Software Reliability
Engineering

Karama Kanoun

Karama.Kanoun@laas.fr

Research Group on
Dependable Computing and Fault Tolerance
Toulouse, France

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

OUTLINE

Motivations

Methods for software reliability engineering

e Data collection and analysis
i Data collection and validation
i Descriptive statistics
= Trend analysis
o Software dependability evaluation
i Reliability growth models
= Models in stable reliability

i Controlled experimentation
The maturity Process
Case studies

References

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Why Software Reliability Engineering?

Increasing role of software in real life systems
System dependability is more and more synonymous of software reliability

Difficulties in mastering the software development process and in reducing
design faults for complex systems

Increasing cost of system non-dependability

Real needs for improving software reliability to improve system
dependability and reduce maintenance cost

Dependability requirements are part of system requirements (as important
as functional requirements)

Quantification is essential

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Objectives of software reliability engineering

> Short term
 Manage and improve the reliability of the software
e Check the efficiency of development activities

e Estimate the software reliability at the end of validation activities and in
operation

» Estimate the maintenance effort to “correct” faults activated during
development and residual faults in operation

> Long term
e Capitalize experience

e Improve software reliability of successive generations

1> Needs for experimental & analytical methods and

techniques to reach these objectives

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Software vs hardware reliability

Hardware Software

e Physical faults * Only design faults

e Operational life Development and operation

» Stable reliability (constant failure rate) Reliability growth (| failure rate)

e White-box approach Usually black-box approach

* Markov models Specific models

e Database for components failures Based on data collection

Failure A
Rate

Hardware in operation
<

Software in operation Time

>,

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

<

Objectives of Software Reliability Engineering

i Supplier point of view

e During development:

== development follow up
(failure intensity, fault density)

i evaluation of software reliability before operation
(MTTF, pre-operational failure rate)

e During operation

= product reliability follow up
(residual failure rate, MTTF)

i maintenance planning
(cumulative number of failures)

> Users / customers, operational life

i be confident in the reliability level of the product
(residual failure rate, MTTF)

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Difficulties

Non-repetitive process
No relationship between failures and corrections
Continuous evolution of usage profile

* According to the development phase

e Within each phase
Overselling of reliability growth models
Judgement on quality of the software developers

What is software reliability?
w Residual number of faults, fault density, complexity measures?

w MTTF, failure intensity, failure rate?

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Measures

Static Measures Dynamic Measures
of the product and 0 P characterizing occurrence of
sage protlile failures
rocess : «—>
? _ > (environment) o _
(quality oriented) (reliability oriented)
Number of faults Failure intensity
Fault density Failure rate
Complexity measures MTTF

Reliability

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example:
Percentage of faults and corresponding MTTF (published by IBM)

MTTF (years)
5000 |1580 500 158 50 15.8 5 1.58
Product

34,2 | 28,8 17,8 10,3 5,0 2,1 1,2 0,7
34,3 | 28,0 18,2 9,7 4,5 3,2 1,5 0,7
33,7 | 28,5 18,0 8,7 6,5 2,8 1,4 0,4
34,2 | 28,5 18,7 11,9 4,4 2,0 0,3 0,1
34,2 | 28,5 18,4 9,4 4,4 2,9 1,4 0,7
32,0 | 28,2 20,1 11,5 5,0 2,1 0,8 0,3
34,0 | 28,5 18,5 9,9 4,5 2,7 1,4 0,6
31,9 | 27,1 18,4 11,1 6,5 2,7 1,4 1,1
31,2 | 27,6 20,4 12,8 5,6 1,9 0,5 0,0

© 00O NO O A OWODN —

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Overview of a global reliability analysis method

Development llecti
Validatr;on o data co ecﬂog@cted d@
Operation T
Objectives
/: of the analysiQ'
Data related to

similar previous
projects

Data Validation

Validatea
data
I\

\ / Data set partition
/ | \

/ Types of Impact Phase Components
faults of failures X

Feedback to software
development process

M 1
Descriptive Analyses Trend Analyses Model Application
VY VvV ¥ YV Vv V¥ YV V ¥
Descriptive Statistics Reliability Evolution Reliability Measures

e

Capitalize experience

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Setting up of a data collection process

= Some rules
e Define clearly the objectives and the data to be collected
e Motivate and imply people that will be involved

» Simplify the collection process and reduce the number of data items to
be collected

i Support tools

= Practical organization of people involved
e Record and analyze data in real-time

* Feedback

= Origin of collected data
* Internal: recorded during development and validation

e External: by the customers

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Data to be collected

Background information
* Product itself: software size, language, functions, current version, workload

» Usage environment: verification and validation methods, tools, etc.

Data relative to failures and corrections
e Date of occurrence, nature of failures, consequences

e Type of faults, fault location

Usually, recorded through
e Failure Reports (FR)
e Correction Reports (CR)

Well defined headings, well structured, easy to fill in
Short tick-off questions

Manually or automatically

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

= Failure Report (FR)

Required Information
e Serial number (for identification)
e Report editor
* Product reference, version affected (or prototype)

e Date and time of failure occurrence

Desirable Information
e Failure occurrence condition
 Failure criticality or consequences
e Affected function or task

 Action proposed (if any)

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

> Correction Report (CR)

Required information
e Serial number (for identification)
e Report editor
» Date of correction
e Correction nature
» Product reference

* Reference to the FR

Desirable Information

e |dentification of the modified components
i [ntegration with already existing data collection programs

= |[mportance of training

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Data Validation

= Objectives
e check the validity and usability of the information recorded

» Keep only genuine software faults in the database

= Elimination of:
e Duplicated data (FR reporting of the same failure)
* FR proposing a correction related to an already existing FR (COR)
e False FR (signalling a false or non identified problem)
e FR proposing an improvement (IMPROVE)
e incomplete FRs or FRs containing inconsistent data (Unusable)

* FR related to a hardware failure

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example 1: a telecommunications equipment
(analyzed at LAAS)

i 2 146 Failure Reports
i Validation = 1 172 kept in the database

iw Discarded RFs:

Duplicated FRs 816 38.0%
COR 53 2.5%
False FR 29 1.4%
IMPROVE 21 1.0%
Unusable 20 0.9%
Hardware 35 1.6%
Total 974 45.4%

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example 2: a telephone switching system
(analyzed at LAAS)

w 3063 FRs
i Validation = 1853 Software FRs kept in the database

iw Discarded RFs:

Hardware 195 (6%)
Documentation 165 (5%)
Unusable, duplicated, ... 716 (24%)
Others 134 (4%)
Total 1210 (39 %)

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Life cycle of Failure and Correction Reports (FRs/CRs)

External
sites

Database

creation
of an FR

Internal

site \
Identification I|_1terface Analysis &
of an with users anl . Validation
abnormal
behavior " specialized
MM team
Already solved M
or being solved s Correction
@} Proposal ?
V. No
A

s
Report update éﬁm

Implementation
of the corrections

FR resolved
D
Creation of a CR atabase

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

DESCRIPTIVE STATISTICS

= Aim: make syntheses of the observed phenomena

i Simple analyses
e Fault typology
» Fault density of components

 Failure / fault distribution among software components (new, modified, reused)

= |nvestigation of relationships

e Fault density / size / complexity

Fault density / life cycle phase

Nature of faults / life cycle phases

Nature of faults / components

Number of components affected by changes made to resolve an FR

i Analyses related to the development / debugging process

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Analyses related to the development process

i Factors affecting time to locate and solve problems
 The more FRs circulating, the more time it takes to handle each one
e Tendency to resolve the easier FRs first, the remaining ones take more time
» Loss of maintainability with continued changes to resolve faults

 Introduction of new faults while resolving the old

i Average time to resolve an FR
Modification request time =

Time when the FR is resolved - time when it is created

Measures
* Responsiveness of the field support system

e Complexity of maintenance

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

250 1

200

150

100

50 +

Case of the switching system of Example 2

FRs recorded / month
cumulative # of unresolved FRs

FRs resolved / month 800 1
700 1
600 -
500 1
400 1
300 1
200 1
100 ;

\
\
\
N

\

\
\
\
\
\
\
\
]
\
\
\
\
.
\

0

110 20 30 40 50 60 68 1 10 20 30 40 50 60 68

>12 months
12% (307)

7 / 12 months

22% (524) 0/ 6 months

66% (1615)

Time to resolve an FR

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Data pre-processing for reliability analysis

iw Two kinds of data sets can be extracted from FRs and CRs

e Time to failures (or between failures)

oHE%*wLZ ok bl .
| o el

failure t, = time between failure k-1 and k

e Grouped data
= Number of failures per unit of time, n(k)

= Cumulative number of failures N(k)

1 2

K
O] et
n(1); n(k) ;

1
ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Time ?

i |[ime between failures
e Execution time
e \Wall clock or Calendar time

e Number of executions

> Number of failures per unit of time

e The length of the unit time depends on:
i accuracy expected for the dependability measures
i number of observed failures

= objectives of the study

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example A: Times between failures

= Real-time control system (Musa 1)

e 136 failures observed during system test (96 days)

|T |Dy| #| T, |Dy| # | T | Dy| #| T, |Dy| # | T, | Dy| # | T |Dy
1 3| 1| 25| 422| 31 49| 816| 56 | 73| s10| 64 | 97| 261 72 |121 75| 80
2| 30| 2| 26| 180| 32| 50| 1351 56 | 74| 200| 64 | 98| 1800 73 [122 | 482 8o
#: number of 3| 113 9| 27 10| 32 51| 148| 56 | 75| 300| 64 | 99| 865 73 |123 | 5509 81
failures 4| 8| 10| 28| 1146| 33| 52| 21| 57| 76| 520 65 | 100| 1435 74 | 124 | 100| 81
5115 11| 20| eo00o| 34| 53| 233 57| 77| 281| 65| 101 30| 74 [125 10| 81
6 9| 11| 30 15| 42 | 54| 134| 57| 78| 160| 65 | 102| 143| 74 |126 | 1071| 83
7 2| 17| 31 36| 42| 55| 357| 57| 79| s828| 66 | 103| 108| 74 [127 | 371| 83
8| 91| 20| 32 4| 46| 56| 193| 59 | 80| 1011| 66 | 104 ol 74 (128 | 790| 83
9 | 12| 20| 33 o| 46| 57| 236| 59 | 81| a445| 66 | 105| 3110 75 | 129 | 6150| 83
T - times 10| 15| 20| 34 8| 46| 58| 31| 59| 82| 206| 66 | 106 | 1247 76 [130 | 3321 83
between 11 | 138 | 20 | 35| 227 46| 59| 369| 59 | 83| 1755 67 | 107| 943| 76 [131 | 1045| 84
_ 12 | 50| 20| 36 65| 46 | 60| 748| 59 | 84| 1064| 67 | 108| 700| 76 |132 | 648| 84
failures 13| 77| 20| 37| 476| 46| 61 ol 59| 85| 1783| 68 | 109 | 875 77 [133 | 5485| 87
(in seconds) 14 | 24| 20| 38 58| 46 | 62| 232| 59| 86| seo| 68 | 110| 245| 77 | 134 | 1160| 87
15 | 108 | 20 | 39| 457| 47| 63| 330| 59| 87| o9s83| 68 | 111| 729 77 [135 | 1864| 88
Dy: day of 16 | 88| 20| 40| 300| 47| 64| 365 61 | 88| 707| 69 | 112| 4897 78 [136 | 4116| 92
observation | 17 | 670 | 30 | 41 97| 47| 65| 1222 62 | 89 33| 69 | 113 | 447| 79
18 | 120 | 30 | 42| 263| 47| e6| 543| 63| 90| ges| 69 | 114| 386 79
19 | 26| 30| 43| 452 53| 67| 10| 63| 91| 724| €9 | 115| 446| 79
20 | 114 | 30| 44| 255| 53| e8| 16| 63| 92| 2323 70 | 116| 122| 79
21 | 325 | 30| 45| 197| 54| e9| 5290| 64 | 93| 2030| 71 | 117| o990 79
22 | 55| 30| 46| 193| 54| 70| 379| 64 | 94| 1a61| 72 | 118| 048] 80
23 | 242 | 31| a7 6| 54| 71| 44| 64| 95| sa3| 72| 119| 1082 80
24 | e8| 31| 48 79| 54 | 72| 129| 64 | 96 12| 72| 120 22| 80

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

= Switching system

Example B

Number of failures per unit of time or Cumulative

e 52 failures in operation (15 months)

i: unit of time (week)

n(i): number of failures
per unit of time

NC(i): cumulative
number of failures

NS(i): number of systems
in operation at i

i | n@)| NcG)| NS@)| i | n() | NC(i) NS(i)I i | n() | NC(i) NS(i)I
1 2 2 4 24 1 30 36 47 0 37 42
2 0 2 10 25 1 31 36 48 0 37 42
3 2 4 10 26 0 31 36 49 0 37 42
4 1 5 10 27 0 31 36 50 1 38 42
5 1 6 10 28 1 32 38 51 0 38 42
6 0 6 12 29 1 32 40 52 1 39 42
7 2 8 12 30 0 32 40 53 1 40 42
8 1 9 12 31 0 32 40 54 0 40 42
9 2 11 12 32 0 32 40 55 0 40 42

10 5 16 12 33 0 32 42 56 1 41 42

11 2 18 13 34 0 32 42 57 1 42 42

12 1 19 13 35 0 32 42 58 6 48 42

13 2 21 13 36 1 33 42 59 0 48 42

14 0 21 13 37 0 33 42 60 0 48 42

15 0 21 21 38 0 33 42 61 0 48 42

16 0 21 21 39 0 33 42 62 1 49 42

17 0 21 21 40 0 33 42 63 0 49 42

18 1 22 21 41 0 33 42 64 0 49 42

19 1 22 21 42 0 33 42 65 0 49 42

20 2 24 28 43 1 34 42 66 1 50 42

21 1 25 28 44 2 36 42 67 0 50 42

22 0 25 28 45 0 36 42

23 4 29 28 46 1 37 42

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Trend analysis

i Objectives:
» Analyze software reliability evolution

e |[dentify periods of reliability growth and decrease

corrections V
i+1,3
correctionS/v Visio
.) V|,k V

V. il .
2 P corrections

Vii + spec./environment
changes

Vi+1 4

Failure
intensity

i+1,1

........

[See references 9 or 10]

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Reliability growth characterization

= Variable: time to failure
e T, T, ..., T, : time between failure i and i-1
= Reliability growth: T, 3 T, V i<k
= Prob. {T.<x}2 Prob. {T, sx} =F(x)2 F(x) V i<k Vx

i Variable: number of failures

e N(t,), N(t,), ..., N(t,) : cumulative number of failures between 0 and t.
« H(t) = E[N(t)] = expectation of N(t)
 If N(t,) is a Non Homogeneous Poisson Process (NHPP):

= reliability growth if H(t,) + H(t,) 2 H(t,+t) Vt,t,20and Ot +t, <T

(inequality is strict for at least a pair t,, t,)

N(t) is a subadditive function

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Interpretation of Subadditivity

H(t,) + H(t,) = H(t+t)) V't t,20and 0t +t, <T

The number of events in an interval of the form [0, t ,] is larger than the number of
events taking place in an interval of the same length beginning later (i.e. in the form
of [T, T+t ;] The number of failures is decreasing

s (Graphical interpretation

H(x)

« H(t) = E[N(t)] is subadditive over [0,T] if: 4

a}[(t)=J tH(x)dx - H({)=0

T
0 2
Vt20and 0st<T

a,, (t) = subadditivity factor

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Trend tests

w Means

e Raw data = graphical tests

e Analytical tests = quantitative indicators

iw Raw data
e Times to successive failures
e Number of failures per unit of time

e Cumulative number of failures

i Trend indicators
e Empirical (arithmetical) means
e Subadditivity factor

e Laplace factor

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Graphical tests: times to failures (Example A)

Times to failures

Failure #

21
]|
4
51
E1
71
81
n
L1
[Ah
121
121

Cumulative times 100000

to failures 90000
80000
70000

t
60000
50000
40000
30000
20000
10000

t+ ...

Failure #

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Failure

intensity

Graphical test: grouped data (Example B)

i

1

Cumulative

number of o

failures

401

30+

20+

10+

0

6 11 16 21 26 31 36 41 46 51 56 61 E6

unit of time = one week

1 6 11 16 21 26 31 36 41 46 51 56 61 BEE6
unit of time = one week

O = NWMIUOONO®®O©O

2 2 45 6 7 82 9 101112 13 14 15 16 17

unit of time = 4 weeks

60T

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 4 5% 6 7 8 9 10 111212 14 15 16 17
unit of time = 4 weeks

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Empirical mean

Global trend

g, : arithmetical mean of the times to failures (from failure 1 to k)

E, = t+i+ . 1

g, constitute a globally incheasing series € reliability growth

g, constitute a globally decreasing series € reliability decrease

700 T

Sk

600 + Example A

500 T

The trend is directly observed on => 200 4

the evolution of g, 300 4

200 T
100 T

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Empirical mean

> Local trend
* The data items are grouped into subsets containing m successive data
e The average is evaluated for each subset

e The impact of old data items is eliminated

ww Example A: m =8 = 17 groups (136 failures)

3000 1
2500
2000 }
1500 ¢
1000 ¢
500 ¢

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Subadditivity & monotonous growth / decrease

Monotonous growth: Monotonous decrease:
a, (x) > 0 increasing a, (x) < 0 decreasing
4 H(x)

Cumulative number
of failures

Failure intensity

>

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Subadditivity & trend change

Decrease - Growth Growth - Decrease

AH(x)

tangent

;;;;;
o

X
>
0 T, T, T
X
>
a,(x)<0/ a,(x)>0 a,(x)>0 / a,(x)<0

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Subadditivity & local trend fluctuations

Example: reliability growth with local fluctuations

AH(X)
a,, (x) 2 0 non decreasing X
>
0
A h(x)

0

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Laplace factor

i Statistical Test of hypothesis = Laplace factor u

Random variable: times to failures T, (realization of T, = t)

N(T) i
1— 2 2 - L
uTy= __NMT 2 N(T) = # failures in [0,T]
T 1
12 N(T)

. ; = mid of the observation interval
1 N(T) i

. — Z Z t = statistical centre
N(=1 j=1

ww |n practice
u > 0 = global reliability decrease

u < 0 = global reliability growth

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

e« Random variable: # failures per unit of time

u(T) = n(i) = # failure during time unit i

e Can be put in the form:

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

r>oore®

OZ2ma-

Laplace factor: local and global trend

u(k
A (k)
Local trend changes
A
Reliability/
decrease’ k
2 ' >
7 T T
Reliability ; G 2
c D
v - > < >
Reliability N ! Reliability
decrease Re“ablhty grOWth decrease
< >

LOCAL TREND

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Change of time origin

4 u(k)

/
/
;
:
’
/ k
’
/
. ; >
T | T
’ ’ ;
/ / :
/ Y Y
’ ’ /
Y y 5
/ / /
A B C ? D
o
% A
Z u(k) k
.-'%:‘ ? >
£
T T
%, L1 L2
e,
s 2{'
B-C D
< 2L >

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Link : graphical tests - Laplace - Subadditivity

Failure intensity 250 -
200 |

150 |

100 |

50 |

50

Cumulative number of failures

50

40:
30:
20
10/
y

Subadditivity factor

Laplace factor

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Link between trend indicators

Cumulative number of failures Failure intensity Laplace factor

N(k) n(k) u(k)
Monotonous| k
>
Growth
» K > k ‘\
k
N(k) n(k) Ai(':)//
Monotonous » k
decrease
> k » k

n(k)

Decrease N(k) T u(k)
followed

by growth / -\ p k

T

k > k ‘ j f\
T, > T,

N(k An(k u(k

Stability (1) () ()
/)

> k > k

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

How to use trend test results

i Control of the efficiency of test activities
» Reliability decrease at the beginning of a new activity: OK
 Reliability decrease during a relatively long period of time: Pb ?
 Reliability growth after reliability decrease: OK
e Sudden reliability growth: caution!
o Stable reliability: saturation
= New tests
= Following phase

iw End of test

i Application of reliability models

e Trend in accordance with model assumptions

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Application to RADC data sets
Rome Air Development Center (USA)

System # # # Type of
Id. instructions programmers failures system
1 21 700 9 136 RT.C
2 27700 5 54 RT.C
3 23400 3 38 RT.C
4 33500 6 54 RT.C
5 2445 000 7 831 RT.Com.
6 5700 275 73 RT.C

7 (14C) 8 36 y
military

8(17) 61900 110 38 N
9(27) 126 100 8 41 mf'ftary
10(40) 180 000 8 101 military
11A(SS1A) 8 112 0S
11B (SS1B) unknown 375 OS
11C (SS1C) Kk unknown 277 OS
2 (SS2) AR unknown 192 TS
3 (SS3) o unknown 278 WP
4 (SS4) i unknown 196 0Ss

RT: Real-time

C: control

Com. : commercial
WP: word Processing
TS : Time sharing
OS: Operating system
PR not given

[John Musa], “Software Reliability Data

KaBOR AL VRIORMENRGEBIA] ANYntSAy 1979

* . stable reliability

Laplace factor

System Laplace

factor

1 -9,10

2 -5,73

3 - 6,13

4 - 8,59

6 - 3,64

7 -2,14*

8 - 4,65

9 - 5,16

10 - 9,60
11A - 1,36*
11B -0,73*

11C - 5,15
12 +0,74*

13 - 5,64
14 -1,78*

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 2: times to failures

Time to failures, ti

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

U # failures

1 6 11 16 21 26 3 36 41 46 51

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 2: Laplace factor

i \ariable: time to failure

u(i) # failures
011M

6V1 16 21 26 31 36 41 46 51

(i)

failures

©O =N WwHC

31 34 37 40

I

N =

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 2: failure intensity

n(k)

N K

12 3456789 10111213141516 171819 2021 22

k: unit of times = 5000 seconds of execution time

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 2: Laplace factor

Variable: # failures

failure # 31 failure # 41

u(k) \ | I/ k = unit of time

_10__ 2 3 4 5 6 7 8 I910111213141516171819202122
-2 1
34
-4 1
54
-6 1
u(k
M(k)
1 k = unit of time
01

789 10111213141516171819202122
-2

Unit of time = 5000 seconds of execution time

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

1000

800

600

400

200

System 4: arithmetical mean

10 15 20 25 30 35 40 45 50

failures

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 9

120000 -
100000 -

. . 80000 -
Arithmetical

mean 60000 -

40000 -

20000 A
failures

0 -
1 3 5 7 9 11 13 1517 19 21 23 25 27 29 31 33 35 37 39 41

Laplace 11

Factor . # failures

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 11A

200000
180000 \
Arithmetical 160000 1 | '\
mean 140000 '\’”\’\, ,/\,\V\/"
120000 ,\ ww/r
100000 # failures

11 219 31 41 51 61 71 81 91 101 111

.

2 :\/'\/\\v\,’ r(\"{\/“"V\
Laplace ;]

Factor

0 # failures

-

11 219 31 41 51 61 71 81 91 101

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 14

300000

Arithmetical 250000

mean
200000

150000

100000 4ttt # failures
1 21 41 61 81 101 121 141 161 181

u(i)

2
Laplace 1,5
factor 1
0,5

0 . I: . . [

05 4 2vN4vi 61 | u8
-1

-1,5
-2

.‘Wy‘;\ # failures

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Conclusion

i Some systems can be modeled by an exponential distribution

e System for which -2<u<?2

i |mpact of the operational profile

e Systems 11 A, B, C are 3 copies of the same program
used in different environments

i Benefits from trend analysis
e Understanding of the underlying processes
e Follow up of the development process in real-time, fast feedback

e Helpful for reliability model application

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

SOFTWARE RELIABILITY EVALUATION

w Objectives
e Evaluate measures characterizing the software reliability and its evolution
iw Methods
 evaluation from data collected on the software during testing and / or operation
= with fault removal

i Without fault removal

Reliability growth models Models in stable reliability
Measures: Measures:
e Failure rate Test duration without failure, required
« Failure intensity to reach a target reliability
« Cumulative number of failures * Probability of accepting/rejecting a
« MTTF piece of software

* Probability of failure in operation
[See reference 1]

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

OUTLINE

Reliability growth models
e Presentation of some reliability growth models
» Reliability growth models and trend analysis
e Application of reliability growth models

e Tools
Models in stable reliability

Other approaches

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

RELIABILITY GROWTH MODELS

Modeling difficulties
i Corrections + specification changes = varying behavior

=> absence of repetitive phenomenon = absence of statistics
= Variations in the usage environment

1> No direct relationships between failures and corrections
Failures N >
Corrections NN'

Objectives of reliability growth models:

Estimation of dependability measures as resulting from the above variations

= restrictive assumption for some models: correction after each failure

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

RELIABILITY GROWTH MODELS

= Failure rate models
(Failure rate equations & relationship between successive failure rates)

e Deterministic, piecewise Poisson Process models: Jelinski Moranda, Musa

e Stochastic, doubly stochastic process model: Littlewood-Verrall

= Failure intensity models: succession of failures
(based on Non-Homogeneous Poisson Process (NHPP))

e Exponential model (Goel Okumoto)
e Hyperexponential model (Kanoun-Laprie)

e S-Shaped model (Yamada et al)

i Selection depends on
* Objectives
Development follow-up, evaluation of operational MTTF and residual failure rate

* Trend displayed by the data set

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Jelinski Moranda model: assumptions

> First software reliability model (1972)

> Assumptions

H1

H3 :
H4 :

H5 :

: the total number of faults is finite (N,)

H2 :

No fault introduction while correcting detected faults: each activated
fault is corrected before new executions

Faults are independent and their manifestation rate is constant

Inputs are selected randomly and tests are representative of
operational profile

All failures are observed

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Jelinski Moranda model: equations

= Parameters
N, = total number of faults
@ = fault manifestation rate
M\(i) = failure rate of the i-th failure

Ti = random variable: time between failures i-1 and i (observation = ti)

iz Relations

Mi)=®[Ng-(i-D]=di/dt =12, ..., N,

Prob. (Ti <ti) = ® (Ny - i+ 1]. exp { @ (Ng - i + 1).ti}

MTTF,=_ 1 = _]
Mi) @ [Ng-(i-1)]

N(t) =Ny [1 - exp (-® t)] = number of faults detected at t

= Parameters to be estimated: N, , ®

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Jelinski-Moranda model: A(t)

iw the failure rate is constant and tends to O when t tends to «

A A1)

No® |—,
(No-) @ | —

[
—
' '

o
~V

1:N0-1 tNO

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Musa model
> Assumptions similar to the Jelinski-Moranda model

= Parameters definition
M, = number of faults in the software
Ny = number of failures
B = fault reduction factor: number of faults / number of failures M, = B.N,
C = compression factor (execution time in operation / in test)
@ = fault manifestation rate

iw Relations
AMi)=BC ® (N, -i+1) MTTF(i) =

1
B.@.(Ny-i+1)

N(t) =Ny [1-exp (-B C @ t)] = number of failures observed at t (execution time)

= Parameters to be estimated: N, , ® (B product characteristics; C operational profile)

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Littlewood-Verrall model

Stochastic relationship between the successive failure rates

Distinction
 Input uncertainty: A,

 Impact of corrections uncertainty: A, A,, ..., A; series of random variables

Randomness of inputs
f(Ti [) =N exp. (- t)
f . probability density function (pdf)

T, : time to failure i since failure i-1 (time to failure i)

Impact of corrections

[W ()] A" exp. (W (i) M
I'(a)

(0o, @) =

WP : programmer skill and programming difficulty

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Littlewood-Verrall model

i Distribution of Ti

0 alWw()]® o
f(t|| a, Wy) — J f(t||}\ i). f(}\ql a, 1{;) d i — Pareto distribution
[t+w (i)]!

0
i Reliability growth represented by growth of W (i) :
W (i) = By + Py .1 002607 A (1)
0,02351
C3
o 0’0210'\ curve o B1 B2
A (1) = _ 001851 _ ct |1 |30 | 100
t+ W (i) 0,0160- Cc2 3 60 150
: c3 |4 [80 | 100
_ 0,0135¢
W (i) \\
MTTF, =———— 0,01104 cr
o-1 0,00851 \k ——
Parameters: o, By, By ool ~~— = Cl —
0,0035¢ \/ R T —
0,0010-

0 92 192 292 392 492 592 692 792 892 992 1092 1192 1292

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

NHPP models

= Based on Non-homogeneous Poisson Process (NHPP)

e Definition
 P{N(t+dt) - N(t) = 1 } = h(t) dt
 P{N(t+dt) - N(t) = 2 } = o(dt)

=[N INCE) - NG o ING) - NG)Lt << <t
are random variables with independent increments

e Properties

= number of events on [t,, t,]
t2
E[N(t,) - N(t,)] = jt h(t) dt = H(t;) - H(ty)
H(t) - Hito)l"
Prob. {N(t) =n | N(t,) = ny} = O - A exp {- [H(t) - H(ty)I}

(n - ng)! n>ngandt>t,

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Exponential Model (EXP)

= Failure intensity
h(t) = a b exp (-bt) parameters to be estimated: a, b

i Cumulative number of failures

H(t)=a[1 - exp(-bt)]

H(t)
250
200
a b 150
198 | 0.15
198 | 0,4 100
221.5 0,25
50
t 0

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Hyperexponential Model (HE)

= Failure intensity

T égsupt npe e'linft
h(t) = o R O<sosl, o+w=1 and = Cqy

o) e‘zsup t + @ e‘Cinft \

variation of parameters

() 1)
i
0,012
wcsup'l' wcinf C5 /

0,010 1 C1
C4

0,008 4

0,006 1 /7

0,004 o C2 3

cinf

0,002 -

0 L L 'l 'l 'l 'l Il 'l | t
1 100 200 300 400 500 600 700 800 900 1000

Cin¢ = residual failure rate

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Hyperexponential Model (HE)

= HB) =E[N®]=-Ln[oeCsuwly oeaint]

+ oGpy€

- S inf S
W Csup eCsup Clnf

MTTFi

0 655w Sy g gGint S

i A (t'] s) = h(s+t)
s = time of occurrence of failure i
h(t)

Mt | s)

Bl

Parameters to be estimated: w, T,

csup

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

S-Shaped model (SS)

= Failure intensity

h(t) = a b? t exp (-bt) parameters to be estimated : a, b

i Cumulative number of failures

Hit)=a[1-(1+bt)exp(-bt)]

H(t)

240~
220+
200
1807
1607
140-
120
100+

£ 0

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model in practice

Pre-processing of failure data

Trend analysis = reliability growth ?

Parameter determination from observed failure data

 Inference procedures

Prediction of next failure(s)

e Evaluation of reliability measures based on observed data
Model validation = confidence in evaluation

=> Checking agreement between Predictions / Observations
= Predictive analysis

i Retrodictive analysis

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model application: predictive analysis

OBSERVATIONS

D) Validation

/ criteria

OBSERVATIONS PREDICTIONS
HR B o Y, <>
Time to failures, # failures MTTF
* Failure rates
Failure intensity
Trend tests Cumulative number of failures
Model Numerical values Melasure
- values
application of the parameters

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model application: retrodictive analysis

Validation
criteria
?
WlliﬂllliI..fIﬂllIiﬂllliﬂllliﬂllliﬂllliﬂIlllliﬂllliﬂllli
Time to failures, # failures MTTF
* Failure rates
Failure intensity
Trend tests Cumulative number of failures
Model Numerical values Melasure
. . values
application of the parameters

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Trend tests & models

= Trend test: identification of periods of reliability growth / decrease

== Reliability growth models are selected depending on the trend
displayed by the observed data set

Failure intensity Applicable models Failure intensity Applicable models
n(k) :
n(k) Models with
Models reliability
with. decrease
K reliability > k fo”O_WG.C! by
> growth reliability
growth
n(k) n(k) Models in
stable
reliability
> k » k

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Combined use in real-time of trend tests & models

|dentify the trend
Apply an appropriate model

Trust model results as long as the usage conditions are not modified

e Test of the same function(s)
* No addition of new users or new sites

* No specification changes

In case of significant variation

e Apply the trend test including the new data items:
i Reliability growth: trust the previous estimations
i Reliability decrease: wait for reliability growth

= Reliability growth after reliability decrease: new data partitioning

and application of reliability growth models

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Results Validity ?

Unit tests
Static Verification End of Validation Operation
i Trend analysis i Trend analysis = Trend analysis

=

Reliabitity-growti models| == Reliability growth models

««» operational profile ?
-+ enough data ?

= Limits: 10-3/h -104/h

+
== Reliability growth models
or models in stable reliability
High relevance
Examples:

E10-B (Alcatel ESS):

1400 systems, 3 years
A=510%h — A, =107/h
ABB Atom Nuclear 1&C Appli.

8000 systems, 4 years
A:3107/h — A =410%h

ReSIST courseware — Karama Kanoun — Software Relia

bility Engineering

Conclusion

Method
» Rigorous progressive analysis of the software behavior
e Deep thoughts about the system and the analyzed data
» Better results from reliability growth models
Applicability
e General method: applicable to hardware design faults

e Should be integrated to the various phases of the development:
i early phases: analyses of data and trend tests

i validation and operational life: application of models (in addition)
The method has been applied to several real-life systems
(hardware and software)

Needs for tools

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example of Tool: SoRel (developed at LAAS)

Trend Tesis/ 8 \Models
Arithmetical Hyperexponential
mean (Kanoun-Laprie) []
Kendall test :
Exponential
Laplace test (Goel-Okumoto)
S- Shaped

(Littlewood-Verrall) ;

Spearman tes| (Yamadaetal)| }-----
! :,%' Doubly Stochastic

Q8 |

[See reference 6]

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Experience with SoRel

System Languages | Volume Observation | Phases | # Systems # FR and/or CR
E10-B Assembler | 100 k-bytes 3 years Val./ Op. 1400 58 FR/136 CR
TROPICO-R 1500 | Assembler | 300 k-bytes| 27 months | Val./ Op. 15 465 FR/CR
TROPICO-R 4096 | Assembler | 350 k-bytes| 32 months | Val./ Op. 42 210 FR/CR
TROPICO-RS Assembler | 420 k-bytes | 47 months Op. 37 212 FR/CR
TROPICO-RA CHILL 815 KLOC | 68 months | Val./ Op. 146 3063 FR/CR
Telecom. Equipt | PLM-86 | 510° inst. | 16 months | Val. 4 2150 FR

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

=

MODELS IN STABLE RELIABILITY

Apply when no program evolution nor failure resolution is occurring
Operational testing (end of validation) — certification

or when the system is in operation without fault correction
Residual faults: expected to induce a reduced failure rate

Two types of inferences
o Experiments without failures:
Hypothesis testing evaluate a lower bound on the software reliability
or an upper bound on the failure probability (for a given confidence level)
o Experiments with only a few failures observed (all known faults are not fixed)
1) Hypothesis testing (assessment of lower bounds) or
2) Evaluation of an unbiased estimator of the failure probability per execution

(the first approach is better when the number of failures is very low)

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Reliability evaluation when testing reveals no failure

> Hypothesis testing when testing reveals no failure
Prob {accepting "p < p," while it is false } < a

p = actual probability of failure and p, required probability of failure
(objectives)

o = risk error and (1- a) = confidence level

> Amount of execution / time required
N = number of executions without failure,

T = test duration without failure

In (o)
 Discrete time: N = (results from (1 -p)N<a)
In (1-pg)
In (o)
e Continuous time: T= -
)“O

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Measure:

Test duration without failure, required to reach a target reliability objective

Discrete time: Number of program executions without failure

Risk: o

10-1 102 103 104

10-1 46 69 92

Target 102 | 230 691 921

probability 108 | 2303 4605 @ &un; 9210
Po 104 | 23026 46052 69078 @ Giiig
105 | 230259 460517 690776 921034\
106 | 2302585 4605170 6907755 9210340\

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Measure:

Test duration without failure, required to reach a target reliability objective

Continuous time: Testing times for some values of A, and a

Risk o
101 102 108 1o+ | meunt
10 2 3 4 Days
Target 102 10 1 1.3 | Months
failure -
rate 103 3.2 6.4 1
"o 104 2.6 5.3 7.9
105 262 523 789 105.1
106 | 2628 5257 7886 1051.4

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Other example: stable reliability in operation

iz Problem

* The software system is in operation, some failures have been observed,
their consequences are acceptable, even if the faults have been
identified

e Modifications are not performed or, only a few modifications are
introduced without perception of any reliability growth / decrease

i Aim
Evaluate the operational failure rate

> Method
Constant failure rate, Homogeneous Poisson Process = Markov process
Average observed MTTF, associated confidence level

Usually good results

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Product-in-a-process approach

Supplement current approaches to software reliability evaluation with information

Past field
experience

Process

Product-in-a-process assessment

Validation of a product= validation of (n+1) th product
with information about: ITSELF + PREVIOUS PRODUCTS

Framework: Bayesian probabilities
0: conditional probability of failure upon execution / failure rate
Prior and posterior distributions: conjugate distributions

Beta distribution / Gamma distribution
[See reference 4]

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

0 = k4 0;+k, 0, ky +k, =1
06 point Bayesian estimate
0. conventional estimate (validation of the product in isolation)
6, prior estimate (field experience of previous products)
= Field produce much more data than validation of new software
K, > k; = prior estimate dominates conventional estimate
Example:

Satellite control system

0. = 11.6 10°3/h (6 months)
0, = 2.8 103/h (21 months)
k,=0.2; k,=0.8

= E)p = 4.7 103/h
= observed (17 months): 3.9 10-3/h

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Conclusion

w Software systems under development and in operation

ww With fault removal = Reliability growth models
e For several reasons reliability decrease
(new specifications, environment change, new usage profile, etc.)
* |dentify the trend before model application
» Good results under certain conditions, for short term objectives

e Long term objectives ? other new approaches (product-in-a-process approach)
i Without fault removal = stable reliability

e Some of the work related to statistical testing could be adapted to operation

Two situations: with a few failures or without failures

Limitations due to prohibitive test time needed to achieve high reliability objectives

Interesting when several systems are under use (example of avionics systems)

Test acceleration methods

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Off-the shelf software components
Dependability benchmarking

i No information available from component development

i Evaluation based on controlled experimentation

"4 \

Ad hoc Standard

v

Dependability benchmarking

Evaluation of dependability measures / features

in @ non-ambiguous way — comparison
S —

U

Properties

Reproducibility, repeatability, portability, representativeness, acceptable cost

[See reference 12]

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Context: User point of view

Operating System

1) >

-
Linux Mac

>80

Windows

Computer System

Which OS for my
computer system?

T
= Limited knowledge: functional description }

i Limited accessibility and observability
w Limited intrusiveness and interference

= Black-box approach = robustness benchmark

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Operating System Benchmarking and Associated Measures

& OS Outcomes

Device SEr Error code
Operating system drivers SXp Exception
Hardware ’ SPc Panic
SHg Hang

SNS No signaling
Faults = corrupted parameters of system calls

Measures

- POS: OS Robustness [%SEr %SXP %SPc %SHg %SNS])
- Texec: OS reaction time in the presence of faults
- Tres: OS Restart time after fault insertion

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Experimental setup

Host Machine

Activity (Workload)

b it

Interception & Substitution
of system calls

&
Observation OS reaction

" tt

Target Operating System

Hardware

System under benchmarking

- r o1

[a
) r)I
5 2
——

(=)

Control
Machine

T

—

/ =

=
Ir.

::T:lr-l---n ::l—hl et \
e | Mo P |

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Measurements

Experiments with Workload completion

Workload Completion Time

.

OS Reaction time Restart time
tWStart / tResume tResponse xpEnd tExpStart
(n) (n) (n) (n) (n+1)

System Call

to intercept Workload End

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Measurements

Experiments without Workload completion

Timeout >> Workload completion duration

£ >|
Experiment End
OS Reaction time L Restart time
tWStart / tResume tResponse tExpEnd tExpStart
(n) (n) (n) (n) (n+1)

System Call
to intercept WOMnd

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

OS reaction time (Workload = PostMark)

Windows Linux

700 us 200 |
600 - 600
500 - 500
400 - 400
300 - 300 -
200 - l 200
100 - I . . . h 100 -

0 o O _

T4 2000 XP NT4 2000 2003 2.2.26 2.4.5 2.4.26 2.6.6

Server Server Server

B nthe presence of faults

.Without parameter corruption

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

OS Restart time

Windows Linux

120 seconds 120 seconds

80 - |
R I I
0 - i

T4 2000 XP NT4 2000 2003 2.2.26 2.4.5 2.4.26 2.6.6
Server Server Server

B nthe presence of faults
. Without parameter corruption

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Detailed OS Restart times

Windows XP Linux 2.2.26
250 seconds 250 seconds check disk
4 b
200 - 200 -
150 - 150 -
100 4 Workload Abort/hang 100 -
7 : ” ' E ii # eX L AN A \hf.
50 ' T T T p 50 T T T IeXp
0 100 200 300 400 0 50 100 150 200

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Summary

Development data collection
Validation & Collected data
- T

Operation

Objectives
//: of the analysiQ'

Data Validation

Validated
data
|

\ / Data set partltlon \

Types ConsequencesPhase Components
of faults of failures

Data related to
similar previous
projects

Feedback to software

e (@(@GI@F (((.

1. I
Descriptive Analy;ses Trend Analyses Model Application
YV V¥ v ¥ \AR 2 2N
Descriptive Statistics Reliability Evolution Reliability Measures

.

Capitalize experience

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

SOFTWARE PROCESS IMPROVEMENT (SPI)
(The maturity process)

= To obtain consistent quality of the software
=> control the production process = improve the software process

i The engineering method:

* Observe existing solutions

Propose better solutions

Build / develop

Measure and analyze

Repeat the process until no more improvements possible

= evolutionary / continuing improvement oriented approach

Models for process maturity or organization maturity

Aim: assess the organization maturity level

[See reference 11]

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Some existing methods / models

Crosby: Satisfaction by Quality Scheme to software development
Weinberg: The Software Engineering Culture Patterns
Humphrey: A Maturity Framework = The Capability Maturity Model

Other approaches:

o AT&T: Quality Program

Fujitsu: Concurrent-Development Process Model

IBM: The Cleanroom Software Development Process

IBM Communication Systems: The Defect Prevention Process

ODC (Orthogonal Defect Classification)

e efc.

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Cost and reliability evolution, taking into account process improvement

Cost A
without process improvement

Total"lmanufacturing cost

» with process improvement

Costpf rellablllty

Miability

RELIABILITY IMPROVEMENT

_—Y

PROCESS IMPROVEMENT
\

COST REDUCTION

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example of benefits from SPI introduction

IBM (cleanroom approach):
Productivity increase = 70% for development and 100% for testing

IBM (defect prevention approach):
Fault density divided by 2 with an increase of 0.5 % of the product resources

Fujitsu (concurrent development process):
Release cycle reduction = 75 %

AT&T(quality program):

Customer reported problems divided by 10

Maintenance program divided by 10

System test interval divided by 2

New product introduction interval divided by 3

Importance of operational profile (principal cost in SRE): # test efficiency

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example of benefits from SPI introduction (Cont’d)

i Raytheon (Electronic Systems), CMM:
Rework cost divided by 2 after two years of experience
Productivity increase = 190%
Product quality: multiplied by 4

i Raytheon (Equipment Division), CMM:
Rework cost divided by 4 (elimination of $15.8 million in rework cost)
Productivity multiplied by 2
Return on investment 7.7-to-1

= Hughes Aircraft (Software Engineering Division, Fullerton CA) :
1987: level 2 = recommendations & actions = level 3 in 1990

Return on investment of process improvement initiative: 5-to-1

== Motorola (Arlington Heights), mix of methods:
Fault density reduction = 50 within 3.5 years

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

CASE STUDIES

iw TROPICO-R 1500 [See reference 3]
Reliability analysis and evaluation
iw TROPICO-R 4096 [See reference 7]
Software decomposition
Reliability analysis and evaluation
= Three generations of TROPICO-R [See reference 8]

Comparative evolution: fault density and reliability

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

TROPICO-R 1500

= Characteristics
e Language: Assembly
e Size: 300 k-bytes
e Validation: 10 months, 297 failures / corrections
e Field trial: 4 months, 55 failures/corrections

e Operation: 13 months, 109 failures/corrections

e Total : 461
systems
iw Data 15
e Number of failures / unit of time 10l

i unit of time: 10 days

i observation duration: 81 units of times

e Times to failures 0

. . 30 49 50 60
= operational life only

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Data set

CNF:
cumulative
of failures

Validation Field test Operation

u. time CNF u. time CNF u. time CNF
1 7 31 301 43 356
2 8 32 302 44 367
3 36 33 310 45 373
4 45 34 317 46 373
5 60 35 319 47 378
6 74 36 323 48 381
7 82 37 324 49 383
8 98 38 338 50 384
9 106 39 342 51 384
10 115 40 345 52 387
11 120 a1 350 53 387
12 134 42 352 54 387
13 139 55 388
14 142 56 393
15 145 57 398
16 153 58 400
17 157 59 407
18 174 60 413
19 183 61 414
20 196 62 417
21 200 63 419
22 214 64 420
23 223 65 429
24 246 66 440
25 257 67 443
26 277 68 448
27 283 69 454
28 286 70 456
29 292 71 456
30 297 72 457
73 458

74 459

75 459

76 459

77 459

78 460

79 460

80 460

81 461

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Test de Laplace & data partitioning

6 T u(k)
4 -
2 4
0 1 -I—I—I-—I—I—I—I—I—I—I—If
21 6 1116 2'1 26 31 3641 46 51 56 61 66 71 76 81
-4 4 e
Data Partitioning
-6 o
whole phases 8-
-10 =
-12 =
14 1 Validation Field trial Operation
5 —» Validation &field trial
:: -P1:{1,14}
2] —P2:{15, 42}
Per phase 1]
:) _>0perat|on
o) —P3:{43, 54}
3 —P4:{55, 81}
-4 |

Validation Field trial Operation

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model Application

(Number of failures)

i Validation & field trial, application of the S-Shaped model

Cumulative # 400- - C2

of failures 350- /- — 3

300+
250+
200+

150+

1007
501

unit of time

1 5 9 13 17 21 25 29 33 37 M4

R9,14 R28,42 R30,42
C1 2,6
C1 : calibrated from {1,8} 58 4
C2 : calibrated from {15,27} c2 4 1 31,2
C3 : calibrated from {15,29} C3 5,8

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model application
(Number of failures)

> Operational life, application of the S-Shaped model (SS)

° Cumulative #
of failures

C6
470 Observed > C5

450 1 - ¢
430 /
410

390 1

370 7

—rrrrrrrrrrerererrerrr—rrr UNit of time

43 47 51 55 59 63 67 71 75 79

350

Residue R 5155 R74.81 R76.81
Prediction for next quarter (all systems) C4 1,8
2 failures the next month CS 4,3 0,3
& 1 failure / month the next two months C6 3,5

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model application
(times to failures)

> Operational life, average system, application of the Hyperexponential model

429 433 437 441 445 449 453 457 461 # failures

2
1
Laplace Test _? . \/_/\\/\ A
-2 v \/\/4
_3 -
-4 -
_5 -
_6 -
_7 -
k=65 k=69 k=81 unit of time

Software residual failure rate for an average system

Aeor= 1,310 /h (all consequences)

:>)"har «)"sof

Hardware failure rate (known from a different study)

Mar=410°/h (leading to system unavailability)

— = apply reliability growth models to failures leading to total unavailability

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model application according to software
components & to failure consequences

e Other switching system E-10-B

* Hyperexponential model

Component A (1 0’/ h) Consequence A (1 0’/ h)
Telephony 7,5 General unavailability 1,2
Defense 27,4 Partial unavailability 7,9
Exploitation 7,3 Exploitation treat. delay 3,7
Executive 8,3 Loss of a hardware unit| 3,1
All corrections 47,5 All failures 38,2

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

TROPICO-R 4096

= Characteristics
e Language: Assembly
e Size: 335 k-bytes
e Validation : 8 months, 76 failures / corrections
e Operation: 24 months, 134 failures/corrections

e Total: 210

> Data
e Number of failures / unit of time
i observation period: 32 months

e Times to failures

== for operational life

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Software decomposition and # of systems

> Decomposition

Telephony
Defense
Interface

Management

> Number of systems

45 -
40 -
35 A
30 -
25 -
20 A
15 4
10 A
5 4

0

Volume # failures
75 k-bytes 74 (34 - 40)
117 k-bytes 67 (20 -47)
115 k-bytes 61 (20 -41)
44 k-bytes 31(13-18)
11— +r——_Mmonths
0O 4 8| 12 16 20 24 28 32
Validation Operation

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Laplace Test

13 15 17

19 219 23 256 27 29 31

_2 -

/-

-6+ Operation: all systems

-8 L

5 r u(k)

0

5 13 15 17 19 21 23 25 27 29 31

e 4 L
Validation

-6 L

-8 £
-10 1 Operation: average system

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Laplace Test for the software components

5 u(k)

315 17 19 21 23 25 27 29 31

Telephony

31517 19 21 23 25 27 29 31

Interface

13 1517 19 21 23 25 27 29 31

Defense

31517 1921 23 25 27 29 31

Management

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Failure intensity: Hyperexponential model application

Hyperexponential model

Aerved failure intensity

0.1 -

19 21 23 25 27 29 31

Telephony

Hyperexponential model

observed failure intensity

/\

2\
Nmran S mse

N\
]]]

17

27 29 3t

23 25
Interface

Hyperexponential model

observed failure intensity

0.1 L
0 1 1 1 1 1]] 1]] F/I\Iﬁg
17 19 21 23 25 27 29 31
Defense
04 —
03 Hyperexponential model

0.2 -

0.1 4

0

17 19 21 23 25
Management

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Residual failure rates (Hyperexponential model)

failure rate Size (Kb)
Telephony 1.210-6/h 75
Defense 1.410-°/h 103
Interface 2.910-°/h 115
Management 8.510-%/n 42
. Sum 5.3 10-5/h 335

Observed failure intensity

2
Failure intensity estimated by HE
1.5 (Residual failure rate: 5.7 105 /h
Sum of the failure intensities of the

11 components estimated by HE
05 L

0

17 19 21 23 25 27 29 31

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Maintenance planning

] . HE
Cumulative # of failures

230 T

EXP

210 7

190 +

170 T

150 T

130 A

110 observed

90 T
Unit of time

70 — t—F+—F—F—F—+—+—+—+——t——t—+— +— t—+—t—t+—t—t—t—t—

9 11 13 15 17 19 21 23 25 27 29 31

|
|
|
|
|
|
|
|
|
|
|
E prediction
|
|
|
|
|
|
|
|
|
I

Estimated # failures from 20 to 32: Exponential: 33
Hyperexponential: 37
S-Shaped: 9

Observed: %SIST courseware — Karama Kanoun — Software Reliability Engineering

Maintenance planning

Cumulative # of failures
220 71
200 T
180
160 T
140 T
120 +
100

80

60 +

40 +

207
/
0

|
|
|
|
|
|
|
|
|
|
|
|
:
| prediction
|

|

+ L
observed

Unit of time

|
|
|
|
|
|
|
|
:

1 3 5§ 7 9 11 13 15 17 19 21 23 25 27 29 31

Estimated # failures from 20 to 32: 40
Observed: 34

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Software Reliability Analysis of Three
Successive Generations of a Switching System

Outline

The products investigated
Data collected

Statistics on failures and faults
Residual failure rates

Conclusion

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Products & Software

* Three products

TROPICO-R 1500 (PRA)
TROPICO-R 4096 (PRB)
TROPICO-RS (PRC)
« Software components (Applicative & Executive software)

— Elementary Implementation Blocks (EIB)

——— Functions
Telephony (TEL)
Defense (DEF)
Interface (INT)
Management (MAN)

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Software decomposition and size

PRA PRB
EIB size (Kbytes) #EIB size (Kbytes)
TEL 6 72 TEL 6 75
DEF 9 93 DEF 12 117
INT 10 113 INT 10 115
MAN 4 42 MAN 4 44
Sum 29 320 Sum 32 351
PRC
EIB size (Kbytes)

TEL 8 111

DEF 12 130

INT 10 129

MAN 4 51

Sum 34 421

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

EIB Distribution

e TWO types of EIBS: new — reused (modified / unchanged)

13%
37%
oy (84 % in Executive)

PRB
50% i
(75 % in Applicative Soft.)
P4 Unchanged
E1 Modified
O New
PRC

According to # of EIBs According to the size of EIBs

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Test environment and failure data

Software test program

Steps: unit tests, integration tests, validation tests, field tests
Validation tests: functional, quality, performance, overload tests

Failure reports & Trouble reports (FRs & TRs)

 Date of failure occurrence (static analysis b date of detection)

* Description of system configuration in which the failure was observed

» Type: hardware, software, documentation, affected EIBs

» Analysis: identification— classification of faults (coding, specification, etc.)
 Solutions

* Regression testing

An FR is a failure report and also a correction report

Rediscoveries are not recorded

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Data Collection

PRA systems # PRB systems
15,
45
40 1
35 1
104 20 -
Field test 25 1
o0 { Validation .
5. 15 4 Operation
Validation Operation 101
5 months
1 9 13 17 21 25 27 0 8| 12 16 20 24 28 32
PRC systems
40 _
30 _
20 .
10 |

Operation
months

1 5 9 13 17 21 25 29 33 37 41 4547

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Statistics on Failures and Faults

#FR (# TR) # CF
PRA 465 637
PRB 210 282
PRC 212 (105) 394

iz >70 % of failures led to modification of one EIB

corrected EIBs

FR in PRA

FR in PRB

#FR+TR in PRC

1

362 (77.8%)

165 (78.6%)

228 (71.9%)

72 (15.5%)

33 (15.7%)

69 (21.8%)

\VAN B G}

31 (6.7%)

12 (5.7%)

20 (6.3%)

iz jdentify EIBs which are dependent w.r.t failure occurrence
(2 pairs of strongly dependent EIBs)

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Statistics on Failures and Faults (cont’d)

PRA PRB
#FR # CF Size #FR # CF Size
TEL 146 190 72 TEL 74 102 75
DEF | 138 164 93 DEF 67 71 117
INT 170 191 113 INT 61 68 115
MAN| 78 92 42 MAN| 31 41 44
sum | 532 637 320 Sum | 233 282 351
#FR#TR) | #CF Size
PRC TEL | 65 (52) 155 111
DEF | 63(21) 88 130
INT | 7227) 112 129
MAN | 25 (10) 40 51
sum | 225(110) | 395 421

= 90% of FRs led to modification of only one Function

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Distribution of faults among functions

PRA
A TEL

PRC B DEF
O INT

MAN

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Distribution of faults per EIB type

R L e T e

EREmR

e

R T L R

ety

&wmmvﬁ R R R 7

R o e e e e e e S e

R R R WMV

e

T o e M M e
PP b PP EE P wawiwy
e e

e e e e e e e

BT P R P et |

el

e e e e e e e S e e e e e

e e ails:
S e e el

£

G

R

83%

S Unchanged
Modified

PRC

PRB

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Average fault density

1> versus EIB size

Size PRA PRB PRC (only falitzcr:elative
(all faults) to FRs)
EIB size > 15 Kb 1.80 1.08 0.99 0.65
10 Kb <EIB size< 15 Kb 2.02 0.68 0.58 0.47
5 Kb <EIB size< 10 Kb 2.31 0.60 0.96 0.52
EIB size< 5 Kb 2.56 0.71 0.62 0.56
Average fault density 2.1 0.76 0.79 0.55
i data collected during operation
PRA PRB PRC
After 13 months 0.34 0.35 0.3
After 24 months - 0.47 0.6

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Fault density evolution / EIB type (Operation)

1 1.2

B PRA 1
0.8
0.6 B PRB 0.8 1 year
0.6
0-4 " PRC 0.4
0.2 0.2
0 0
2
2 years

T L R R~ ool o o]

Unchanged EIBs Modified EIBs

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Residual failure rates

PRA PRB PRC
TEL 2.610°/h 1.210%/h 4.310°/h
DEF 43105/h | 1.410%/h 1.910%/h
INT 4.210°/h 2910°/h | 3.210°/h
MAN 1.410%/h | 8510%/h | 9.9106/h
Sum 1.12410%/h| 5.27105/h | 1.0310%/h

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Conclusion

PRA & PRB
« Similar development environment = reliability improvement

PRC
» Learning process interrupted = reliability improvement?

PRA, PRB & PRC

» Residual failure rates: same order of magnitude
» Failure rate of the software =
sum of the failure rates of its components

Additional experimental studies

=> factors impacting the reliability of a family of products

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

References

Handbook of Software Reliability Engineering, Edited by Michael R. Lyu, Published
by IEEE Computer Society Press and McGraw-Hill Book Company, 1996.

Software Reliability Engineering: More Reliable Software Faster and Cheaper, 2nd
Edition, John Musa, September 2004.

A method for software reliability analysis and prediction, application to the TROPICO-
R switching system, K Kanoun, M. R. Bastos Martini, J. Moreira de Souza, IEEE
Transactions on Software Engineering, N° 4, pp. 334-344, April 1991.

For a product-in-a-process approach to software reliability evaluation,J. C. Laprie,
Third IEEE International Symposium on Software Reliability Engineering (ISSRE'92),
Research-Triangle Park (USA), October 7-10 1992, pp.134-13

Operational Profiles in Software-Reliability Engineering, John D. Musa, IEEE
Software 10 (2), pp. 4-32, 1993.

SoRel: a tool for reliability growth analysis and prediction from statistical failure data,
K. Kanoun, M. Kaaniche, J. C. Laprie and S. Metge, 23rd IEEE International
Symposium on Fault-Tolerant Computing (FTCS'23), Toulouse, France, June 22-24,
1993, pp.654-659.

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

10.

11.

12.

Experience in software reliability: from data collection to quantitative evaluation, K. Kanoun, M.
Kaaniche, and J. C. Laprie, 4th International Symposium on Software Reliability Engineering,
Denver (USA), 3-6 November 1993, pp.234-245.

Software failure data analysis of tthree successive generations of a switching system, M.
Kaaniche, K. Kanoun, M. Cukier, M. R. Martini, 1st European Dependable Computing
Conference (EDCC-1), Berlin, Germany, 4-6 October 1994, pp. 473-490.

Software Reliability Trend Analyses: From Theoretical to Practical Considerations,
K. Kanoun and J. C. Laprie, IEEE Transactions on Software Engineering, Vol.20, N°9, pp.740-
747, September 1994.

Trend Analysis, Kanoun, K. and J.-C. Laprie, in Handbook of Software Reliability Engineering,
Ed. M. Lyu, Mc Graw Hill, Chapter 10, pp. 401-437, 1996. Freely available at:
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/

A measurement-based framework for software reliability improvement, K. Kanoun, Annals of
Software Reliability, Vol.11, N°1, pp.89-106, November 2001.

Windows and Linux Robustness Benchmarks With Respect to Application Erroneous Behavior,
K. Kanoun, Y. Crouzet, A. Kalakech, A. E. Rugina, in Dependability Benchmarking for Computer
Systems, Chapter 12, pp. 277-254. Editors: Karama Kanoun and Lisa Spainhower, |IEEE
Computer Society and WILEY, August 2008.

ReSIST courseware — Karama Kanoun — Software Reliability Engineering

