
Modeling systems using logic

We use the language of PVS

I specification of the system
I animation of the specification
I formal proofs

Although PVS’s specification language is based on higher-order logic and features
a rich type system, a large subset of it is executable

PVS ground evaluator PVSio can be used to animate functional specifications

PVSio enhances PVS language with built-in constructs for string manipulation,
floating-point arithmetic and input/output operations

Modelling Wireless Sensor Network Protocols

1 / 41

Modelling Wireless Sensor Network Protocols

Generally
I network protocols are described in terms of actions performed by a generic

node
I network protocols are described as sequences of steps guarded by control

flow conditions
I control fows conditions of network protocols are driven by the value of

information items
- locally stored on nodes (e.g., received packets or local timers), or
- virtually shared among nodes (e.g., global reference clocks provided by
synchronisation protocols).

2 / 41

Modelling Wireless Sensor Network Protocols

I define the generic components: for nodes, network topology, protocol
algorithm, ...

I nodes are assigned local services: e.g., packet logger, ...
I the network is assigned global services: e.g., global clock
I function advance_time increases a given time by an undetermined amount

as follows (where time is used as a synonym for type real):
advance_time(t: time): {t1: time | t1 > t}

I model of computation:
- synchronous setting where all components take a step simultaneously;
- asynchronous interleavings of all possible component executions

each component is packaged into a separate PVS model, a theory, and theories
can be composed to build more complex components

3 / 41

Abstractions

I number of different versions of the theories can be developed for each
component, each theory describing the component at a different level of
detail.

I The most abstract theories provide the declaration of the basic set of
mandatory interface functions and types.
More detailed theories can be derived from the abstract definitions by
specifying the behaviour of functions and by extending types.

I If different versions of a theory provide the same declaration for interface
functions and types, they are interchangeable.
When building the model, we can use the minimal set of details needed for
the analysis by importing the appropriate version of the theories.

4 / 41

Nodes

Nodes are numbered starting from 0

A services S is associated to nodes by means of a function:
[finite_set[node_id] -> S].

Depending on the algorithm specification and on the property of interest, services
can be installed on a single node, on a group of nodes, or on the entire network.

Network connectivity is modelled with a directed graph without self-edges.
We build type definition on top of directed graphs of the NASA library:
digraph[node_id].

5 / 41

Generic protocol theory

I we use two basic elements: network graph and network state
I we use a function execute that: given a network graph, a network state and

a protocol function, applies the protocol to the network graph and the network
state and returns a new network state

execute models the execution of one step of the protocol

6 / 41

Network graph

7 / 41

Basic network graphs

8 / 41

Network state

The network state is described by the set of functions that specify the allocation of
services to nodes. For instance, in the following theory, a network state is defined
as the collection of two services (receive buffer and log)

9 / 41

Services

Example of services are:

- packet logger, which stores statistics about sent and received packets,

- receive buffer, which models the buffer where packets sent by other nodes are
stored,

- energy consumption, which evaluates the energy spent by nodes,

- routing, which provides the basic definitions for building routing tables, spanning
trees and paths between nodes, and

- node scheduler, which gives the sequence of nodes that execute the algorithm
(e.g., round robin, or random).

10 / 41

Energy consumption

- network_consumption associates the total used energy to every node
- sender_consumption returns the enery spent when executing send packet
- receiver_consumption returns the energy consumed by a node rcv when the packet is
sent by the node snd (different for neighbours/ non neighbours nodes)
- update_network_consumption updates the total energy used by nodes

11 / 41

General theory for executable specifications
Adding the transition relation

The theory takes one type parameter, State, and defines a (higher-order) func-
tion execute that recursively applies n steps of a state-transition function trans,
which is provided as a parameter

MEASURE part provides information about termination of the recursion

12 / 41

Traces

Theory that models possible executions of a state transition system as traces.

I Execution traces are modelled as a subtype of possibly infinite sequences of
states, namely those that start in an initial state and in which successive
elements are connected via the next-state relation

I Using a relational specification of the state transitions allows to express
potential non-determinism or the concurrent evolution of the components of a
system.

The type sequence is predefined in PVS and simply maps natural numbers to
corresponding elements of the sequence.

A predicate invariant is declared, which defines what it means for a certain
property P to be an invariant of the execution, namely that it holds in every state of
any trace.

13 / 41

Proving properties

- init is a predicate intended to describe the set of initial states (pred denotes a function
whose return is a boolean)
- next is a predicate that specifies the set of successor states for a given state (relation)
- invariant is a function which returns true if for every trace, any element of the trace
satisfies P

14 / 41

Proving properties

proof by induction on the sequence of system states, as determined by the
variable n

PVS provides support for different induction schemes, e.g., classical mathematical
induction, structural induction on recursive structures, such as lists, trees, graphs
or paths....

15 / 41

An example: Flooding protocol

Flooding is a one-to-many routing protocol, in which a dedicated node (the base
station) needs to communicate general information to all the nodes of the network.

A simple variant of flooding behaves as follows: whenever a node receives a
packet, the packet is forwarded to neighbouring nodes if it is received for the first
time, otherwise it is dropped

I define the packet structure
I define the single hop communication primitives
I distinguish between the base station and the other nodes

16 / 41

Packet structure

In the following example, a packet consists of five fields (timestamp, source,
sender, destination and payload)

Broadcast address bcast_addr is represented with a special constant bcast
addr, which is the full set of nodes.

17 / 41

Single-hop primitives
Three low level single-hop primitives for communications: inject, forward and drop.
Additionally, nodes are also allowed to perform an idle transition.

I Inject can be used to send out packets generated by nodes (e.g., packet generated
by the application executed on nodes, or control packets generated by the routing
service): the function takes a packet as parameter, and sends out such packet.

I Forward is suitable to relay packets previously received by nodes (e.g., when
multi-hop communication is needed to reach the destination): the function takes a
packet as parameter, removes the packet from the receive buffer of the node, and
sends out a packet with a sender address automatically updated with the identfier of
the sending node.

I Drop is used to discard received packets: the function takes a packet as parameter,
and removes such packet from the receive buffer of the node.

I Idle is useful to update state variables of nodes, such as energy consumption, when
no operation on incoming/outgoing packets is performed.

18 / 41

Forward primitive

basic version of the forward primitive

19 / 41

Flooding protocol

Node theory

identification of base_station and sensor_id; predicates node_id?,
base_station? and sensor_id?;

20 / 41

Flooding protocol

Protocol theory

21 / 41

An application

The application consider also mobile nodes. Mobility patterns of nodes are modelled as
functions that specify the target location of the mobile nodes through a set of rules. In the
case physical locations are not explicitly modelled, nodes’ locations are abstracted to node
identifiers. (not shown).

p is the protocol and it is equal to flooding_app

Function simulate is used instead of function execute defined above, because
we have additional parameters (e.g., the scheduler, the mobility feature etc.)

22 / 41

Simulation output

N_STEPS = 3, the ouput shows the network state and the scheduled node for each
execution step: the network state consists of the nodes’ identifiers and the receive buffers;
receive buffers have maximum capacity of four packets, and each packet is denoted by the
symbol].

23 / 41

Simulation output

N_STEPS = 3

the ouput shows the network state and the scheduled node for each execution step

the network state consists of the nodes’ identifiers and the receive buffers

receive buffers have maximum capacity of four packets

each packet is denoted by the symbol].

24 / 41

Modeling attacks

Packet dropping attack. In our framework, we can model the attack through the
concept of lossy address. A lossy address is a function that defines which nodes,
among those in communication range with the transmitter, will correctly receive the
packet. For instance, in the following we show the function declaration for lossy
broadcast address:

lossy_bcast_addr: {grp: finite_set[node_id] | subset?(grp,

fullset[node_id])}

Note that the set of nodes receiving the packet is left unspecified, and, hence, any
subset of nodes is possible. If needed, the function can be refined for specifying
the mathematical formula describing the precise set of nodes receiving the attack.

25 / 41

Reuse of theories: Reverse Path Forwarding protocol

Reverse Path Forwarding (RPF) is a broadcast routing method which exploits the
information contained in the routing table to deliver
packets generated by a base station to
all other nodes in a multi-hop network

With RPF, packets are propagated with the following policy: a node n accepts a packet
received from node p only if n believes that p is the best next hop on the path to the base
station, as specified in the routing table.

Under the assumption of a static routing table, the RPF delivers exactly one copy of the
broadcast packet to all nodes. If, however, the routing table is dynamic, as is usually the
case in real-world deployments, then such guarantees cannot be made for RPF

26 / 41

RPF protocol

27 / 41

RPF protocol

Routing table

28 / 41

RPF protocol
Property P: If the routing table is correct and static, then exactly one copy of the broadcast
packet sent by the base station will be delivered to all nodes in the network.

29 / 41

Reuse of theories: Surge protocol

The Surge protocol forms a dynamic spanning tree, rooted at a single node (the base
station). Nodes route packets to the root.

Nodes select a new parent when the link quality falls below a certain threshold. Surge
suppresses cycles in the routing by dropping packets that revisit their origin.

Suppose that we are interested in analysing the forwarding service. The spanning tree
service can be assumed correct, i.e., it provides a correct routing table rt to the
forwarding service.

30 / 41

Surge protocol

31 / 41

Surge protocol

Results for a 5x5 grid network.

The protocol has been simulated several times and for different number of steps.
For high number of steps, the queue size almost stabilised.

As expected, the maximum number of packets in the receive queue is larger for
nodes closer to the base station, because they have to relay packets for more
nodes.

In the simulation, we assume that the forwarding table does not change.
32 / 41

Robustness to topology changes

We were able to detect a potential problem of infinite loops of routed packets in the
algorithm specification.

There are situations in which a packet may travel indefinitely in the network,
because the routing table may change in response to topology changes.

Surge suppresses cycles in the routing by dropping packets that revisit their origin.

33 / 41

A revised version of Surge

A new version of the protocol has been suggested:

I SurgeNL uses bursty transmissions, i.e., each node always transmits all
packets ready to be sent, while Surge does not give any constraint on this
aspect;

I SurgeNL guarantees that each node always injects a new packet whenever it
performs a transmission, while Surge sends only the packets that are stored
in the receive buffer (such packets are those received from other nodes);

I SurgeNL detects routing loops by inspecting the source address of all packets
in the receive buffer, while Surge, on the other hand, inspects only the source
address of the packet to be transmitted.

34 / 41

A revised version of Surge

35 / 41

A revised version of Surge

Configuration base

36 / 41

A revised version of Surge

Configuration injected

37 / 41

A revised version of Surge

Configuration preloop

38 / 41

Surge protocol

The main part in the development of the configuration diagram is proving that the
claimed transitions between the configurations are indeed taken when executing
one step of the protocol. For the base configuration we therefore state the
following theorem, that expresses that from configuration base we can either stay
in base or move to injected:

39 / 41

Formal specifications

I the specifications are intuitive for designers and practitioners
I the level of detail of the specification can be seamlessly adapted: analysts

can construct high-level specifications of the protocol, and then refine such
specifications for taking into account specific situations (e.g., networks with
mobile nodes) and specific properties of interest

I modular and reusable theories
I attacks (as well as non-malicious faults) can be simply modeled and

integrated into the specification
I the same formal specifications can be used both in the theorem prover for

proving key properties of the protocol, and in the environment for simulation

40 / 41

Cryptographic protocols

Theorem provers have been used for stating and proving properties of cryptographic
protocols: Isabelle/HOL, Coq,

The analysis of the Needham-Schroeder protocol which uses public-key encryption was
studied in
Paulson L., The inductive approach to verifying cryptographic protocols, Journal of
Computer Security, 1998

From Paulson’s paper:
Informal arguments that cryptographic protocols are secure can be made rigorous using
inductive definitions. The approach is based on ordinary predicate calculus and copes
with infinite-state systems. Proofs are generated using Isabelle/HOL. The human effort
required to analyze a protocol can be as little as a week or two, yielding a proof script that
takes a few minutes to run.

41 / 41

