
May 7-10, 2019 – Thessaloniki, Greece

Prof. Cinzia Bernardeschi

Department of Information Engineering

University of Pisa, Italy

cinzia.bernardeschi@unipi.it

Secure Information Flow in Programs

Outline

• Background
Data leakage

Multi-level Security policy

Information flow in programs

Examples of illegal flow of information

• A static analysis approach for secure information flow checking

• A case study: secure flow in AUTOSAR models

• Conclusions

May 7-10, 2019 Secure Information Flow in Programs 2

Data leakage

• private data made publicly available

• interference between private and public data
(information on private data revealed indirectly)

• colluding applications for data leakage

May 7-10, 2019 Secure Information Flow in Programs 3

Information flow analysis

Private data made publicly available

May 7-10, 2019 Secure Information Flow in Programs 4

Application

Application authorized to access private data
Application authorized to access Internet

Control on the information sent on Internet!!!!!

Private

Data: DDD

Secure
information
flow is
violated

Limit of Firewall
and Access control
mechanisms

DDD

Internet

Interference between private and public data

May 7-10, 2019 Secure Information Flow in Programs 5

if Wallet > 1.000.000 then
«Hello!»

else «Goodbye!»

Application
Private

Data: Wallet

2.000.000
Wallet Hello!

Application
Private

Data: Wallet

1.000
Wallet Goodbye!

Internet

Internet

Secure
information
flow is
violated

Colluding applications for data leakage

May 7-10, 2019 Secure Information Flow in Programs 6

Alice

Bob

Charlie

Hi Bob, this is my
secret: ….

X

Alice: I do not
want Charlie
know my
secret!!!

Hi Charlie, this is
the
Alice secret:

Secure
information
flow is
violated

Colluding applets

May 7-10, 2019 Secure Information Flow in Programs 7

The Independent (British online newspaper)

Taken from: http://www.independent.co.uk/life-style/gadgets-and-
tech/news/android-app-steal-users-data-colluding-each-other-research-cartel-
information-a7663976.html

April 2017

Multi-level Security policy

May 7-10, 2019 Secure Information Flow in Programs 8

• a security policy that allows the classification of data and users
based on a system of hierarchical security levels

• Inputs and outputs are classified as either public (low sensitive) or private
(high sensitive). A program has the non-interference property if and only if
any sequence of low inputs will produce the same low outputs, regardless of
the high level inputs.

• the program responds in exactly the same manner on low outputs whether
or not high sensitive data are changed. The low user will not be able to
acquire any information about data and the activities (if any) of the high
user.

private

public

Multi-level Security policy

May 7-10, 2019 Secure Information Flow in Programs 9

private

public

Non-interference property
the security domain private is non-interfering with
domain public if no input by private can influence
subsequent outputs seen by public.

Secure information flow

property

Basics of information flow

Simple high-level language

Let x, y be variables

y := x;

variable y is assigned the value of x; there is an explicit flow x to y

May 7-10, 2019 Secure Information Flow in Programs 10

x y

5 9

x

y

5 5

explicit flow

The final value of y
reveals the value
of x

Basics of information flow

if (x = 0)
then y := 2;
else y := 1;

implicit flow from variable x to y, since y is assigned different values depending
on the value of the condition of the control instruction (variable x)

May 7-10, 2019 Secure Information Flow in Programs 11

implicit flow

x y

0 9

x y

0 2

5 9 5 1

Observing the final
value of y reveals
information on the
value of x

Information flow: implicit flow

May 7-10, 2019 Secure Information Flow in Programs 12

A conditional instruction in a program causes the beginning of an
implicit flow.

The implicit flow begins when the conditional instruction starts (we
have an opened implicit flow);

All the instructions in the scope of the if depend on the condition of
the if.

Secure Information Flow

May 7-10, 2019 Secure Information Flow in Programs 1313

• a program P

• a lattice of security levels L

• every variable of P is assigned a
security level in L

• A program P satisfies Secure
Information Flow if information at a
given security level does not flow to
lower levels

D. E. Denning, P. J. Denning. Certification of
programs for secure information flow.
Communications of the ACM, 20(7), 1977

Lattice
Let be given a set A and order relation
 on A.

(A, ) is a lattice if every pair of
elements in A has both a greatest
lower bound (glb) and a least upper
bound (lub).

private

public

Secure Information Flow

May 7-10, 2019 Secure Information Flow in Programs 14

L = {L, H }, with L  H L: public, H: private

Let x: H, y: L

• Explicit information flow
y := x;

• Implicit information flow
if (x = 0) then y:=2; else y:=1

the final value of each variable does not depend
on the initial value of variables with higher level

SIF:

H

L

Secure Information Flow violation

Let x: H, y: L

y := x;

May 7-10, 2019 Secure Information Flow in Programs 15

x y

5 9
x

y

5 5

explicit flow

Anyone can see
the value of the
high sensitive
variable x !!!

Secure Information Flow violation

Let x: H, y: L
if (x = 0) then y := 2;

else y := 1;

May 7-10, 2019 Secure Information Flow in Programs 16

implicit flow

x y

0 9

x y

0 2

5 9 5 1

Anyone can infer
information on
the value of the
high sensitive
variable x !!!

Secure Information Flow checking

May 7-10, 2019 Secure Information Flow in Programs 17

Typing approach: the security information of a variable belongs to its type, and
secure Information flow is checked by means of a type system. Hierarchy
between types. Types = H, L

Semantic-based approach: execute the program

Abstract interpretation approach: execute the program on abstract domains

An advantage of 3) with respect to those based on 1) is that it is semantics based and thus

keeps information on the dynamic behavior of programs, allowing to check more precisely the

desired properties.

y=x;

y=0;

rejected by 1)

if 0 then y=x; else skip;

rejected by 1) and by 3)

Abstract Interpretation of the Operational semantics

• Definition of a concrete instrumented semantics recording the
information flow (collecting semantics)

• Definition of an abstract semantics taking only what concerns
the information flow

• Proof of correctness of the abstraction

May 7-10, 2019 Secure Information Flow in Programs 18

Basics of Operational semantics

May 7-10, 2019 Secure Information Flow in Programs 19

P
c1:y:=7;
c2: if (x=0) y:=2; else y:=5;

m = [(x, 1) (y, 0)]

<c1;c2, [(x, 1) (y, 0)]>

<c2 , [(x, 1) (y,7)]>

< - , [(x, 1) (y, 5) ….]>

Transition system

constants V = {k, k’, ….}
memory m: var → V
c = com1; com2; …; comj

m: [(x, k) (y, k’) ….]
state: <c, m>

Q = set of states
→ ⊆ Q x Q transition systeme

e

ee

e

e

Operational semantics

May 7-10, 2019 Secure Information Flow in Programs 20

Our approach

• We attach a security level  to each data k.

• During the execution of a program,  indicates the least upper
bound of the security levels of the information flows, both explicit
and implicit, on which k depends.

• To deal with implicit flow, the concept of execution environment is
introduced

May 7-10, 2019 Secure Information Flow in Programs 21

Concrete Operational sematics

An instrumented semantics which:

• Handles values (k, ) annotated with a security level.
During the execution of a program,  indicates the least upper bound of
the security levels of the information flows, both explicit and implicit, on
which k depends.

• Executes instructions under a security environment . During the
execution,  represents the least upper bound of the security levels of the
open implicit flows.  is (possibly) upgraded when a branching instruction
begins and is (possibly) downgraded when all branches join.

C(P) : concrete transition system for a program P

May 7-10, 2019 Secure Information Flow in Programs 22

Concrete Operational sematics

May 7-10, 2019 Secure Information Flow in Programs 23

Security levels L = {L < H} , , ..
Constants V k, k’, ..
Concrete Values V = V  L (k, )
Concrete Memories M = var → V M, M’,..
Environments L , , ..

M : [(x, (k, )) (y, (k’, )) ….]
c = com1; com2; …; comj

state: <c, M>
where
 is the execution

environment

Q = set of states
→ ⊆ QxQ transition system

Concrete Operational sematics

May 7-10, 2019 Secure Information Flow in Programs 24

P
c1: y:=7;
c2: if (x=0) y:=2; else y:=5;

m = [(x, (1,H) (y, (0,L))]
<(c1;c2) L, [(x, (1,H)) (y, (0,L))]>

<(c2) L, [(x, (1,H)) (y, (7,L))]>

<(y:=5)H , [(x, (1,H)) (y, (7,L))]>

Concrete transition system C(P)Let x:H, y:L

initial execution environment: L

<() L, [(x, (1,H)) (y, (5,H))]>

Secure information flow violation

Concrete Operational sematics

May 7-10, 2019 Secure Information Flow in Programs 25

P
c1: x:=7;
c2: if (x=0) y:=2; else y:=5;

m = [(x, (1,H) (y, (0,L))]
<(c1;c2) L, [(x, (1,H)) (y, (0,L))]>

<(c2) L, [(x, (7,L)) (y, (0,L))]>

<(y:=5)L , [(x, (7,L)) (y, (0,L))]>

Concrete transition system C(P)Let x:H, y:L

Initial execution environment: L

<() L, [(x, (7,L)) (y, (5,L))]>

Concrete Operational sematics

May 7-10, 2019 Secure Information Flow in Programs 26

Abstract Operational semantics

• abstracts concrete values into their security level:  (k, ) = 
• uses the same rules of the concrete semantics on the abstract

domains

A(P) : abstract transition system for program P
- finite
- multiple path
- each path of C(P) is correctly abstracted onto a path of A(P)

May 7-10, 2019 Secure Information Flow in Programs 27

A program P has secure information flow if in each final
state of A(P), each x:  holds a value   

Abstract Operational sematics

May 7-10, 2019 Secure Information Flow in Programs 28

Abstract security levels L # = L , , ..
Abstract constants V# { · }

Abstract Values V# = L ()
Abstract Memories M# = var → V # M#, M#’,..
Environments L # , , ..

M# : [(x, ) (y, ) …]
c = com1; com2; …; comj

state: <c, M# >
where
 is the execution

environment

Q# = set of states
→ ⊆ Q# x Q# transition
system

Abstract Operational sematics

May 7-10, 2019 Secure Information Flow in Programs 29

P
c1: y:=7;
c2: if (x=0) y:=2; else y:=5;

M# = [(x, H) (y, L))]

Let x:H, y:L

Initial execution
environment: L

<(c1;c2) L, [(x, H) (y, L)]>

<(c2) L, [(x, L) (y, L)]>

<(y:=2)H , [(x, L) (y, L)]>

Abstract transition system A(P)

<() L, [(x, L) (y, H)]>

<(y:=5)H , [(x, L) (y, L)]>

#

<() L, [(x, L) (y, H)]>

#
#

#

Secure information flow violation

Stack-based low-level languages

Main problems:

- How data flow through the operand stacks

- Scope of the implicit flow computed using the control flow graph and
the notion of immediate postdominator (ipd)- the first instruction
common to all the branches

May 7-10, 2019 Secure Information Flow in Programs 30

Java Bytecode

op pop two operands off the stack, perform the operation, and push the result
onto the stack

pop discard the top value from the stack
push k push the constant k onto the stack
load x push the value of variable x onto the stack
store x pop off the stack and store the value into x
if j pop off the stack and jump to j if non-zero
goto j jump to j
jsr j at address p, jump to address j and push p+1 onto the operand stack
ret x jump to the address stored in x
halt stop

May 7-10, 2019 Secure Information Flow in Programs 31

Standard Operational semantics

May 7-10, 2019 Secure Information Flow in Programs 32

x: 5
y: 1 state: <program counter, memory, operand stack>

Concrete Operational semantics

May 7-10, 2019 Secure Information Flow in Programs 33

x: (5,L) ipd: immediate post-dominator
y: (1,H) ipd(1) = 5

state: <env, program counter, memory, operand stack, ipd stack>

Abstract Operational semantics

May 7-10, 2019 Secure Information Flow in Programs 34

Information Flow in programs

• Information flow occurs through

• simple variables, input/output files

• array, structures, objects

• pointers, references

• global variables

• function calls
(parameters by value, parameters by reference, return)

May 7-10, 2019 Secure Information Flow in Programs 35

Function invocations

May 7-10, 2019 Secure Information Flow in Programs 36

If a function call is executed in the scope of a conditional instruction, the
function is executed under the implicit flow.

if (y < 0)
then f();

Function f() is invoked depending on the value of variable y.

Instructions of f() are executed under the implicit flow of the condition of the
if statement

Function invocation

May 7-10, 2019 Secure Information Flow in Programs 37

Method invocation and shared objects:

the security context

Data propagation caused by actual parameter and return of a function

type fun (type x1, …, type xn) {
……..

return expr;
}

k = fun(a1, …, ak)

The security context

May 7-10, 2019 Secure Information Flow in Programs 38

Method invocation and shared objects:

the security context

.

Secure information flow studied by using a security context

• For each global variable: the highest level of data stored

var: 

• For each function: the highest level of input/output parameters,
return and the security environment of each invocation

fun(1, …, n): , ’

return calling environment

A case study: secure flow in AUTOSAR models

May 7-10, 2019 Redundancy in Fault Tolerant Computing 39

Over 80 different embedded processors,
interconnected with each other.

Key ECUs (Electronic Control Unit):
• Engine Control Modul (ECM)
• Electronic Brake Control Module (EBCM)
• Transmission Control Module (TCM)
• Vehicle Vision System (VVS)
• Navigation Control Module (NCM)
• …

Modern automotive electronics systems are real-time embedded system running over networked
Electronic Control Units (ECUs) interconnected by wired networks such as the Controller
AreaNetwork (CAN) or Ethernet.

A case study: secure flow in AUTOSAR models

Recent research has shown that it is possible for external intruders to
compromise the proper operation of safety functions getting access to
the infotainment system.

May 7-10, 2019 Secure Information Flow in Programs 40

Low criticality
Infotainment system, ..

Automotive systems: Mixed-criticality safety critical systems

High criticality
Braking system, Throttle
system, …

Low security level data must not compromise
the computation of high criticality functions

A case study: secure flow in AUTOSAR models

AUTomotive Open Systems ARchitecture: open industry standard for automotive software
architectures, spanning all levels, from device drivers, to operating system, communication
abstraction layers and the specification of application-level components

May 7-10, 2019 Secure Information Flow in Programs 41

Mixed-criticality

May 7-10, 2019 Secure Information Flow in Programs 42

Autonomous drivingPath Planning, Lane Keeping and
Lane Departure Warning are
active safety functions that
receive such data and send
commands to actuators
(steering, throttle and brakes).

AUTOSAR models are extended with security annotations.

- Throttle component is
assigned the high trust level;

- Throttle request link is
assigned the integrity security
requirement.

Mixed-criticality

May 7-10, 2019 Secure Information Flow in Programs 43

Data received by Throttle on the link Throttle_request must satisfy
high trust level and integrity security requirement

The point is that:
the way in which security annotations are specified must consider the causal
dependencies between data that traverse the model.

If Throttle requires integrity on its input data sent by Path Planning,
then integrity must be guaranteed also along the path from the data originator
(GPS) to Path Planning (the Vehicle_position link),
otherwise, the security constraint cannot be satisfied and the set of annotations
is not correct.

Similarly, Path Planning and GPS must have high trust level.

AUTOSAR security annotations

May 7-10, 2019 Secure Information Flow in Programs 44

The simplest solution assigns integrity/high to all
links/components directly or indirectly connected

to Throttle/Throttle_request.

In order to obtain a more efficient solution,
information flow theory can be exploited to compute

the dependency between data

AUTOSAR architecture

May 7-10, 2019 Secure Information Flow in Programs 45

A fundamental concept of AUTOSAR is the separation between:

• application and

• infrastructure.

An application in AUTOSAR consists of Software Components interconnected by connectors

Runnables

May 7-10, 2019 Secure Information Flow in Programs 46

C

• Runnables define the behavior of components

• Runnables are entry points to code-fragments and are
(indirectly) a subject for scheduling by the operating system.

AUTOSAR runnable interaction

Runnable interaction

Global variables

Ports define interaction points between (runnables belonging to)
different SWCs.

For interactions among runnables belonging to the same component

Inter Runnable Variables (IRVs)

The RTE provides protection mechanisms for IRVs (as opposed to
global variables)

May 7-10, 2019 Secure Information Flow in Programs 47

AUTOSAR security policy

• Trust level of a software component
software components with high trust level are executed on secure and
reliable hardware

-we assume two trust levels: high, low

• Security requirement of a communication link
the level of security that data sent on links must satisfy to protect in-vehicle
communications from cyber threats such as eavesdropping, integrity and
spoofing.

The proposed security extensions are:
confidentiality and integrity of the exchanged information

-the security requirement can assume one of the following values:
none, conf, integr, both.

May 7-10, 2019 Secure Information Flow in Programs 48

AUTOSAR extensions in Rhapsody

May 7-10, 2019 Secure Information Flow in Programs 49

AUTOSAR Secure Flow analysis

May 7-10, 2019 Secure Information Flow in Programs 50

An AUTOSAR model satisfies data secure flow if data sent on a link at run-time,
always have a security requirement and a trust level not lower than those
specified by the security annotations.

For each link, we compute:

- the lowest trust level of data sent on the link

- the lowest security requirement of data sent on the link

AUTOSAR Secure Flow analysis

May 7-10, 2019 Secure Information Flow in Programs 51

Abstract interpretation

Deps(p); set of ports
on which data sent
at port p depends

Information flow analysis

Lattice of security levels

glb: greatest lower bound between levels
lub: least upper bound between levels

The abstract interpreter: EXEC

Each runnable is executed starting from the abstract
memory and the context file, and applying the abstract rules.

All branches of conditional/iterative instructions are
always executed, due to the loss of real data in the
abstract semantics

May 7-10, 2019 Secure Information Flow in Programs 52

Abstract semantics

A PORT is a variable.

RTE function for reading from or writing onto ports are mapped to
read and write of the port variable.
For simplicity, the name of the port variable is equal to the name
of the port.

RTE functions that invoke remote services trigger the runnable that
implements the service. The function implementing the service is
invoked

May 7-10, 2019 Secure Information Flow in Programs 53

Abstract semantics

A POINTER is assumed to be simple variable, that maintains the
dependencies of the pointer, plus the dependencies of the pointed
data in the abstract execution.

An ARRAY is assumed to be a simple variable, that maintains the whole
dependencies of each element in the array.

A STRUCTURED VARIABLE is mapped to a set of simple variables, one
for each member (we use the notation, as usual). If we have a
variable data that is a structure with two fields a and b, we map such
variable into two simple variables, data:a and data:b, respectively.

May 7-10, 2019 Secure Information Flow in Programs 54

Iterative analysis

May 7-10, 2019 Secure Information Flow in Programs 55

Iterative analysis until fixpoint is reached

A: security context
R: set of all runnables

An example: Front Light Manager

May 7-10, 2019 Secure Information Flow in Programs 56

Safety Use Case Example, release 4.2.2. http://www.autosar.org/fileadmin/files/
releases/4-2/software-architecture/safety-and security/auxiliary/
AUTOSAR_EXP_SafetyUseCase.pdf

Front Light Manager

May 7-10, 2019 Secure Information Flow in Programs 57

Security annotations: Daytime_running_lights : High FLM_TO_DRL : integr

Data secure flow
is not satisfied

data sent on the
link FLM_TO_DRL
are not protected
along the path
from the sources to
the destination

Simplest solution: assignment of high trust level to Front_light_manager, Headlight_request,
Daytime_light_request, Light_switch, Ignition_key, Power_supply. Similarly for links.

An example of component: Front_light_manager

May 7-10, 2019 Secure Information Flow in Programs 58

Information for generating the context

May 7-10, 2019 Secure Information Flow in Programs 59

% global variables
int HR_voltage_threshold1;
int HR_voltage_threshold2;
int DLR_voltage_threshold1;
...
% inter runnable variables
int16_t FLM_IRV1;
int16_t FLM_IRV2;
int16_t DLR_IRV1;
...

% ports
int in1;
int in2;
...
int out1;
int out2;
...
% functions
void flm_Runnable1() 0;
void flm_Runnable2() 0;
.....
% links
out2 -> in7;
out1 -> in6;

Using Deps to annotate the model

May 7-10, 2019 Secure Information Flow in Programs 60

the output port of Front
light manager
connected to the
Daytime_running_lights
(out5 in our
implementation) does
not depend on the
input port connected to
the Headlight request
component (in6 in our
implementation) Model satisfies Secure flow property

Conclusions

Abstract interpretation allows automated verification of secure
information flow in programs

Intermediate level between typing approaches and sematics-based
approaches

Analysis can be improved to reduce the number of false positive

Other works
• Secure information flow in Java cards applications
• Secure information flow in concurrent programs

May 7-10, 2019 Secure Information Flow in Programs 61

Conclusions

Future work

• Privacy of data in Android smart phones

• Malicious Colluding apps

• Privacy of data in medical app

May 7-10, 2019 Secure Information Flow in Programs 62

References

R. Barbuti, C. Bernardeschi, N. De Francesco, Abstract interpretation of operational semantics for
secure information flow, Information Processing Letters, num. 2, vol. 83, pp. 101-108, 2002.

R. Barbuti, C. Bernardeschi, N. De Francesco, Analyzing Information Flow Properties in Assembly
Code by Abstract Interpretation, Computer Journal, num. 1, vol. 47, pp. 25-45, 2004.

Avvenuti M, Bernardeschi C, De Francesco N, Masci P. JCSI: A Tool for Checking Secure Information
Flow in Java Card Applications . The Journal of Systems and Software, vol. 85, p. 2479-2493, 2012.

Cinzia Bernardeschi, Marco Di Natale, Gianluca Dini, Maurizio Palmieri: Verifying data secure flow in
AUTOSAR models. J. Computer Virology and Hacking Techniques 14(4): 269-289, 2018.

May 7-10, 2019 Secure Information Flow in Programs 63

