
FMSS 2020-2021

Means for dependability

A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr
Basic Concepts and Taxonomy of Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing, Vol. 1, N. 1, 2004

Dependability tree

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 2

From [Avizienis et al., 2004]

Fault Tolerance

deals with faults at run-time
(zero faults not possible)
deliver correct service in presence of activated faults and errors

Fault tolerance techniques

Error
detection

and
processing

Fault
masking

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 3

Organisation of fault tolerance

From [Avizienis et
al., 2004]

FMSS, 2020-2021 Organisation of fault tolerance 4

Error detection and processing

FMSS, 2020-2021 Organisation of fault tolerance 5

Error = part of the system state that may lead to a failure

Main issue:

- Identify all of the possible errors in a system

- Ensure that those states are never reached, or, if reached, every effort has been taken to reduce
the effects

- Prevention of error propagation from affetcting operations of non failed components

A systems consists of a set of interactive
components, the state of the system is the set
of states of its components.

When the error reaches the boundary of the
system, the system fails. The error remains
internal to the entire system

Phases of fault tolerance:

➢ Error Detection

➢ Error Handling

➢ Fault Handling

BASIC CONCEPT:
fault tolerance mechanisms detect errors (not faults)

Error detection and processing

FMSS, 2020-2021 Organisation of fault tolerance 6

Error recovery

Error compensation

dormant
fault

Error

Normal
operation

Error
Recovery

Error Handling

Fault
activation

Error compensation

Error
detection

Fault
Handling

Error detection, error processing and fault treatment

FMSS, 2020-2021 Organisation of fault tolerance 7

An error is detected if its presence is indicated by an error message or a error signal

Errors that are present but not detected are latent errors

Error detection and handling ,
followed by Fault handling , is
commonly performed at system
power up.

• Replication Checks

Based on copies and comparison of the results two or more copies

- a mechanism that compares them and declares an error if differ

- the copies must be unlikely to be corrupted together in the same way

Sys

Sys

comparator

Error detection: Types of checks

FMSS, 2020-2021 Organisation of fault tolerance 8

Error if the two input differ

Error detection: Types of checks
• Reasonableness Checks (use known sematic properties of data)

Acceptable ranges of variables
Rate of changes
Acceptable transitions
Probable results

…………..

• Run-time checks

error detection mechanism provided in hardware (dived by 0, overflow, underflow, …)
can be used to detect design errors

• Specification checks (use the definition of “correct result”)

Examples
Specification: find the solution of an equation
Check: substitute results back into the original equation

FMSS, 2020-2021 Organisation of fault tolerance 9

• Reversal Checks (inverse computation, use the output to compute the corresponding inputs)

assume the specified function of the system: output = F(input)
if the function has an inverse function F’(F(x))=x we can compute F’(output) and
verify that F’(output) = input

• Structural checks (use known properties of data structures)
lists, trees, queues can be inspected for a number of elements
(redundant data structure could be added, extra pointers, embedded counts, …)

• Timing checks: watchdog timers
check deviations from the acceptable module behaviour

• Codes (use coding in the representation of information)

Parity code, Checksum, Hamming code, ….

Error detection: Types of checks

FMSS, 2020-2021 Organisation of fault tolerance 10

Preventing error propagation:

- Minimum priviledge

- System closure fault tolerance principle
no action is permissible unless explicitly authorized (mutual suspicion)
For example,

- each component examines each request or data item from other
components before using it

- each software module checks legality and reasonableness of each
request received

Error detection: structural approach

FMSS, 2020-2021 Organisation of fault tolerance 11

Modularization
add error detection (and recovery) capability to modules

Error confinement areas, with boundary at interfaces between
modules

Clear hierarchy and connectivity of components
used to analyse error propagation

Partitioning
functional independent modules + control modules (that coordinate the execution)

provide isolation between functionally independent modules
error confinement

Error detection: structural approach

FMSS, 2020-2021 Organisation of fault tolerance 12

Error detection: structural approach

FMSS, 2020-2021 Organisation of fault tolerance 13

Temporal structuring of the activity between interacting components
atomic action:
activity in which the components interact with each other and

there is no interaction with the rest of the system for the duration of the
activity

provide a framework for error confinement and recovery
(if a failure is detected during an atomic action, only the participating
components can be affetcted)

Coverage:
probability that an error is detected conditional on its occurence

Latency:
time elapsing between the occurrence of an error and its detection
(a random variable)
how long errors remain undetected in the system

Damage Confinement:
error propagation path

the wider the propagation, the more likely that errors will spread outside the system

Effectiveness of error detection
(measured by)

FMSS, 2020-2021 Organisation of fault tolerance 14

Error Recovery

Forward recovery
transform the erroneous state in a new state from which the system can
operate correctly

Backward recovery
bring the system back to a state prior to the error occurrence

- for example, recover from sw update by using the backup

FMSS, 2020-2021 Organisation of fault tolerance 15

Requires to assess the damage caused by the detected error or by errors
propagated before detection

Usually ad hoc

Example of application:

real-time control systems, an occasional missed response to a sensor input is
tolerable

The system can recover by skipping its response to the missed sensor input

Forward Error Recovery

FMSS, 2020-2021 Organisation of fault tolerance 16

Requires to store a previous correct state of the system

- Go backward to the saved state

Backward Error Recovery

FMSS, 2020-2021 Organisation of fault tolerance 17

A copy of the global state is called checkpoint.

State of a computation
- Program visible variables
- Hidden variables (process descriptors, …)
- “External state”:

files, outside words (for example alarm already given to the
aircraft pilot, …)

x

1

2

3

a

b 4

5

c 6

dProcess A

Process B

Process C

e

Checkpoint

x Error

Message passed

domino effect

Backward Error Recovery

FMSS, 2020-2021 Organisation of fault tolerance 18

Consistency of checkpoint in distributed systems
snapshot algorithms: determine past, consistent, global states

Basic issues:

- Loss of computation time between the checkpointing and the rollback

- Loss of data received during that interval

- Checkpointing/rollback (resetting the system and process state to the state stored
at the latest checkpoint) need mechanisms in run-time support

- Overhead of saving system state
(minimize the amount of state information that must be saved)

Backward Error Recovery

FMSS, 2020-2021 Organisation of fault tolerance 19

Backward Error Recovery

FMSS, 2019-2020 Organisation of fault tolerance 20

Class of faults for which checkpoint is useful:
- transient faults (disapper by themselves)

- used in massive parallel computing, to avoid to restart all things from the beginning
- continue the computation from the checkpoint, saving the state from time to time

Class of faults for which checkpoint is not useful:
- hardware fault; design faults

(the system redo the same things)

Error recovery: Exception handling

FMSS, 2019-2020 Organisation of fault tolerance 21

exceptions are signalled by the error detection mechanism
catch() clauses implement the appropriate error recovery

Three classes of exceptions
interface exceptions
(invalid service request, triggered by the self-protection mechanism, handled by the
module that requested the service)

internal local exceptions
(an error in the internal operations of the module, triggered by the error detection
mechanism of the module, handled by the module)

failure exceptions
(detected error, not handled by the fault processing mechanism. Tell the module requesting
the service that the service had a failure)

Organisation of fault tolerance

From
[Avizienis
et al.,
2004]

FMSS, 2020-2021 Organisation of fault tolerance 22

• Diagnosis

identfy and records the cause of errors in terms of location and types

• Isolation

physical or logical exclusion of the faulty component

• Reconfiguration

switch to spare components / reassign tasks to non-failed components

• Reinitialization

update the new configuration and updates system tables and records

FMSS, 2019-2020 Organisation of fault tolerance 23

Fault handling

Fault handling: prevents faults from being activated again

1. can the error detection mechanism identify the faulty component/task
with sufficient precision?

- LOG and TRACES are important
- diagnostic checks
- …

2. System level diagnosis:

A system is a set of modules:
- who tests whom is described by a testing graph
- checks are never 100% certain

FMSS, 2019-2020 Organisation of fault tolerance 24

Fault handling: Diagnosis

Identification of the cause of errors in terms of location

What if diagnostic information / testing components are themselves
damaged?

Suppose A tests B.
If B is faulty,

A has a certain probability (we hope close to 100%) of finding it.

But if A is faulty too,
it might conclude B is OK; or says that C is faulty when it isn’t

FMSS, 2020-2021 Organisation of fault tolerance 25

Fault handling: Diagnosis

1. Faulty components could not be left in the system
- faults can add up over time

2. Reconfigure faulty components out of the system

- physical reconfiguration:
turn off power, disable from bus access, ..

- logical reconfiguration:
don’t talk, don’t listen to it

FMSS, 2020-2021 Organisation of fault tolerance 26

Fault handling: Isolation/Reconfiguration/Reinitialization

3. Excluding faulty components will in the end exhaust available redundancy
-insertion of spares
-reinsertion of excluded component after thorough
testing, possibly repair

4. Newly inserted components may require:
- reallocation of software components
- bringing the recreated components up to current state

FMSS, 2020-2021 Organisation of fault tolerance 27

Fault handling: Isolation/Reconfiguration/Reinitialization

System recovery = error handling + fault handling

Organisation of fault tolerance

From [Avizienis et
al., 2004]

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 28

A general method to achieve fault masking is to perform multiple
computations through multiple channels, either sequencially or
concurrently and then apply majority vote on the outputs

Hardware faults
- Hardware components fail
independently
- replicas of the hw component

Software faults
- Replicas of the same sw do

not fail independently
- Versions of the sw that implement the same

function via separate designs and
implementations(design diversity)

Error compensation

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 29

the system contains enough redundancy to enable errors to be masked

fault masking
faults are masked

Passive HW fault tolerance technique:TMR

1. Triple Modular Redundancy (TMR) – fault masking

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 30

ModuleA

ModuleC

ModuleB Voter
output

Triplicate the hw (processors, memories, ..) and perform a majority vote to determine the output

- 2/3 of the modules must deliver the correct results

- effects of faults neutralised without notification of their occurrence

- masking of a failure in any one of the three copies at a time

For permanent faults, since the faulty module is not isolated, the fault tolerance decreases

Good for transient faults

In some cases, two faulty modules are tolerated
e.g. memory location 127@ModuleA, memory location 153@ModuleB

TMR: tolerates 1 faulty module

Cascading TMR with triplicated voters

Series of TMR configurations.

The effect of partitioning of modules (A, B, C) is that the design can withstand more
failures than the solution with only one large triplicated module.
One faulty module for each element of the series.

Voter is a single point of failure. Reliability of the Voter is very important.

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 31

ModuleA1

ModuleC1

ModuleB1
Voter1

ModuleA2

ModuleC2

ModuleB2
Voter2

ModuleAn

ModulCn

ModulBn
Votern

output.....

Cascading series of TMR modules

input

TMR: the Voter

Difficulties
Cascading TMR

Delay in signal propagation (decrease in performance):
- due to the voter
- due to multiple copies synchronisation

Trade-off : achieved fault tolerance vs hw required

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 32

1 bit Voter on 3 input bits

OUT = AB + BC + AC

Majority voting is normally performed on a bit-by-bit basis

AND - OR circuit
the output is 1 if at least two inputs are 1
the output is 0 if at least two inputs are 0

N-Modular Redundancy

2. NMR – extension of the TMR concept to N Modules

N is made an odd number

Coverage:
m faulty modules, with N = 2m +1

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 33

5MR: tolerates 2 faulty modules

7MR: tolerates 3 faulty modules

……..

Module 1

Module 3

Module 2

Module 5

Module 4

Voter
output

Active hw redundancy

1. Duplication with comparison scheme
(Error detection)

Two identical pieces of hw (Module1 and Module 2) are operated in parallel
• when a failure occurs, the two outputs are no more identical and a simple comparison

detects the fault

• Only disagreement can be determined and an error can be signalled by the comparator

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 34

Module 1

Module 2

input

comparator

Assumption:
the two copies must be unlikely to be
corrupted together in the same way

The entire system must be considered faulty

Active hw redundancy: the comparator

Problems

• faults in the comparator may cause
• an error indication when no error exists (false postive) or
• possible faults in duplicated modules are never detected (false negative)

Coverage
• detects all single faults except those of the comparator

Advantages
• simplicity, low cost, low performance impact of the comparison technique,

applicable to all levels and areas

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 35

Active hw redundancy

2. Reconfigurable Duplication
(Error detection, disconnet the faulty module and disable the comparison)

Two identical pieces of hw (Module1 and Module 2) are operated in parallel
• when a failure occurs, the two outputs are no more identical and a simple comparison detects

the fault
• the comparator (hw component) must select the correct output if a disagreement is detected

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 36

Module 1

Module 2

output
input

comparator
switch

Dual-modular redundancy
(also Duplex system)

Active hw redundancy: the comparator

The comparator applies checks to select the correct output

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 37

-Coding
-Self-checking components
-Reversal Checks
-Reasonableness Checks
-Specification checks
-….

Types of checksTypes of checks

Ability to determine which of the two modules is faulty

Ability to disconnect the faulty module and to disable the comparator

Active HW redundancy

3. Stand-by sparing
(error detection, identification of the faulty module, reconfiguration)

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 38

input output

Module 1

Module 2

Module n

error detection

error detection

error detection

switch.
.
.

Each module is extended with an error detection module. Part of the modules are operational, part of the modules
are spares modules (used as replacement modules). The switch can decide no longer use the value of a module (fault
detection and localization). The faulty module is removed and replaced with one of the spares.

- hot spares

the spares operate in synchrony with the on line modules,

and they are prepared to take over

- warm spares

the spares are running but receive inputs only after

switching

- cold spares

the spares are unpowered until needed to replace a faulty

module

As long as the outputs of the operational modules agree, the spares are not used

Different schemes can be implemented

- A module is a Duplex system, pairs
connected by a comparator

- Duplex systems are connected to spares
by a switch

- As long as the two outputs agree, or the
comparator can detect the right value, the
spare is not used.

- Otherwise, the comparator signals the
switch that it is not able to compute the
right value and the switch operates a
replacemnet using the spare.

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 39

input

output

Module 1

Module 2

switch

Module 1

Module 2

comparator

comparator

spare

Pair-and-spare approach

Pair results are used in a spare arrangment. Spare components at coarser granularity.
Not all four copies must be synchronised (only the two pairs)

Hybrid HW approaches

Combine both the active and passive approaches

Very expensive in terms of the amount of hw required to implement a system

Applied in commercial systems, safety critical system (aviation, railways, …)

NMR disadvantage: fault masking ability deteriorates as more copies fail
- Replace failed copies with unused spares (hybrid redundancy)

Reconfigurable NMR

Modules arranged in a voting configuration
- spares to replace faulty units
- rely on detection of disagreements and determine the module(s)

not agreeing with the majority

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 40

Reconfigurable NMR

- N redundant modules configuration (active
modules)

- Voter (votes on the output of active modules)

- The Fault detection units
1) compares the output of the Voter with the output of the
active modules
2) replaces modules whose output disagree with the output
of the voter with spares

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 41

Fault detection

unit

SWITCH

(select N

out-of N+M)

output

Module 1

Module N

Spare

Module 1

Spare

Module M

Voter

. .

Active

units outputs

Disagreement

detection

. .

.

.

.

.
Reliablity
as long as the spare pool is not empty

Coverage
TMR with one spare can tolerate 2 faulty modules

(mask the first faulty module; replace the module;
mask the second faulty module)

Hw redundancy techniques: summary

Key differences
Passive: rely on fault masking
Active: rely on error detection, fault location and recovery
Hybrid: emply both masking and recovery

• Passive provides fault masking but requires investment in hw
(5MR can tolerate 2 faulty modules)

• Active has the disadvantage of additional hw for error detection and recovery,
sometimes it can produce momentary erroneous outputs

• Hybrid techniques have the highest reliability but are the most costly
(3MR with one spare can tolerate 2 faulty modules)

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 42

Self checking circuitry

Necessity of reliance on the correct operation of comparators and
voters that are used as core for fault tolerant architectures

Self-checking circuit
given a set of faults, a circuit that has the ability to automatically detect
the existence of the fault and the detection occurs during the normal
course of its operations

Typically obtained using Coding techniques

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 43

D. P. Siewiorek R.S. Swarz,

Reliable Computer Systems Prentice Hall, 1998, pp.124-126

https://archive.org/details/reliablecomputer00siew

Coding

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 44

Information is represented with more bits that strictly necessary: says, an n-bit

information chunk is represented by

n+c= m bits

Among all the possible 2m configurations of the m bits, only 2n represent

acceptable values (code words)

if a non-code word appears, it indicates an error in

transmitting, or storing, or retrieving …

Parity code – odd parity

for each unit of data, e.g. 8 bits, add a
parity bit so that the total number of 1’s
in the resulting 9 bits is odd

Set of

code words

Set of all

possible words

2n

2m

10100000 1

byte parity
bit

10100100 1

not a codeword

communication
channel

sender
node

receiver
node

one bit flip

Two bit flips are not detected

Invalid
representations:
2m - 2n

Coding: application of redundancy to information

Coding

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 45

Separable code: a code in which the original information is appended with new information

to form the code word. The decoding process consists of simply removing the additional

information and keeping the original data

Nonseparable code: requires more complicated decoding procedures

Parity code is a separable code

Additional information can be used for error detection and for error correction

Codes

encoding: the process of determining the c bit configuration for a n bit data item

decoding: the process of recovering the original n bit data from the m total bit

Examples of codes

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 46

3-bit words
8 possible words
4 code words

4-bit words – 8 code words

Parity-code (odd parity)

4-bit words
16 possible words
8 code words

boxed words are code words in the figures

n=2, m=3 n=3, m=4

Examples of codes

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 47

m/n code - m bit equal to 1

4-bit words
16 possible words
4 code words:

{0011, 0110, 1001, 1100}

2/4 code

CD - complemented duplication

4-bit words
16 possible words
6 code words:

{1001, 1010, 1100, 0110, 0011, 0101}

join n bit value with its complement: n complement(n)
the second half is the complemented duplication of the first half

Hamming distance

Hamming distance
- the number of bit positions on which two code words differ

Minimum Hamming distance found between any two code words
is the number of independent single bit errors that the code can detect

A code such that the Hamming distance between two code
words is equal to k will detect all errors up to k-1 bits

Memories of computer systems.
Parity bit added before writing the memory. Parity bit is checked when reading.

Useful distance measures depend on type of data and faults

Bank account numbers should be such that mistyping a digit
does not credit the wrong account.

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 48

010

011

110

100

101001

000

111

Parity-code
Hamming distance 2

undetectable

detectable

each edge of the
cube represents a
distance-1
transition

(3)
(1)

(2)

Codes for error correction

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 49

correctable

correctable

The corrupted data is closer to the correct
code word than to any other code
word

Hamming distance 3:
detects 1 or 2 bits errors
correct 1 bit error

A code with the minimum Hamming distance is k

- detect up to k-1 single bit errors

- correct up to d errors, where k = 2d +1

Minimum Hamming distance:
minimum distance between two code words

code word bit flip

uncorrectable

Self checking circuitry

Self-checking circuit
given a set of faults, a circuit that has the ability to automatically detect the
existence of the fault and the detection occurs during the normal course of its
operations

Basic idea:
• circuit inputs and outputs are encoded (also different codes can be used)
• fault free + code word input -> output: correct code word
• fault + code word input -> output: (correct code word) or (non code word)

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 50

Self checking circuitry

• Self-testing circuit: if, for every fault from the set, the circuit produces
a non code word output for at least one code word input (each single
fault is detectable)

• Fault-secure circuit: if, for every fault from the set, the circuit never
produces a incorrect code word output for a code word input

• Totally self-checking (TSC): if the circuit is self-testing and fault-
secure

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 51

two-input TSC comparator

two signal input comparator (A, B)

output is 0 if inputs are equal; output is 1 otherwise

Fault assumption:

- single fault

- stuck-at-1/stuck-at-0 of each line in the circuit

Coding: complemented duplication
(dual-rail signal: coded signal whose two bits are
always complementary)

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 52

A B C
0 0 0
0 1 1
1 0 1
1 1 0

A

B C

A : A1 A2

0 : 0 1
1 : 1 0

two-input TSC comparator

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 53

0

1

1

0

0

1

Taken from:[Siewiorek et al., 1998]

output 0 if inputs are equal; 1 otherwise

Fault free
A =0, B =1 different input
m=1, n =1, q=0
o = 0, p=1, r= 1
c2=0
c1=1
c1c2: code word
Output = c1 = 1 correct

1

1

0

1

0

1

A1B1
A2B2

A2B1
A1B2

NAND:
0 0 1
0 1 1
1 0 1
1 1 0

two-input TSC comparator

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 54

0

1

1

0

0

1

Taken from:[Siewiorek et al., 1998]

output 0 if inputs are equal; 1 otherwise

Faulty:
A=0, B=1 different input
m: stuck-at-0
c2 = 1
c1 = 1
c1c2: non code word
Output = error

1

1

0

1

0

1

two-input TSC comparator

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 55

0

1

1

0

0

1

Taken from:[Siewiorek et al., 1998]

output 0 if inputs are equal; 1 otherwise

Faulty:
A=0, B=1 different input
m: stuck-at-1
c2=0
c1=1
c1c2: code word
output = c1 = 1 correct

1

1

1

0

1

0

two-input TSC comparator

• For each fault, there exists at least one input configuration such that the output is a non code word

• If the output is a code word, the output is correct

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 56

Taken from:[Siewiorek et al., 1998]

n-input TSC comparator

• n-input TSC comparator:
tree of two input self checking comparators

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 57

Organisation of fault tolerance

From [Avizienis et
al., 2004]

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 58

Hardware faults
- Hardware components fail
independently
- replicas of the hw component

Software faults
- Replicas of the same sw do

not fail independently
- Versions of the sw that implement the same

function via separate designs and
implementations(design diversity)

Error compensation

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 59

fault masking

Faults in the software

All software defects (faults)
are design faults

- Faults in the software design phase

of the software lifecycles

- Faults in the implementation of the software

- Erroneous outputs from a test case

Design faults are not introduced maliciously.

Developers build the software using techniques aimed to produce the right product.

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 60

sw

input output

Faults in the software

Design faults:

hard to visualize, classify, detect, and correct

Consider the issue of determining the faults in a large software system

- Any phase of the software lifecycle (Requirements analysis, Requirements specification,
Design, Implementation, Verification, Deployment), could have introduced faults

- The fault could remain dormant for extended periods, if the sw component affected by the
fault is not on the execution path

- Complete elimination of design faults is not possible, some faults are expected to remain in
the system

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 61

Faults in the software

Design faults:

closely related to human factors and the design process, of which
we don't have a solid understanding

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 62

only some type of inputs will exercise
that fault to cause failures. Number of
failures depend on how often these
inputs exercise the sw flaw

apparent reliability of a piece of software is
correlated to how frequently design faults
are exercised as opposed to number of
design faults present

SW Fault tolerance techniques

Versions of the software

a simple duplication and comparison procedure or a N-modular
redundancy with voting (e.g., TMR) will not detect software faults if the
replicated software modules are identical

Independent generation of N >= 2 functionally equivalent programs,
called versions, from the same initial requirements.

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 63

SW Fault tolerance techniques

Design diversity technique

if two or more software are built to provide the same functionality but with different

designs, they might not all fail on the same input

Technique:

- use independent development teams which do not communicate with each other

- using different sw development tools (like different programming languages

(compilers), linkers and loaders …

- Using different sw design techniques: functional decomposition, object oriented ….

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 64

SW Fault tolerance techniques

Due to the large cost of developing software, most of the software dependability
effort has focused on

fault prevention techniques and testing strategies

Multi-version approaches
mainly used in safety-critical systems (due to cost)

versions can be organised into different software systems architectures

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 65

Passive SW Fault tolerance techniques: N-version systems

-independently developed versions
of the sw

- the Voter votes on the results
produced by the versions

- there is no delay or interruption of
the service

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 66

Program

Inputs

Program

Version 1

Program

Version 2
Voter

Program

Outputs

.

.

.

.

Program

Version n

Passive SW Fault tolerance techniques: N-version
programming

BUT

- all the versions need to be executed along with the Voter -> considerable hw resources needed

- a CLOCK is needed to synchronise the execution of the versions and the Voter,
or the Voter must implement some sort of communication protocol to wait until all versions
complete their processing or recognize the versions that do not complete (e.g., omission failure)

- NUMERIC ISSUES. the value supplied by the versions can be correct but differ because of
rounding errors or similar numeric issues, e.g., Floating point output values will not be
bit-for-bit the same

- the degree of differences is specific for each system

Different values for numeric issues must be distinguished by erroneous values

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 67

Passive SW Fault tolerance techniques: N-version
programming

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 68

ALGORITHMIC ISSUES. Two correct output could be different

Example: roots of a polinomial. Assume only one is requested

Two versions compute the same values, but they can be found in
different ordering.

The two versions, retun different values

Example: navigation system (automotive). Heuristics are used to compute routes.

Routes computed by two versions can be different (both correct)

Passive SW Fault tolerance techniques: N-version
programming

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 69

Voting
based on different techniques, specific for each system

- Choose the value supplied by the majority (if possible)

- Choose the median value

- Choose the average of all values

…………………..

→ how can be erroneous values ignored?

value sufficiently different from the other values

The result of previous voting changes if a version is considered faulty

Active SW Fault tolerance techniques: N-self-checking
programming

N versions are written
- each version is running simultaneously

and includes its acceptance tests

The selection logic chooses the results
from one of the programs that passes
the acceptance tests

Tolerates N-1 faults (independent faults)

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 70

Program

Version 1

Program

Version N

Acceptance

tests

Accepptance

tests
Selection

Logic

.

.

Program

Inputs

Program

Outputs

Program

Inputs

based on acceptance tests rather than comparison with equivalent versions

Hybrid SW Fault tolerance techniques: Recovery-block

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 71

Basic structure: Ensure T
By P

else by Q

else error

The versions are referred to as alternates.

Alternates are executed in series until one of them completes the computation successfully

Generally error detection mechanism built into the alternate and a final external error
detection mechanism is present , the Acceptance test.

Accettability of the result is decided by an acceptance test T.

Primary alternate P, secondary alternates Q

checkpoint

Acceptance

test

based on an one acceptance test and a single alternate is run at a time

Hybrid SW Fault tolerance techniques: Recovery-block

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 72

Basic structure: Ensure T
By P

else by Q

else error

The recovery block-store the system state (checkpoint)

(e.g., variables global to the block which are altered within the block)

If the primary alternate passes the acceptance test, the recovery-block is exited

If the primary alternate fails, the recovery-block restores the system state and executes
the next alternate, which becomes the primary alternate.

If no more alternatives exist, an error is reported.

Hybrid SW Fault tolerance techniques: Recovery-block

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 73

Primary

Version

Secondary

Version N-1

Secondary

Version 1

Program Outputs

.

.

.

.

Program Inputs

N-to-1

Program

Switch

Acceptance

Tests

Test Result

- releases the programmer from
determining which variables should
be checkpointed and when

- linguistic structure for recovery
blocks requires a suitable mechanism
for providing automatic backward
error recovery

The execution time of a recovery block is unpredictable.

Example: Magnetic disk

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 74

Read failure
To deal with read failure, computes and attaches checksums to each
sector to verify that data is read back correctly
If data is corrupted, with very high probability stored checksum won’t
match recomputed checksum

Write failure
Ensure successful writing by reading back sector after writing it

Disk controller – interfaces between the computer system and the disk drive
hardware

- accepts high-level commands to read or write a sector (block)
- Moves the disk arm to the right track and actually reads or writes the data

Checksumming

• applied to large block of data in
memories

• coverage: single fault

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 75

dn

dn-1

d2

d1

rn

rn-1

r2

r1

Original data Received data

Checksum on

Original data
Checksum on

received data

Received version

of checksum

compare

checksum for a block of n words is formed by adding
together all of the words in the block modulo-k, where k
is arbitrary (one of the least expensive method)

- the checksum is stored with the data block

- when blocks of data are transferred (e.g. data transfer
between mass-storage device) the sum is recalculated and
compared with the checksum

- checksum is basically the sum of the original data
Code word = block + checksum

Checksumming Code

• Disadvantages
- if any word in the block is changed, the checksum must also be
modified at the same time

- allow error detection, no error location: the detected fault could be in
the block of s words, the stored checksum or the checking circuitry

- single point of failures for the comparison and encoder/detector
element

• Different methods differ for how summation is executed

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 76

RAID technology

RAID (Redundant Arrays of Independent Disks) technology

disk organization techniques that manage a large numbers of disks,
providing a view of a single disk of high capacity and high speed by
using multiple disks in parallel, and high reliability by storing data
redundantly

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 77

RAID

Redundant information stored on multiple disks to recover from failures

• Mirroring

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 78

Disk Mirrored Disk

Every write is carried out on both disks

Reads can take place from either disk

If one disk in a pair fails, data still available in the other

RAID

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 79

block 8

block 4

block 0

block 9

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

• Block-level striping + mirrored disks

Requests for different blocks can run in parallel if the blocks reside on different disks

block 8

block 4

block 0

block 9

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

Mirrored DisksDisks

RAID

• Coding: Block-Interleaved Parity

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 80

block 8

block 4

block 0

block 9

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

parityblock 8-11

parityblock 4-7

parityblock 0-3

Block-level striping

Parity block on a different disk for detection of bit errors
ALL 1-BIT ERRORS ARE DETECTED (Error Detection Code)

Before writing a block, parity data must be computed. Parity block becomes a bottleneck
for independent block writes since every block write also writes to parity disk

block 17

block 13

block 16

block 12

block 18

block 14

block 19

parityblock 11-15

parityblock 15-19

RAID

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 81

block 8

block 4

parityblock 0-3

block 15

block 9

parityblock 4-7

block 0

parityblock 8-11

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

• Coding: Block-Interleaved Distributed Parity

Partition data and parity among all N + 1 disks, rather than storing data in N disks and parity in 1 disk

For each set of N logical blocks, one of the disks store the parity and the other N disks store the blocks

Hamming Code (I)

Parity bits spread through all the data word

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 82

Parity bit pj covers all bits whose position has the j least significant bit equal to 1

Each data bit is included in a unique set of 2 or more parity bits, as determined by the
binary form of its bit position

Taken from: http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes

Data bits
all other bit positions

(number the bit positions starting
from 1: bit 1, 2, 3, etc..)

Parity bits
all bit positions that are
powers of two : 1, 2, 4, 8, etc.

Hamming code (II)

Parity bit p1 covers all bit positions which have the
least significant bit set:

bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

Parity bit p2 covers all bit positions which have the
second least significant bit set:

bit 2 (the parity bit itself), 3, 6, 7, 10, 11, etc.

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 83

Parity bit 4 covers all bit positions which have the
third least significant bit set:

bits 4–7, 12–15, 20–23, etc.

Parity bit 8 covers all bit positions which have the
fourth least significant bit set:

bits 8–15, 24–31, 40–47, etc.

Taken from: http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes

Hamming code (III)

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 84

Overlap of control bits: a data bit is controlled by more than one parity bit

Minimum Hamming distance: 3

Double-error detection code
Single-error correction code

SEC-DED code

Taken from: http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes

RAID

FMSS, 2020-2021
Redundancy in Fault Tolerant Computing

85

…

Disk1 Disk2 Disk7 Disk8

1 0 0 0 1 1 0 1

Byte

0 0 1 0 0 1 1 1

Byte

10 00

• Coding: Hamming code

Bit-level striping

N bits written across n disks, one per disk.

RAID

FMSS, 2020-2021
Redundancy in Fault Tolerant Computing

86

Disk1 Disk2 Disk3 Disk4

10 00

Disk5 Disk6 Disk7

Hamming(7, 4)

• Coding: Hamming code

N bits written across n disks, one per disk. The additional bit needed for error correcting codes
are written across a set of additional disks one bit at a time

A disk read failure can be masked and a complete disk replaced if necessary, without stopping
the system

Notes

• Fault tolerance relies on the independency of redundancies with respect
to the process of fault creation and activations

• Fault masking will conceal a possibly progressive and eventually fatal loss
of protective redundancy

• Practical implementations of masking generally involve error detection
(and possibly fault handling), leading to masking and error detection and
recovery

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 87

Notes

• When tolerance hw faults is foreseen, the replicas may be
identical, based on the assumption that hardware components
fail independently

• When tolerance to SW faults is foreseen, replicas have to provide
identical service through separate designs and implementation
(through design diversity)

• Replicas al commonly named «channels»

FMSS, 2020-2021 Redundancy in Fault Tolerant Computing 88

FMSS, 2020-2021 Organisation of fault tolerance 89

Various strategies for implementing fault tolerance

From [Avizienis et al., 2004]

The classes of faults that can actually be tolerated depend
- on the fault assumption and
- on the independence of the redundancies with respect

to the fault creation and activation

FMSS, 2020-2021 Organisation of fault tolerance 90

Various strategies for implementing fault tolerance

Fault tolerance relies on the independency of redundancies with respect to faults

When tolerance to physical faults is foreseen, the channels may be identical,
based on the assumption that hardware components fail independently

When tolerance to design faults is foreseen, channels have to provide identical
service through separate designs and implementation (through design diversity)

Fault masking will conceal a possibly progressive and eventually fatal loss of
protective redundancy.

Observations

Practical implementations of masking generally involve error detection (and
possibly fault handling), leading to masking and error detection and recovery

FMSS, 2020-2021 Organisation of fault tolerance 91

Dependability tree

FMSS, 2020-2021 Dependability means 92

From [Avizienis et al., 2004]

Means for achieving dependability: fault prevention

FMSS, 2020-2021 Dependability means 93

Fault Prevention techniques
Related to general system engineering techniques

• Prevention of development faults both in software and hardware
rigorous developent, formal methods, quality control methods, ...

• Improvement of development processes in order to reduce the
number of faults introduced

based on information of faults in the products and the elimination
of causes of faults, modifying the development process

Dependability tree

FMSS, 2020-2021 Dependability means 94

From [Avizienis et al., 2004]

Means for achieving dependability:Fault removal

FMSS, 2020-2021 Dependability means 95

diagnosing the fault which prevented the verification

conditions from being fulfilled (nature, location)

checking whether the system adheres to given properties

(verification conditions), specific to the considered system

performing the necessary corrections

1.Faul removal during the

development phase of the system

Verification phase

Diagnosis phase

Correction phase

Consists of three phases.

Verification phase must be
repeated to check that
the fault removal had no
undesired consequences
(nonregression verification)

Fault Removal techniques

remove faults in such a way that they are no more activated

nonregression verification

Means for achieving dependability:Fault removal

FMSS, 2020-2021 Dependability means 96

Verification techniques
without actual execution

Static verification:
on the system itself: inspections, data flow analysis,
theorem proving ….

on a model of the system behaviour: generally a state
transition model (Petri nets, state automata, …) leanding to model checking

This verification techniques:

- applicable to the various forms of the system at the development: prototype, components, …

- applicable to fault tolerance mechanisms
in this case faults and errors are parts of test patterns (fault injection)

Means for achieving dependability:Fault removal

FMSS, 2020-2021 Dependability means 97

2. During the use phase of the system
by exercising it

Dynamic verification:

- symbolic input to the system: symbolic execution

- real data input to the system: testing

exaustive testing with respect to all its possible inputs is impossible

(test selection criteria)

hw: outputs are dtermined by a golden unit

sw: the reference is the specification

Means for achieving dependability:Fault removal

FMSS, 2020-2021 Dependability means 98

Testing

Penetration testing: verify that the system cannot do more than what
is specified (important also for security)

Designing a system in order to facilitate verification:

HW: design for verifiability

SW: design for testability

Means for achieving dependability:Fault removal

FMSS, 2020-2021 Dependability means 99

2. Fault removal during the use phase of the system

- by exercising it

corrective maintenence
remove faults that have
produced errors and have
been reported

preventive maintenence
remove faults before they
cause errors during normal operation:
1) physical faults occurred
2) development faults that have

led to errors in similar systems

Systems can be maintainable on line (without interrupting the service delivery) or
offline (during service outage)

Dependability tree

FMSS, 2020-2021 Dependability means 100

From [Avizienis et al., 2004]

Means for achieving dependability

FMSS, 2020-2021 Dependability means 101

Fault Forecasting techniques

by performing an evaluation of the system behaviour with
respect to fault occurrence and activation

Objective: estimate the present number, the future incidence, and the consequences of faults.

Try to anticipate faults

Qualitative evaluation:
identify, classify, rank the failure modesor the event combination that would lead to system failure

e.g., Failure Mode and Effect Analysis

Quantitative evaluation (probabilistic):
estimane the measures of dependability attributes, Stochastic Petri nets, Markov chains

Observations

FMSS, 2020-2021 Dependability means 102

Fault removal and fault forecasting allow dependability and security analysis,
aimed at reaching confidence in the ability to deliver a correct service

Fault prevention and fault tolerance allow dependability and security provision,
aimed at providing the ability to deliver a correct service

Coverage: refers to the representativeness of the situations to which the

system is subjected during its analysis compared to the actual situations that the
system will be confronted during its operational life

e.g., coverage of a fault tolerance with respect to a class of faults

Presence in the specification of fault tolerant systems of a list of types and number
of faults that are to be tolerated

