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* Reliability and Availability modelling
* Exponential failure law for the hardware

e Combinatorial models
e Series/Parallel
e Fault Trees

e State based models: Markovian models
e Discrete time Markov chain
e Continuus time Markov chain
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Quantitative evaluation of Dependability
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Faults are the cause of errors and failures. Does the arrival time of faults
fit a probability distribution?
If so, what are the parameters of that distribution?

Consider the time to failure of a system or component.
It is not exactly predictable - random variable.

: 1

probability theory

Evaluation of Failure rate, Mean Time To Failure (MTTF), Mean Time To Repair (MTTR),
Reliability (R(t)), Availability (A(t)) function
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Definition of dependability attributes

Reliability - R(t)
conditional probability that the system performs correctly
throughout the interval of time [tO, t], given that the system was
performing correctly at the instant of time tO

Availability - A(t)
the probability that the system is operating correctly and is
available to perform its functions at the instant of time t

UNIVERSITA DI PISA
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RO0)=1 R(»)=0

Reliability R(t)

Unreliability Q(t) Q(t) = 1-R(t)
Failure probability density function f(t)
the failure density function f(t) at time t is the f(t) = daft) — 'ﬂ(l)_
number of failures in At dt dt
Failure rate function A(t)
the failure rate A(t) at time t is defined by the AMt) = f(t) _-dR(t) 1
number of failures during At in relation to ~R(t) dt R(t)

the number of correct components at time t
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Hardware Reliability

A(t) is a function of time
(bathtub-shaped curve )

AMt) | infant Normal | Wear-out
o | mortality lifetime | period
% |\ period :
A(t) constant>0 s i
in the operational phase % E
|
:

- - ——————— —————— - —

Constant failure rate A A .
(usually expressed in number of failures for million hours) Approximately 5to 25

20 weeks years
A =1/200 one failure every 2000 hours Time

Taken from: [Siewiorek et al.1998]

Early life phase: there is a higher failure rate due to the failures of weaker
components (result from defetct or stress introduced in the manufacturing
process). Wear-out phase: time and use cause the failure rate to increase.
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Hardware Reliability
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Constant failure rate
f(t 3 1
7\.(’[) =L () dR(t) Exponential Decrease

M) s —

R(t) dt R(t)

Reliability function

R(t) = e R(t)

Probability density function

time

f(t) = e ™M
the exponential relation between reliability and time is
known as exponential failure law
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Time to failure of a component
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* Time to failure of a component can be modeled by a random variable X
Fy (t) = P[X<=t] (cumulative distribution function)

Fy (t) unreliability of the component at time t

e Reliability of the component at time t
R(t)=P[X>t]=1-P[X<=t] =1-F(t)

R(t) is the probability of not observing any failure before time t
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Time to failure of a component

Mean time to failure (MTTF)

is the expected time that a system will operate before the
first failure occurs (e.g., 2000 hours)

(00] (00] B 1

MTTF = j tf (£)dt =j the Mdt= —

0 0 7\‘

A =1/2000 0.0005 per hour
MTTF = 2000 time to the first failure 2000 hours

Failure in time (FIT)
measure of failure rate in 109 device hours

1 FIT means 1 failurein 109 device hours

UNIVERSITA DI PISA
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Failure Rate
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- Handbooks of failure rate data for various components are available from
government and commercial sources.

- Reliability Data Sheet of product

Commercially available databases

- Military Handbook MIL-HDBK-217F

- Telcordia,

- PRISM User’s Manual,

- International Eletrotechnical Commission (IEC) Standard 61508
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Distribution model for permanent faults
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MIL-HBDK-217 (Reliability Prediction of Electronic Equipment -Department of Defence)
Statistics on electronic components failures studied since 1965 (periodically updated).
Chip failure rates in the range 0.01-1.0 per million hours

A =T To(CoTr Ty + CyTg)

T, = learning factor, based on the maturity of the fabrication process

To = quality factor, based on incoming screening of components

T; = temperature factor, based on the ambient operating temperature
and the type of semiconductor process

T¢ = environmental factor, based on the operating environment

T, = voltage stress derating factor for CMOS devices

C,, C, = complexity factors (based on number of gates, or bits for memories and number of pins)
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Model-based evaluation of dependability

a model is an abstraction of the system that highlights the
important features for the objective of the study

/

/Methodologies that employ
combinatorial models:
Reliability Block Diagrams,
Fault tree, ....

\_

~

/

\
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-

-

State space representation
methodologies:

Markov chains, Petri-nets,
SANSs, ...
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Combinatorial models
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Combinatorial models
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offer simple and intuitive methods of the construction and solutions of models

Assumptions:

independent components

each component is associated a failure rate

model construction is based on the structure of the systems (series/parallel
connections of components)

inadequate to deal with systems that exhibits complex dependencies among
components and repairable systems
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Combinatorial models

Series: all components must be operational (a)

R;(¢t) reliability of module ¢ at time ¢

Rsem’es (t) — H?:lRi (t) *— (C1 C2

UNIVERSITA DI PISA

where II is the product
(@)

If each individual component i satisfies the exponential failure law
with constant failure rate A;:

Rseries(t) = B_Alt.._e_}‘ﬂ* — B—ELI Mt
Unreliability function

Qsem‘es(t) =1- Rseries(t) =1- H?lei(t) =1- H?zl[1 - Q%(t)]

C3
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If the system does not contain any redundancy, that is any component
must function properly for the system to work, and if component

failures are independent, then

- the system reliability is the product of the component reliability, and
it is exponential

- the failure rate of the system is the sum of the failure rates of the
individual components
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Combinatorial models
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Parallel: at least one of the components must be operational (b)

Qparallel (t) = H?:th’ (t)

Rparatiet(t) = 1 — Qporaiia(t) = 1 — 7, Qi(t) = 1 — I, [1 — Ri(2)] <1

Note the duality between (} and R in the two cases . C2 ®
C3

M-of-N systems - a generalisation of parallel model (b)

at least M modules of N are required to function

Assume N identical modules and M of those are required for the system
to function properly, the expression for reliability of M-of-N substems
can be written as:

N N!
Rar—op-n(t) = T vomBY () (1 — R(t)) ( i ) = (Nl

i number of faulty components Binomial coefficient
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Combinatorial models

If the system contain redundancy, that is a subset of components must
function properly for the system to work, and if component failures are

independent, then

- the system reliability is the reliability of a series/parallel
combinatorial model
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Combinatorial models
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Series/Parallel models

— mem —

O—— mem O
Multiprocessor with 2 processors and proc
three shared memories

An example:

proc

— mem —
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TMR versus Simplex system

Simplex system . , R . .....:...08
A failure rate of module m i ”
R, =e™M '
—_ —_ 08
Rsimplex =€ M
0.7
TMR system 206
Ry(t) =1 g 05
Riyr = Z 1[ 3] (e )3 (1- @ M) g
i=0 | > 04t
— (e At )3 + 3(e At )2 (1_ e —MI) 03
0.2
Rrvr > Ry, if R, > 0.5 = o}
m2 v |—e g et - - ' ' 1 . . .
0 0.1 0.2z 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Module Reliability
m3
2 of 3 Taken from: [Siewiorek et al.1998]
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R =e™

simplex 1
IVITTI:simplex :T
TMR system

RTMR - 36 =2t _2e =3t

_ 3 2 5 1
MTTFR= —r -3 = — <
TMR worse than a simplex system

but

TMR has a higher reliability for the first 6.000 hours

TMR operates at or above 0.8 reliability
66 percent longer than the simplex system

S shape curve is typical of redundant systems: above

the knee the redundant system has components that tolerate
failures; after the knee the system has exhausted redundancy

Reliability
= = bt =) o =] = (=) -
N~ w = wn o B > ©° o

e
Py

o
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R O T Mission reliability = 0.8

Nonredundant reliability function

Lo
B
= = ' -------- TMR processor, SEC memory
e
| Mission time improvement = MT'[.8)/MT(.8]
i = 2212/1334
P = 1.66
' .
||
||

ll-—{—' MT 8] = 1334 hrs ...

| Fmrie = 2zizbes e

l ll 1 1 1 1 | —

2000 4000 6000 8000 10,000 12,000 14,000
Hours

Taken from: [Siewiorek et al.1998]
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Hybrid redundancy with TMR

Symplex system

A failure rate m mi
Rm =€ M PS m2
— A -\t
Rsys =€
mn

Hybrid system
n=N+S total number of components
S number of spares

LetN=3 Repy(t) =1
A failure rate of on line comp
) failure rate of spare comp

The first system failure occurs if 1) all the
modules fail; 2) all but one modules fail

Riybria = Rspv(1- Quybria)

Ruyoria = (L= ((1-Rp)" + N(Rp)(A-Ry)™)

1
| 1 I Switch z
Select 3 >

7'y N

—| Disagreement
Detector <

N+3

Hybrid Redundancy

Taken from: [Siewiorek et al.1998]

RHybrid(n+1) - RHybrid(n) >0

adding modules increases
the system reliability under the
assumption Rgp, independent of n

UNIVERSITA DI PISA
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Hybrid redundancy with TMR

1.00

S is the number of spares
Rspy =1

0.80

0.60
3
0.40

0.20

0.00
0.00 : 20 040 060 080 1.00
001 020 040 060 080 1.00 001 0 .

m

Rom
System with standby failure rate equal to
on-line failure rate

TMR with one spare is more reliable TMR v_vith one spare i_s more reliable
than simplex system if R,>0.23 than simplex system if R,>0.17

System with standby failure rate equal to
10% of on line failure rate

Taken from: [Siewiorek et al.1998]
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Fault Trees '

Consider the combination of events that may lead to an undesirable
situation of the system

Describe the scenarios of occurrence of events at abstract level
Hierarchy of levels of events linked by logical operators

The analysis of the fault tree evaluates the probability of occurrence of the
root event, in terms of the status of the leaves (faulty/non faulty)

Applicable both at designh phase and operational phase
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Fault Trees
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. GO «—— TOPEVENT
Describes the Top Event

(status of the system)

in terms of the status | L

(faulty/non faulty) of the Basic G2
events (system’s components) @ q

G3 <« GATE SYMBOL

@] ® & : B evenrsnasor
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Fault Trees
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| AND gate Components are leaves in the tree

True if all the components

are true (fault
(faul) Component faulty corresponds to logical
|

value true, otherwise false
OR gate

True if at least one .
i | of the components IS true (fau|ty) NOdeS N the tree are b00|en AN D, OR
and k of N gates

K of N gate
A True if at least k of the components The system fails if the root is true
are true (two or three

components) (faulty)
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Fault Trees

Example

Multiprocessor with 2
processors and three shared
memories

-> the computer fails if all the
memories fail or all the
processors fail

Top event

UNIVERSITA DI PISA
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Conditional Fault Trees
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Example

Multiprocessor with 2 processors and three memories:
M1 private memory of P1, M2 private memory of P2, M3 shared memory.

failure

T°:y:;f:t * Assume every process has its own private memory
plus a shared memory

AND * Operational condition: at least one processor is
active and can access to its private or shared memory

repeat instruction: given a component C whether or not
AND the component is input to more than one gate, the
1 M component is unique
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Conditional Fault Trees

If the same component appears more than once in a fault tree, the
independent failure assumption. We use conditioned fault tree is violated

If a component C appears multiple times in the FT
Q,(t) = Q)¢ Faits(t) Qc(t) + Qg not raitst) (1-Qc(t))

where
S| C Fails is the system given that C fails

and
S| C not Fails is the system given that C has not failed

May 7-10, 2019 Quantitative evaluation of dependability 29



/)
N =
° . S ’J&'\!,‘
%= =%H)S
Minimal cut sets
o 0
UNIVERSITA DI PISA

1. A cut is defined as a set of elementary events that, according to the logic
expressed by the FT, leads to the occurrence of the root event.

2. To estimate the probability of the root event,
ToP compute the probability of occurrence for each

of the cuts and combine these probabilities
é) @ — @ Cut Sets

Top = {1}, {2}, {G1}, {5} ={1}, {2}, {3, 4}, {5}
@q Minimal Cut Sets

65 é‘) Top = {1}, {2}, {3, 4}, {5}
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Q;(t) = probability that all components in the
” ‘ minimal cut set Si are faulty
é é) G1 é) Q. (t) = q4(t) g,(t) ... q,,(t) withSi={1, 2, ..., ni }

ﬁ@ The numerical solution of the FT is performed by
@5 %‘) computing the probability of occurrence for each of
the cuts, and by combining those probabilities to
estimate the probability of the root event

Minimal Cut Sets
Top = {1}, {2}, {3, 4}, {5}
Assumption: independent faults of the components
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Minimal Cut Sets
TOP Top = {1}1 {2} ’ {31 4} ’ {5}

Si={1} S,=(2) $=3,4) Si=1{5)

Quop (1) = Qgy (1) + ... + Qg (1)

n number of mininal cut sets
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Fault Trees
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|dentification of critical path of the system
- Definition of the Top event
- Minimal cut set (minimal set of events that leads to the top event)

Analysis:
- Failure probability of Basic events
- Failure probability of minimal cut sets
- Failure probability of Top event
- Single point of failure of the system: minimal cuts with a single event
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State-based models
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State-based models

Characterize the state of the system at time t:

- identification of system states
- identification of transitions that govern the changes of state within a system

Each state represents a distinct combination of failed and working modules
The system goes from state to state as modules fail and repair

The state transitions are characterized by the probability of failure
and the probability of repair
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graph where nodes are all the possible states and arcs are the
possible transitions between states (labeled with a probability
function)

1-p; P

'@ 0’ Reliability model

Availability model
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Markov models

UNIVERSITA DI PISA

Markov models (a special type of random process) :

Basic assumption: the system behavior at any time instant
depends only on the current state (independent of past values)

Main points:
- systems with arbitrary structures and complex dependencies

- assumption of independent failures no longer necessary

- can be used for both reliability and availability modeling
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Markov process
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In a general random process {X;}, the value of the random variable X,,, may depend
on the values of the previous random variables

Markov process

the state of a process at time t+1 depends only on the
state at time t, and is independent on any state before t

P{Xt+1 — j|Xﬂ = Koy, Xpo1 = k1, Xy = ﬁ} — P{Xt+1 — J"Xt — ﬁ}

Markov property: “the current state is enough to determine
the future state”
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A Markov chain is a Markov process X with discrete state space S

A Markov chain is homogeneous if it has steady-state transition probabilities
P{X=j|X, =i} =P{X,=j|Xo=i} Vt >0

The probability of transition from state i to state j does not
depend by the time. This probability is called p;

pij = P{X1 = j|Xo =1}

We consider only homogeneous Markov chains
- discrete-time Markov chains (DTMC) / Continuous-time Markov chains (CTMC)

May 7-10, 2019 Quantitative evaluation of dependability 39



Transition probability matrix
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If a Markov process is finite-state, we can define the transition probability matrix P (nxn)

PP
P= pij = P{Xi = j|Xo =i}

— —

pij = probability of moving from state i to state j in one step

row i of matrix P:
probability of make a transition starting from state i

column j of matrix P:
probability of making a transition from any state to state |
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Discrete-time Markov chain (DTMC)
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State space distribution

State occupancy vector at time t () = [my(t), mq(t), mo(t) , ...]
Probability that the Markov process

is in state i at time-step t mi(t) = P{X, =i}

Initial state space distribution m(0) = (m,(0), ..., 7,(0))

A single step forward (1) = (0) P

State occupancy vector at time t n(t) = m(0) Pt

System evolution in a finite number of steps computed starting from the initial state
distribution and the transition probability matrix
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Limiting behaviour
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A Markov process can be specified in terms of the state occupancy probability
vector p and a transition probability matrix P

n(t) = w(0) Pt

The limiting behaviour of a DTMC (steady-state behaviour)

lim 7t(t)

t—00

The limiting behaviour of a DTMC depends on the characteristics of its
states. Sometimes the solution is simple
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Time-average state space distribution
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12
: 10 1
For periodic Markov chains lim 7t(t) b= 2{ 10 J
t—>00
doesn’t exist (caused by the probability of the periodic state) )

Compute the time-average state space distribution, called m* @

@ 1(0) =(1,0)

t
¥ _lim i=1 state i is periodic with period d=2

tooo t

n(0) = (1,0)
(1) =n(0) P  =(1)=(0,1)
n(2)==n(1) P =(2)=(1,0)
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Simplex system
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{X} t=0,1,2,.... S={0,1}
State O : working

- all state transitions occur State 1: failed 1-py
at fixed intervals 'a e
o Failure probability
- probabilities assigned to

each transition

- The probability of state next
transition depends only on 0 1 tate
the current state 1- ]
0 1-p Pr - pij = probability of a transition
P = 0 1 fro.r.n state i to state j
1 - pij >=0
current — - the sum of each row must be one
state
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Simplex system with repair

State O : working
State 1: failed

o Failure probability
b, Repair probability

next
0 state
1-p; Ps
0
P —_ pr 1- pr
1 I _
current
state
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Simplex system with repair

Initial state: working [po(0), p,(0)] =[1, O]

09 017
[00(1), p1(1)] = [1,01| g5 g5 |=10:9 0.1]

State | can be made an trapping state with pjj =1
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Simplex system with repair

probability of being in a state after 1 time-step

- 1-p
P

[Po(n), p1(n)] = [py(n-1), p1(n-1)]

probability of being in a state after n time-steps

- —n
1-p; Ps

pr 1_ pr

[Po(n), P1(n)] = [py(0), p;(0)]
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Continuous-time Markov model
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e state transitions occur at random intervals

* transition rates assigned to each transition

Markov property assumption

the length of time already spent in a state does not influence either the probability
distribution of the next state or the probability distribution of remaining time in the
same state before the next transition

These assumptions imply that the waiting time spent in any one state is exponentially distributed

Thus the Markov model naturally fits with the standard assumptions that failure rates are constant,
leading to exponential distribution of interarrivals of failures
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state 0: working
state 1: failed AAL

A failure rate
L repair rate

1At

AAt, pAt—State transition probabilities
Continuous time A, p—State transition rates

Taken from: [Siewiorek et al.1998]
Transition matrix P: transition rate

- o | b= 1-AAt AAt
Probability of being in state O or 1 at time t+At | nAt 1-—pAt
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Simplex system with repair
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[Po(t+At), py(t+At)] = [po(t), p4(t)] 1;2? t 1_%£Atft
1

probability of being in
state O at time t+At

Performing multiplication, rearranging and dividing by At, taking the limit
as At approaches to O:

dr:jot(t) = -Apy(t) + up4(t)

dpd—lt(t) = APo(t) - pp,(t)
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Simplex system with repair
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[, R - oy, pen [ ]

T matrix

Continuous time Markov model graph

A
The change in state 0 is minus the flow out of state O times the probability

o of being in state 0 at time t, plus the flow into state O from state 1 times
0 the probability of being in state 1.

"

The set of equations can be written by inspection of a transition diagram
without self-loops and At's

A—Failure rate
j~—Repair rate

Taken from: [Siewiorek et al.1998]
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Simplex system with repair
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polt) = - !: = £ : . o= (A ut - A(t)

= A 33 A =(A+p)t
P ) i Al TR 8 2

Taken from: [Siewiorek et al.1998]

Po(t) probability that the system is in the operational state at time t, availability
at time t

The availability consists of a steady-state term and an exponential decaying
transient term

May 7-10, 2019 Quantitative evaluation of dependability 52



Availability as a function of time

Availability

Steady state value

e ——————— ——————— —— ——

UNIVERSITA DI PISA

Nonredundant system }\‘ — O . OO 1

MTTE = 1,000 h _
MTTR = 10 hours w - 0.1

The steady-state value is
reached in a very short time

Taken from: [Siewiorek et al.1998]

Time (hours)
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Continuous-time Markov models: Reliability
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Single system without repair
failed state as trapping state T = [—k k]

A = failure rate

AAt = state transition probability
Continuous time Markov model graph

- DD O——0

We can prove that: [

Po(t) =e ™ J Reliability

[ p,(t) =1-e~™ J Unreliability
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TMR system with repair
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Rates: A and n

Identification of states:
3 processors working, O failed
2 processors working, 1 failed
1 processor working, 2 failed

p(0) =[1,0,0]

Reliability R(t) = 1- p2(t)

To |3 3 o
- o —2A-u 2A
0 0 0 SA + o+ VAL + 10Ap + p?

R(t) = exp (=(1/2)EN + . — VAZ + 10Ap + pdt)

2VAZ + 10 + p2

C5A 4 = VAT + 10 +
2VAZ + 10Ap + 2

exp (~(12)6N + p + VAZ + 10hp + pd)t)
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Comparison with nonredundant system and TMR without repair
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> A
= A
2 N,
:E 05 W,
T %,
= ""h'._

04+ \\\-—-— MNonredundant system

N
\
0.3- \x
S
i Module MTTF = 1,000 hours T
0.2 MTTR = 10 hours h‘-.\
“‘1 B .--“- -‘--- 1 .
“ 1 L I | i 1 1 |
250 500 750 1,000 1,250 1,500 1,750 2,000

Taken from: [Siewiorek et al.1998]

Time (howrs)
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A, B processors Rates: A1, A2 and ul, u2

Identification of states:
A, B working
A working, B failed
B working, A failed

Availability

A(t) = py(t) + py(t) + p,lt)

A, B failed A(t) = 1- ps(t)
Rates: A1=A2 and ul=p2 L E
p(0) =[1, 0, O] o.o.o Availability
_ __ZX 2n 0 B Taken from: [Siewiorek et al.1998]
T= L —A-p A A(t) = 1- pz(t)
L
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Dual processor system with repair
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A+ pl 4\% exp (—(1IGN + 2u) + VAL + 4apt)
Alt) = 55— - ,
2N\ + 2 + A° + 4Ap + (BN + 2u) V)\!+4Ap.

4\ exp (—(12)IGN + 2p) = VA% + 4Ault)
A+ 4 — BN + 2p) VAT + 4\

PR .Y Steady state value

Taken from: [Siewiorek et al.1998]

L . N steady-state availabitity
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Reliability model

making state 2 a trapping state
p(0)=[1,0, 0]

A
- n —A-p A
ool S

Reliability R(t) =1-p,(t)  R(t)=py(t) + p4(t)

A\ exp (=(1/2)(B\ + p — VAT + 6Ap + p.z)t)
Gh 4+ 0) VAT + 6ap + p? — A2 — 6ap — p

_ 4\ exp (—(12)BN + p + VAT + 6Ap + p)t)

R(t) =

UNIVERSITA DI PISA

G+ ) VAT + oA + p2 + A2 + 6Ap + p?

Taken from: [Siewiorek et al.1998]
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TMR system with repair

Rates: A and u
Reliability R(t) = 1- p2(t

Identification of states: y R(t) p2(t)

3 processors working, O failed

2 processors working, 1 failed
1 processor working, 2 failed

p(0) =[1,0,0]
To |3 om0
B u o —2A-p 2A
0 0 0

- — 5N+ g+ VAT + 10Ap + p
R() = 2 2
2VAT + 10Ak + 1

_5k+p.—\/5\1+10)‘p.+—p.2
2VAZ + 10Ap + 2

exp (—(12)EN + p — VAZ + 10Ap + pdt)

exp (—(1/2)(5A + p + VAT + TO A + p.’)t)

Taken from: [Siewiorek et al.1998]
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Comparison with nonredundant system and TMR without
repair
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> Y, 1
= N
g N,
'E 05 ™,
1 "l-{"_{"‘
= \\

04+ ‘-H.._.-.- Nonredundant system

N
~
0.3- \.\
“a
Module MTTF = 1,000 hours S
021 MTTR = 10 howrs ""-.H
01 T

1 [N i 1 § [ 1 ]
0 50 500 750 L000 1,250 1,500 1750 2,000

Time {(hours)
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Conclusions
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Quantitative dependability evaluation

- guiding design decisions

- assessing systems as built /Th Il model i \

- mandatory for safety critical systems € overall modet s
decoupled in simpler and

Model construction techniques more tractable
- scalability challenge submodels, and the
- decomposition/aggregation approaches measures obtained from
» the solution of the sub-

models are then

High-level modelling formalisms
aggregated to compute

Stochastic petri Nets

Stochastic Activity networks those concerning the
overall model
Tools: Sharpe, SPNP, Mobius, etc ..... \ /
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