages and Systems, Vol. 21,
N. 3, 1999, pp. 527-568.

A. Sabelfeld, D. Sands. The impact of synchronization on secure information flow
in concurrent programs. Proceedings Andrei Ershov 4th International Conference
on Perspective of System Informatics, Novosibirsk, LNCS, Springer-Verlag, July
2001.

D. A. Schmidt. Abstract interpretation of small-step semantics. Proceedings 5th
LOMAPS Workshop on Analysis and Verification of Multiple-Agent Languages,
M. Dam and F. Orava, eds. Springer, 1996.

D. A. Schmidt, B. Steffen. Program analysis as model checking of abstract inter-
pretations. Proc. 5th Static Analysis Symposium, G. Levi. ed., Pisa, September,
1998. Springer LNCS 1503.

D. A. Schmidt. Data-flow analysis is model checking of abstract interpretations.
Proc. 25th ACM Symp. Principles of Programming Languages, San Diego, 1998.
D. Volpano, G. Smith, C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3), 1996, pp. 167-187.

D. Volpano, G. Smith. Eliminating covert flows with minimum typing. Proceedings
10th IEEE Computer Security Security Foundation Workshop, June 1997, pp. 156-
168.

R. Stata, M. Abadi. A type system for java bytecode subroutine. ACM Transac-
tions on Programming Languages and Systems, Vol. 21, n. 1, 1999, pp. 90-137.

Z. Xu, B. P. Miller, T. Reps. Safety Checking of Machine Code. Proceedings ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Vancouver, Canada, 2000, pp. 70-82.

