UNIVERSITA DI PISA

Basic buiding blocks in Fault Tolerant

distributed systems

Lecture 4

Prof. Cinzia Bernardeschi
Department of Information Engineering
Univerisity of Pisa, Italy
cinzia.bernardeschi@unipi.it

May 7-10, 2019 — Thessaloniki, Greece

Outline

UNIVERSITA DI PISA

* Fault models in distributed systems

e Atomic actions

* Consensus problem

e Conclusions

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 2

Fault models in distributed systems

UNIVERSITA DI PISA

Multiple isolated processing nodes that operate concurrently on shared
informations

Information is exchanged between the processes from time to time

The goal is to design the system in such a way that the distributed
application is fault tolerant

- A set of high level faults are identified

- Systems are designed that tolerate those faults

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 3

Fault models in distributed systems

Node failures Communication failures
-Byzantine Byzantine
-Crash L | .
~Fail-stop -Link (message loss, ordering loss)
"o -Loss (message loss)
Byzantine

* Processes :

— can crash, disobey the protocol, send contradictory messages,
collude with other malicious processes,...

* Network:
— Can corrupt packets (due to accidental faults)
— Modify, delete, and introduce messages in the network

UNIVERSITA DI PISA

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems

Fault models in distributed systems

UNIVERSITA DI PISA

The more general the fault model, the more costly and
complex the solution (for the same problem)

GENERALITY COST / COMPLEXITY
Byzantine 4 4
Crash
Fail-stop
No failure

Arbitrary failure approach (Byzantine failure mode)

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 5

Architecting fault tolerant systems

UNIVERSITA DI PISA

We must consider the system model:
Asynchronous

Synchronous

Partially synchronous

Develop alﬁorithms , protocolos that are useful building blocks
for the architect of faut tolerant systems:

- Atomic actions
- Consensus
- Trusted components

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 6

Basic building blocks for fault tolerance

UNIVERSITA DI PISA

 Atomic actions

action executed in full all or has no effect

» Consensus protocols

correct replicas deliver the same result

* etc...

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 7

UNIVERSITA DI PISA

Atomic Actions

Atomic actions

Atomic action: an action that either is executed in full or has no effects at all

e Atomic actions in distributed systems:
- an action is generally executed at more than one node
- nodes must cooperate to guarantee that

- either the execution of the action completes successfully at each node
or the execution of the action has no effects

* The designer can associate fault tolerance mechanisms with the underlying
atomic actions of the system:

- limiting the extent of error propagation when faults occur and

- localizing the subsequent error recovery

UNIVERSITA DI PISA

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems

An example: Transactions in databases

UNIVERSITA DI PISA

 Transaction: a sequence of changes to data that move the data base from a
consistent state to another consistent state.

 Atransaction is a unit of program execution that accesses and possibly updates
various data items

* Transactions must be atomic:
all changes are executes successfully or data are not updated

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 10

Transactions in databases

UNIVERSITA DI PISA

Let T1 and T2 be transactions

Transaction T1

——Ilransaction T2

I

1) A failure before the termination of the transaction,
results into a rollback (abort) of the transaction

2) A failure after the termination with success (commit)
of the transaction must have no consequences

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 11

Banking application

UNIVERSITA DI PISA

Account =(account_name, branch_name, balance)

t1: distributed transaction (access data at different sites) Client: Each branch responsable
t1 ' of data on local accounts

t1: begin transaction
UPDATE account
SET balance=balance + 500
WHERE account_number=45;
UPDATE account
SET balance=balance - 500

account_number 35

WHERE account_number=35; branch1 branch?
commit
end transaction tl
t11: UPDATE account t12:UPDATE account
SET balance=balance + 500 SET balance=balance - 500
WHERE account_number=45; WHERE account number=35;
sitel site2

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 12

Atomicity requirement

UNIVERSITA DI PISA

* Atomicity requirement

* if the transaction fails after the update of 45 and before the update of 35,
money will be “lost” leading to an inconsistent database state

* the system should ensure that updates of a partially executed transaction are
not reflected in the database

A main issue: atomicity in case of failures of various kinds, such as
hardware failures and system crashes

e Atomicity of a transaction:
Commit protocol + Log in stable storage + Recovery algorithm

A programmer assumes atomicity of transactions

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 13

Two-phase commit protocol

UNIVERSITA DI PISA

- One transaction manager TM
- Many resource managers RM
- Log file (persistent memory)

- Time-out
Stable storage
Global
PrepareI Idecision CompleteT T™
o Local
.................. Decision
Prepare | Ready eady msg\ degision Ack
.................. |) s/
Tolerates: loss of messages Uncertain period:

if the transaction manager crash, a participant with Ready

crash of nodes o . .
in its log cannot terminate the transaction

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 14

Three-phase commit

Prepare

May 7-10, 2019

Pre-commit Global Commit Complete

Precommit phase is added. Assume a permanent crash of the coordinator.
A participant can substitute the coordinator to terminate the transaction.

A participant assumes the role of coordinator and decides:

- Global Abort, if the last record in the log Ready

- Global Commit, if the last record in the log is Precommit

Basic building blocks in Fault Tolerant distributed systems

UNIVERSITA DI PISA

15

Recovery and Atomicity

Physical blocks: blocks residing on the disk.
Buffer blocks: blocks residing temporarily in main memory

Block movements between disk and main memory through the following operations:
- input(B) transfers the physical block B to main memory.
- output(B) transfers the buffer block B to the disk

Transactions

- Each transaction Ti has its private work-area in which local copies of all data items accessed
and updated by it are kept.

-perform read(X) while accessing X for the first time;

-executes write(X) after last access of X.

System can perform the output operation when it deems fit.
Let B, denote block containing X.
output(B,) need not immediately follow write(X)

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 16

Data Access

UNIVERSITA DI PISA

main memory : buffer Physical Blocks

Buffer Block A ——+[x input(A) R
Buffer Block B / Y 5 B
output(B) ~__
read(X) disk
write(Y)
| v X
transaction 2
. X1
private
memory Y1
work area work area From: [Silberschatz et. al,2005]
of Tl of T2

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 17

Recovery and Atomicity

» Several output operations may be required for a transaction

* A transaction can be aborted after one of these modifications have been made
permanent (transfer of block to disk)

* A transaction can be committed and a failure of the system can occur before all
the modifications of the transaction are made permanent

* To ensure atomicity despite failures, we first output information describing the
modifications to a Log file in stable storage without modifying the database itself

Log-based recovery

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 18

DB Modification: an example

UNIVERSITA DI PISA

Log Write Output
<T, start> Recovery actions
<To, A, 1000, 950> - undo (T;) Aresetto 950
A =950 B reset to 2050
<T,, B, 2000, 2050> - redo (T,) Cisrestoredto 700
B =2050
Output(Byg)
<T, start>
<T, commit>
<T,, C, 700, 600>
C =600
Output(B,)

CRASH

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 19

Checkpointing

UNIVERSITA DI PISA

CHECKPOINT operation: output all modified buffer blocks to the disk

To Recover from system failure:

- consult the Log

- redo all transactions in the checkpoint or started after the checkpoint that committed;
- undo all transaction in the checkpoint not committed or started after the checkpoint

To recover from disk failure:
- restore database from most recent dump
- apply the Log Recovery

CK(T1,T2) CK(T1,T3)
dump

HHHAE - HE A

/\
Crash

<T2 er‘b
<T1 start> <T2 commit> <T3 start>
<T2 X,..> <TL1Y,.> <T1,Z,.><T1, W, .> <T3,.>
<T1 abort>

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 20

Atomic actions

Advantages of atomic actions:
a designer can reason about system design as

1) no failure happened in the middle of a atomic action

2) separate atomic actions access to consistent data

(property called “serializability”, concurrency control).

UNIVERSITA DI PISA

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems

21

Yom)
A=
i Y

S)

4‘”‘

o ‘ L
UNIVERSITA DI PISA

Consensus protocols

Consensus problem

UNIVERSITA DI PISA

One way to achieve reliability is to have multiple replicas and node1
take the majority voting among them

Module

In order for the majority voting to yield a reliable system,
the following two conditions should be satisfied:

node2

Module

Module

- all non faulty components must use the same input value
- if the sender is non-faulty, then all non-faulty components
use the value it provides as input

What happen with Byzantyne failures?
The faulty replica can send different values to the other replicas.

The inputs to the voter can be different

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 23

Consensus problem

UNIVERSITA DI PISA

The Consensus problem can be stated informally as:

how to make a set of distributed processors achieve agreement
on a value sent by one processor despite a number of failures

“Byzantine Generals” metaphor used in the classical paper by [Lamport et al.,1982]

The problem is given in terms of generals who have surrounded the enemy.

Generals wish to organize a plan of action to attack or to retreat. They must take the same decision.
Each general observes the enemy and communicates his observations to the others.

Unfortunately there are traitors among generals and traitors want to influence this plan to the

enemy’s advantage. They may lie about whether they will support a particular plan and what other
generals told them.

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 24

Byzantine Generals Problem

General ﬁ
General ﬁ / ‘ ™~ General

General

UNIVERSITA DI PISA

General

General: either a loyal general or a traitor

Consensus:
A: All loyal generals decide upon the same plan of actions
B: A small number of traitors cannot cause loyal generals to adopt a bad plan

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 25

Byzantine Generals Problem

Assume
- n be the number of generals
- v(i) be the opinion of general i (attack/retreat)
- each general i communicate the value v(i) by messangers to each other general

- each general final decision obtained by:
majority vote among the values v(1), ..., v(n)

4 .
Absence of traitors:

generals have the same values v(1), ..., v(n) and they take the same decision

o

UNIVERSITA DI PISA

)

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems

26

Byzantine Generals Problem

UNIVERSITA DI PISA

Consensus:
A: All loyal generals decide upon the same plan of actions
B: A small number of traitors cannot cause loyal generals to adopt a bad plan

ﬂn presence of traitors: \

to satisfy condition A
every general must apply the majority function to the same values
v(1),...,v(n)

to satisfy condition B

for each i, if the i-th general is loyal, then the value he sends must
\ be used by every loyal general as the value v(i) /

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 27

Interactive Consistency

UNIVERSITA DI PISA

Simpler situation:

1 Commanding general (C)
n-1 lieutenant generals (L1, ..., Ln-1)

The Byzantine commanding general C wishes to organize a plan of action to
attack or to retreat; he sends the command to every lieutenant general Li

Interactive Consistency

et A ™ A
All loyal lieutenant The decision of loyal lieutenants
generals obey the same must agree with the commanding

N command Y. general’s order if he is loyal

o /

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 28

Byzantine Generals Problem

UNIVERSITA DI PISA

Commanding reat
retrea

v

General C P
attack
L3
L1
L2
Commanding Commanding general Commanding gen.eral lies and sends
general is loyal: lies but sends the same - attack to some Ileutenént generals
IC1 and IC2 ' command to - retreat to some other lieutenant generals
an are
satistied lieutenants: How loyal lieutenant generals may all reach the

IC1 and IC2 are satisfied same decision either to attack or to retreat ?

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 29

Byzantine Generals Problem

UNIVERSITA DI PISA

Lieutenant generals send messages back and forth among themselves
reporting the command received by the Commanding General.

L1

C
\ L2 __, decisionsentby C

— what L1 says he received by C
. what L2 says he received by C

L1=(v1, v2, v3, v4)
L2=(v1, v2, v2, v4)

L3=(v1, v2, v3, v4)
L4= (v1, v2, v, v4) — what L3 says he received by C

— what L4 says he received by C

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 30

3 Generals: one lieutenant traitor

UNIVERSITA DI PISA

n=3

)) L2 traitor
no solution exists

<attack> <attack>

<C said retreat>

In this situation (two different commands, one from the commanding general and the other from a
lieutenant general), assume L1 must obey the commanding general.

If L1 decides attack, IC1 and IC2 are satisfied.
If L1 must obey the lieutenant general, IC2 is not satisfied

RULE: if Li receives different messages, L1 takes the decision he received
by the commander

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 31

3 Generals: Commander traitor

UNIVERSITA DI PISA

C traitor

<attack> <retreat>

<C said attack>

<C said retreat>

The situation is the same as before, and the same rule is applied

L1 must obey the commanding general and decides attack
L2 must obey the commanding general and decides retreat

IC1 is violated
IC2 is satisfied (the comanding general is a traitor)

To cope with 1 traitor, there must be at least 4 generals

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 32

Oral Message (OM) algorithm

UNIVERSITA DI PISA

Assumptions
1.the system is synchronous

2.any two processes have direct communication across a network not prone to failure itself
and subject to negligible delay

3. the sender of a message can be identified by the receiver

In particular, the following assumptions hold
Al. Every message that is sent by a non faulty process is correctly delivered
A2. The receiver of a message knows who sent it

A3. The absence of a message can be detected

Moreover, a traitor commander may decide not to send any order. In this case we assume a
default order equal to “retreat”.

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 33

Oral Message (OM) algorithm

UNIVERSITA DI PISA

The Oral Message algorithm OM(m) by which a commander sends an order to n-1 lieutenants,

solves the Byzantine Generals Problem for n = (3m +1) or more generals, in presence of at most m
traitors.

majority(vl, ..., vn-1)
if a majority of values vi equals v,
then
majority(vl, ..., vn-1) equals v

else

majority(vl, ..., vn-1) equals retreat

Deterministic majority vote on the values

The function majority(vl, ..., vn-1) returns “retrait” if there not exists a majoirity among values

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 34

The algorithm

UNIVERSITA DI PISA

Algorithm OM(0)
1. C sends its value to every Li, i€{], ..., n-1}

2. Each Li uses the received value, or the value retreat if no value is received

OM(m) is a recursive
algorithm that invokes n-1

Algorithm OM(m), m>0 separate executions of

1. C sends its value to every Li, i€{1, ..., n-1} OM(m-1), each of which
2. Let vi be the value received by Li from C invokes n-2 executions of
(vi = retreat if Li receives no value) O(m-2), etc..
Li acts as Cin OM(m-1) to send vi to each of the n-2 other lieutenants For m >1, a lieutenant sends

3. Foreachiandj#i, letvjbe the value that Li received from Lj in step 2 using rrr:any ;ep?rated messages to
Algorithm OM(m-1) (vj = retreat if Li receives no value). the other lieutenants.
Li uses the value of majority(vi, ..., vn-1)

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 35

The algorithm OM(1)

UNIVERSITA DI PISA

4 generals, 1 traitor

Point 1

- Csends the command to L1, L2, L3.

- L1 applies OM(0) and sends the command he received from Cto L2 and L3
- L2 applies OM(0) and sends the command he received from C to L1and L3
- L3 applies OM(0) and sends the command he received from Cto L1 and L2

* Point 2
- L1: majority(vl, v2, v3)
- L2: majority(vl, v2, v3)

. //v1l command L1 says he received

. //v3 command L3 says he received

- L3: majority(vl, v2, v3)

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 36

4 Generals: Commander traitor

UNIVERSITA DI PISA

Cis a traitor but sends the same command to L1, L2 ad L3

Li: vl = attack, v2 =attack, v3 = attack
majority(....)= attack

L1, L2 and L3 are loyal. They send the same command when applying OM(0)
IC1 and IC2 are satisfied

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 37

4 Generals: Commander traitor

UNIVERSITA DI PISA

Cis a traitor and sends:
- attack to L1 and L2
- retrait to L3

<attack> <retrait>

<attack>

L1, L2 and L3 are loyal.

<retrait>

<attack>

<retrait>

L1: vl = attack, v2 =attack, v3 =retrait majority(...)= attack

L2: vl = attack, v2 =attack, v3 =retrait majority(...)= attack
L3: vl = attack, v2 =attack, v3 =retrait majority(...)= attack

IC1 and IC2 satisfied

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 38

4 Generals: one Lieutenant traitor

UNIVERSITA DI PISA

e A leutenant is a traitor

* L3 is a traitor:
sends retrait to L2 and attack to L1 o

<attack>
<attack> <attackd

L1: vl = attack v2 = attack, v3 = attack majority(...) = attack

L2: vl = attack v2 = attack, v3 = retrait majority(...) = attack

IC1 and IC2 satisfied

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 39

Oral message (OM) Algorithm

UNIVERSITA DI PISA

The following theorem has been formally proved:

Theorem:

For any m, algorithm OM(m) satisfies conditions IC1 and IC2 if there are more than
3m generals and at most m traitors. Let n the number of generals:

n>=3m+1

4 generals are needed to cope with 1 traitor;
7 generals are needed to cope with 2 traitors;

10 generals are neede to cope with 3 traitors

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 40

Byzantine Generals Problem

UNIVERSITA DI PISA

Original Byzantine Generals Problem E [i
General General

N\ /
General ﬁ 4 ’ o ﬁ General
ﬁ General

Solved assigning the role of commanding general to every lieutenant general, and running the algorithms
concurrently

General agreement among n processors, m of which could be faulty and behave in arbirary manners.
No assumptions on the characteristics of faulty processors

Conflicting values are solved taking a deterministic majority vote on the values received at each processor
(completely distributed).

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 41

Byzantine Generals Problem

UNIVERSITA DI PISA

Solutions of the Consensus problem are expensive

OM(m):
each L; waits for messages originated at C and relayed via m others L,

OM(m) requires
n=3m+1 nodes
m+1 rounds

message of the size O(n™1!) - message size grows at each round

Algorithm evaluation using different metrics:
number of fault processors / number of rounds / message size

In the literature, there are algorithms that are optimal for some of these aspects.

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 42

Byzantine Generals Problem

UNIVERSITA DI PISA

* The ability of the traitor to lie makes the Byzantine Generals problem difficult

Restrict the ability of the traitor to lie

A solution with signed messages:

allow generals to send unforgeable signed messages (authenticated messages)
Byzantine agreement becomes much simpler

A message is authenticated if:
1. a message signed by a fault-free processor cannot be forged
2. any corruption of the message is detectable

3. the signature can be authenticated by any processors

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 43

Byzantine Generals Problem

UNIVERSITA DI PISA

Assumptions:

(a) The signature of a loyal general cannot be forged, and any alteration of the
content of a sighed message can be detected

(b) Anyone can verify the authenticity of the signature of a general

No assumptions about the signatures of traitor generals

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 44

Signed messages

Let V be a set of orders. The function choice(V) obtains a single order from a set of orders:

For choice(V) we require:

choice(J) = retreat

choice(V) =v if V consists of the single element v

choice(V) = retrait if V consists of more than 1 element

* X denotes the message x signed by general i
* vij:i denotes the value v signed by j (v:j) and then

the value v:j signed by i

General 0 is the commander
For each i, Vi contains the set
of properly signed orders that
lieutenant Li has received so far

UNIVERSITA DI PISA

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems

45

Signed messages SM(m) algorithm

UNIVERSITA DI PISA

Algorithm SM(m)
Vi=

1. Csigns and sends its value to every Li, i€{], ..., n-1}

Observations:

- Li ignores msgs containing an order

2. For eachii: veVi

- Time-outs are used to determine

_ when no more messages will arrive

then Vi={v}; - If Li is the m-th lieutenant that adds
sends v:0:i to every other Lj the signature to the order, then the

message is not relayed to anyone.

(A) if Li receives v:0 and Vi is empty

then Vi=Viu {v}

if k <m then

3. For each i: when Li will receive no more msgs, he obeys the order choice(Vi)

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 46

Signed messages

UNIVERSITA DI PISA

3 generals, 1 traitor
<attack:0>

<retreat:0>
Cis a traitor and
sends:

attack to L1 and L2

retrait to L3

<attack:0:1>

(@F:

<retreat:0:2>
V1 = {attack, retreat} V2 = {attack, retreat}

- L1 and L2 obey the order choice({attack, retreat})

- L1 and L2 know that C is a traitor because the signature of C
appears in two different orders

The following theorem asserting the correctness of the algorithm has been formally proved.

Theorem :

For any m, algorithm SM(m) solves the Byzantine Generals Problem if there are at most m traitors.

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 47

Remarks

UNIVERSITA DI PISA

Assumption Al.

Every message that is sent by a non faulty process is delivered correctly

Assumption A2.

The receiver of a message knows who sent it

Assumption A3:

The absence of a message can be detected

Assumption A4

(a) aloyal general signature cannot be forged, and any alteration of the content of a signed message can be
detected

(b) anyone can verify the authenticity of a general signature

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 48

Impossibility result

UNIVERSITA DI PISA

Asynchronous distributed system:
no timing assumptions (no bounds on message delay,

no bounds on the time necessary to execute a step)

Asynchronous model of computation: attractive.

- Applications programmed on this basis are easier to port than those incorporating
specific timing assumptions.

- Synchronous assumptions are at best probabilistic:

in practice, variable or unexpected workloads are sources of asynchrony

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 49

Impossibility result

Consensus cannot be solved deterministically in an asynchronous distributed system
that is subject even to a single crash failure [Fisher et al. 1985]

difficulty of determining whether a process has actually
crashed or is only very slow

Stopping a single process at an inopportune time can cause any distributed protocol
to fail to reach consensus

Circumventing the problem: Adding Time to the Model (using the notion of partial
synchrony), Randomized Byzantine consensus, Failure detectors, etc ...

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 50

SIFT case study

UNIVERSITA DI PISA

SIFT (Software Implemented Fault Tolerance) is a Fault-Tolerant Computer for Aircraft Control

“a system capable of carrying out the calculations required for the control of an advanced
commercial transport aircraft”

developed for NASA as an experimental case study for fault tolerant system research

Reliability requirement:
probability of failure less than 10~ per hour in a flight of ten hours' duration.

The SIFT system executes a set of tasks, each of which consists of a sequence of iterations.

The input data to each iteration of a task are the output data produced by the previous iteration of
some collection of tasks (which may include the task itself).

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 51

SIFT

Reliability is achieved by replication + voting

UNIVERSITA DI PISA

Processor 1 Processor 2 Processor 3
| s Local
Bus Applicati reporting
controller ||-| task B task
- Buses Error-
; 3 reporting
: 5 o task
— =
. it o [e e s [e s s st b — s e [e e el s e s [s s . s . s o
Processor Memo IJ : . 3
Y Double Double Double Double
- - buffer buffer buffer buffer
Main processing
. modules Local executive
e . o . = Vote
Processor | Memory [|{ —g’i ﬁ% —\ g@—
A
| I I | 170 L / N N\ 7
processing "N
modules | J
To/from Bus system / \
actuators

sensors

Replicated Software
each iteration of a task independently executed by
a number of modules

Replicated Hardware
A processor write only its private memory.

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 52

Loose synchronization

UNIVERSITA DI PISA

* voting is executed only at the beginning of each iteration
due to the iterative nature of the tasks

e processors need be only loosely synchronized

guarantee that different processors allocated to a task are executing
the same iteration, do not need tight synchronizationto the
instruction or clock level.

~

the traditional clock synchronization algorithm for reliable systems

median clock algorithm

each clock observes every other clock and sets itself to the median
\ of the values that it sees /

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 53

Clock synchronization

UNIVERSITA DI PISA

Assumption:

in the presence of only a single fault, either the median value must be (i) the value of one of the
valid clocks or else (ii) it must lie between a pair of valid clock values.

Let Clock A < Clock B.
Case 1) | | |
Clock C< A, B
C B
Case?)]
Clock C>A, B
A@BC
Case 3) | | |
Clock A<C<B
AC B
The weakness of this algorithm is
Proc C the Byzantine fault, that may
Eaul cause other processors to
aulty observe different values for the
failing clock

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 54

Clock synchronization

UNIVERSITA DI PISA

Let clock A < clock B. A: B: 20 C -> Clock A=

)) A:10 B: C:
Assume failure mode of clock Cis such that
- proc A sees a value for clock C that is slightly earlier than its own value, while

- proc B sees a value for clock C that is slightly later than its own value (Byzantine faults).

| 1] Assumption is violated

c @B

8 10 20
) Processorss A and B will both
see their own value as the
A C median value, and therefore
not change it.
10 20 22 To synchronise clocks SIFT

applies a Consensus algorithm
(5 processors)

Proc C
faulty

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 55

Byzantyne fault tolerance S

Many application fields:

* Airbone self-separation (Future generation of ATC)

An operating environment where pilots are allowed to
select their tlight paths in real-time

Byzantine Fault Tolerance algorithms for coordination
between aircrafts to take local decisions

* Block-chains
Byzantine Fault Tolerance algorithms for Block-chain

* efc ...

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 56

Conclusions

In real world, reliability problems are really subtle

there is a cause that evolves. It propagates into the system, something
happens in a subsystem, something else happens in another subsystem,
..., and then we have a failure

* From Reliability to Resilience
unforseen environmental changes and new type of threats
e Resilience

the persistence of service delivery that can be justifiably be
trusted when facing changes

* Resilience engineering

how to design, implement operate, etc ... comple systems so that
they can be resilient

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 57

Other references

UNIVERSITA DI PISA

[Fisher et al., 1985] M.Fisher, N. Lynch, M. Paterson. Impossibility of Distributed Consensus with
one faulty process.
Journal of the Ass. for Computing Machinery, 32(2), 1985.

[Chandra et al. 1996] T. D. Chandra, S. Toueg, Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the Ass. For Computing Machinery, 43 (2), 1996.

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 58

