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Quantitative evaluation of dependability



Outline

• Reliability and Availability modelling 

• Exponential failure law for the hardware 

• Combinatorial models
• Series/Parallel

• Fault Trees

• State based models: Markovian models
• Discrete time Markov chain

• Continuus time Markov chain
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Quantitative evaluation of Dependability

Faults are the cause of errors and failures. Does  the arrival time of faults 
fit a probability distribution? 
If so, what are the parameters of that distribution?

Consider the time to failure of a system or component. 
It is not exactly predictable - random variable.
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Evaluation of Failure rate,  Mean Time To Failure (MTTF), Mean Time To Repair (MTTR),   
Reliability (R(t)),  Availability (A(t)) function

probability theory



Definition of dependability attributes 

May 7-10, 2019 Quantitative evaluation of dependability 4

Reliability - R(t)
conditional probability that the system performs correctly
throughout the interval of time [t0, t], given that the system was 
performing correctly at the instant of time t0 

Availability - A(t) 
the probability that the system is operating correctly and is
available to perform its functions at the instant of time t



Definitions
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f(t) =
dt

dQ(t)
dt

- dR(t)
=

Failure rate function λ(t) 
the failure rate λ(t) at time t is defined by the 
number of failures during Δt in relation to 
the number of correct components at time t

l(t) =
R(t)

f(t)
=

dt
- dR(t)

R(t)

1

Failure probability density function f(t)
the failure density function f(t) at time t  is the 
number of failures in Dt

Reliability R(t)

Unreliability Q(t) Q(t) = 1 – R(t)



Hardware Reliability

May 7-10, 2019 Quantitative evaluation of dependability 6

l(t)

l

Taken from: [Siewiorek et al.1998]

l(t) constant > 0 
in the operational phase

Constant failure rate  l 

(usually expressed in number of failures for million hours)

l = 1/200   one failure every 2000 hours 

Early life phase: there is a higher failure rate due to the failures of weaker
components (result from defetct or stress introduced in the manufacturing 
process).  Wear-out phase:  time and use cause the failure rate to increase.  

l(t) is a function of time 
(bathtub-shaped curve )



Hardware Reliability
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Constant failure rate  

l(t) = l 

Reliability function

R(t) = e–lt

Probability density function

f(t) = le–lt

the exponential relation between  reliability and time is 
known as exponential failure law

time

R(t)

l(t) =
R(t)

f(t)
=

dt

- dR(t)

R(t)

1



Time to failure of a component  
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• Time to failure of a component can be modeled by  a random variable X

FX (t)  = P[X<=t ] (cumulative distribution function)

FX (t)  unreliability of the component at time t

• Reliability of the component at time t

R (t) = P[X > t] = 1 – P[X <= t] = 1 – FX (t)       

R(t) is the probability of not observing any failure before time t



Time to failure of a component 
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l = 1/2000 0.0005 per hour 

MTTF = 2000 time to the first failure 2000 hours 

Mean time to failure (MTTF)
is the expected time that a system will operate before the 
first failure occurs (e.g., 2000 hours)

Failure in time (FIT)
measure of failure rate in 109 device hours 

1 FIT     means 1 failure in 109 device hours

MTTF = න
0

∞
𝑡𝑓 𝑡 𝑑𝑡 =න

0

∞
𝑡l𝑒

− l𝑡𝑑𝑡 =
1

l



Failure Rate
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Commercially available databases
- Military Handbook MIL-HDBK-217F 
- Telcordia, 
- PRISM User’s Manual, 
- International Eletrotechnical Commission (IEC) Standard 61508

- …

- Handbooks of failure rate data for various components are available from
government and commercial sources. 

- Reliability Data Sheet of product



Distribution model for permanent faults
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MIL-HBDK-217 (Reliability Prediction of Electronic Equipment -Department of Defence)  
Statistics on electronic components failures studied since 1965 (periodically updated). 
Chip failure rates in the range 0.01-1.0 per million hours

l = τLτQ(C1τT τV + C2τE)

τL = learning factor, based on the maturity of the fabrication process

τQ = quality factor, based on incoming screening of components

τT = temperature factor, based on the ambient operating temperature

and the type of semiconductor process

τE = environmental factor, based on the operating environment

τV = voltage stress derating factor for CMOS devices

C1, C2 = complexity factors (based on number of gates, or bits for memories and number of pins)



Model-based evaluation of dependability 

May 7-10, 2019 Quantitative evaluation of dependability 12

State space representation 
methodologies:
Markov chains, Petri-nets, 
SANs, …

a model is an abstraction of the system that highlights the 
important features for the objective of the study

Methodologies that employ 
combinatorial models: 
Reliability Block Diagrams, 
Fault tree, ….
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Combinatorial models



Combinatorial models 

offer simple and intuitive methods of the construction and solutions of models

Assumptions: 

• independent components

• each component is associated a failure rate

• model construction is based on the structure of the systems  (series/parallel 
connections of components)

• inadequate to deal with systems that exhibits complex dependencies among 
components and repairable systems
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Combinatorial models 
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Combinatorial models 

If the system does not contain any redundancy, that is any component 
must function properly for the system to work, and if component 
failures are independent, then 

- the system reliability is the product of the component reliability, and 
it is exponential

- the failure rate of the system is the sum of the failure rates of the 
individual components
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Combinatorial models 
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( ) =
N

i  

N!

(N-i)! i! 

Binomial coefficient



Combinatorial models 

If the system contain redundancy, that is a subset of components must 
function properly for the system to work, and if component failures are 
independent, then 

- the system reliability is the reliability of a series/parallel 
combinatorial model 
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Combinatorial models 

Series/Parallel models

An example: 

Multiprocessor with 2 processors and 
three shared memories
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TMR versus Simplex system
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RTMR > Rm if Rm > 0.5 

i=0

3
i

(e –lt )3-i (1- e –lt )i

Simplex system

l failure rate of module m

Rm = e –lt

Rsimplex = e –lt

TMR system

RV(t) = 1

RTMR = S 1           

= (e –lt )3 + 3(e –lt )2 (1- e –lt )

Taken from: [Siewiorek et al.1998]

V

m1

m2

m3

2 of 3

m



TMR: reliability function and mission time 
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Taken from: [Siewiorek et al.1998]

Rsimplex = e –lt

MTTFsimplex =

TMR system

RTMR = 3e –2lt  -2e –3lt

MTTFTMR =

TMR worse than a simplex system 
but

TMR has a higher reliability for the  first 6.000 hours

TMR operates at or above 0.8 reliability 
66 percent longer than the simplex  system

S shape curve is typical of redundant systems: above 
the knee the redundant system has components  that tolerate
failures;  after the knee the system has exhausted redundancy

1

l

1

l

3

2l

2

3l
5

6l
- = <



Hybrid redundancy with TMR
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Symplex system 

l failure rate m

Rm = e –lt

Rsys = e –lt

Hybrid system

n=N+S  total number of components 

S number of spares

Let N = 3               RSDV(t) = 1

l failure rate of on line comp

l failure rate of spare comp

The first system failure occurs if 1) all the 

modules  fail; 2) all but one modules fail

RHybrid =  RSDV(1- QHybrid)

RHybrid =  (1 – ( (1-Rm)n +  n(Rm)(1-Rm)n-1 ))

RHybrid(n+1) – RHybrid(n) >0

adding modules increases
the system reliability under the 
assumption RSDV independent of n

Taken from: [Siewiorek et al.1998]

SDV

m1

m2

mn
...



Hybrid redundancy with TMR
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Hybrid TMR system reliability RS vs individual module reliability Rm

System with standby failure rate equal to 

on-line failure rate

TMR with one spare is more reliable 

than simplex system if Rm>0.23

S is the number of spares

RSDV =1

System with standby failure rate equal to 

10% of on line failure rate

TMR with one spare is more reliable 

than simplex system if Rm>0.17

Taken from: [Siewiorek et al.1998]



Fault Trees

Consider the combination of events that may lead to an undesirable
situation of the system

Describe the scenarios of occurrence of events  at abstract level

Hierarchy of levels of events linked by logical operators

The analysis of the fault tree evaluates the probability of occurrence of the 
root event, in terms of the status of the leaves (faulty/non faulty)

Applicable both at design phase and operational phase
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Fault Trees

May 7-10, 2019 Quantitative evaluation of dependability 25

Describes the Top Event 
(status of the system) 
in terms of the status 
(faulty/non faulty) of the Basic 
events (system’s components)

G0

G3

E1 E2

G2

AND

E4

E3G4

E5

TOP EVENT

GATE SYMBOL

EVENT SYMBOL

OR

OR

OR



Fault Trees
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Components are leaves in the tree

Component faulty corresponds to logical
value true, otherwise false

Nodes in the tree are boolen AND, OR 
and k of N gates

The system fails if the root is true

AND

OR

2 of 3

AND gate

OR gate

K of N  gate

True if all the components

are true (faulty)

True if at least k of the components

are true (two or three

components) (faulty)

True if at least one

of the components is true (faulty)

C1 C2 C3

C1 C2 C3

C1 C2 C3



Fault Trees
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Top event

OR

AND AND

M1 M3
M2

P1 P2

Example

Multiprocessor with 2 
processors and three shared
memories

-> the computer fails if all the 
memories fail or all the 
processors fail



Conditional Fault Trees
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Example

Multiprocessor with 2 processors and three memories: 
M1 private memory of P1, M2 private memory of P2, M3 shared memory.

AND

AND

OR

AND

OR

Top event

system
• Assume every process has its own private memory

plus a shared memory

• Operational condition: at least one processor is
active and can access to its private or shared memory

repeat instruction: given a component C whether or not
the component is input to more than one gate, the 
component is unique



Conditional Fault Trees
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If a component C appears multiple times in the FT

Qs(t) = QS|C Fails(t) QC(t) + QS|C not Fails(t) (1-QC(t)) 

where
S|C Fails is the system given that C fails

and
S|C not Fails is the system given that C has not failed

If the same component appears more than once in a fault tree,  the 
independent failure assumption. We use conditioned fault tree is violated



Minimal cut sets
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TOP

G1

AND

1 2

3 4

5

OR

1. A cut is defined as a set of elementary events  that, according to the logic
expressed by  the FT, leads to the occurrence of the root event.

2. To estimate the probability of the root event, 
compute the probability of occurrence for each
of the cuts and combine these probabilities

Cut Sets
Top =   {1}, {2} , {G1} , {5} = {1}, {2} , {3, 4} , {5} 

Minimal Cut Sets
Top = {1}, {2} , {3, 4} , {5} 



Minimal cut sets
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QSi(t) = probability that all components in the 
minimal cut set Si are faulty

QSi (t) = q1(t) q2(t) … qni(t)   with Si ={1, 2, …, ni }

The numerical solution of the FT is performed by 
computing the probability of occurrence for each of 
the cuts, and by combining those probabilities to 
estimate the probability of the root event

Minimal Cut Sets
Top = {1}, {2} , {3, 4} , {5} 

TOP

G1

AND

1 2

3 4

5

OR

Assumption: independent faults of the components



Minimal cut sets
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QTop (t) = QS1 (t) + …  + QSn (t) 

n number of mininal cut sets

Minimal Cut Sets
Top = {1}, {2} , {3, 4} , {5} TOP

G1

AND

1 2

3 4

5

OR

S1 = {1} S2 = {2} S3 = {3, 4} S4 = {5}



Fault Trees
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Identification of critical path of the system 

- Definition of the Top event

- Minimal cut set (minimal set of events that leads to the top event) 

Analysis:

- Failure probability of Basic events

- Failure probability of minimal cut sets

- Failure probability of Top event

- Single point of failure of the system: minimal cuts with a single event
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State-based models



State-based models
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Characterize the state of the system at time t:

- identification of system states
- identification of transitions that govern the changes of state  within a system

Each state represents a distinct combination of failed and working modules

The system goes from state to state as modules fail and repair

The state transitions are characterized by the probability of failure 
and the probability of repair



Markov model
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graph where nodes are all the possible states and arcs are the 
possible transitions between states (labeled with a probability 
function) 

Reliability model

0 1

1-pf
pf

pf

pr

1-pr

Availability model

1-pf 1

10



Markov models
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Main points:
- systems with arbitrary structures  and complex dependencies

- assumption of independent failures no longer necessary

- can be used for both reliability and availability modeling

Markov models (a special type of random process) :

Basic assumption: the system behavior at any time instant 

depends  only on the current state  (independent of past values)



Markov process
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In a general random process {Xt },  the value of the random variable Xt+1 may depend

on the values of the previous random variables

Xt0 Xt1 ............Xt

Markov process

the state of a process at time t+1 depends only on the 
state at time t, and is  independent  on any state before t

Markov property: “the current state is enough to determine 
the future state”



Markov chain
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A Markov chain is a Markov process X with discrete state space S 

We consider only homogeneous Markov chains

- discrete-time Markov chains (DTMC) / Continuous-time Markov chains (CTMC)

The probability of transition from state i to state j does not 
depend by the  time.   This probability is called pij

A Markov chain is homogeneous  if  it has steady-state transition probabilities



Transition probability matrix
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If a Markov process is finite-state, we can define the transition probability matrix P (nxn) 

pij = probability of moving from state i to state j in one step

row i of matrix P:

probability of make a transition starting from state i

column j of matrix P:

probability of making a transition from any state to state j 



Discrete-time Markov chain (DTMC)
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pi(t) = P{Xt = i}

State occupancy vector at time t          p(t) = p(0) Pt

Probability that the Markov process 
is in state i at time-step t

= (p1      , …,  pn )p(0) (0) (0)

State occupancy vector at time t            p(t) = [p0(t), p1(t), p2(t) , …]

p(1) = p(0) P

Initial state space distribution   

A single step forward

State space distribution

System evolution in a finite number of steps computed starting from the  initial state 
distribution and the transition probability matrix 



Limiting behaviour
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A Markov process can be specified in terms of the state occupancy probability 
vector p and a transition probability matrix P

p(t) = p(0) Pt

The limiting behaviour of a DTMC depends on the  characteristics of its
states.  Sometimes the solution is simple

The limiting behaviour of a DTMC (steady-state behaviour)

lim p(t) 
t→∞



Time-average state space distribution
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For periodic Markov chains

doesn’t exist (caused by the probability of the periodic state)

Compute the time-average state space distribution, called

1   2
1   0   1
2   1   0

p(0) = (1,0)
p(1) = p(0) P       p(1) = (0,1)
p(2) = p(1) P       p(2) = (1,0)
………..

P=

1 2

p(0) =(1,0)

state i is periodic with period d=2

1

1

lim p(t) 
t→∞

lim
t→∞

෍

i=1

t

p(i)

t

p *
=

p *



Simplex system

May 7-10, 2019 Quantitative evaluation of dependability 44

0 1

1-pf
pfState 0 : working

State 1: failed

pf
Failure probability

{Xt }  t=0, 1, 2, ….     S={0, 1}

- all state transitions occur 

at fixed intervals

- probabilities assigned to 

each transition

- The probability of state 

transition depends only on 

the current state 1-pf pf

0 1P = 
current
state

next
state

0

0

1

1

- pij = probability of a transition
from state i to state j
- pij >=0
- the sum of each row must be one



Simplex system with repair
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0 1

1-pf
pf

pr

1-pr

State 0 : working
State 1: failed

pf

pr
Repair probability

Failure probability

1-pf pf

pr 1- prP = 
current
state

next
state

0

0

1

1



Simplex system with repair
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State j can be made an trapping state with pjj = 1

0.9 0.1

0.5 0.5

[p0(0), p1 (0)] = [ 1, 0]

[ 1, 0] = [ 0.9, 0.1][p0(1), p1(1)]  =  

initial state: working

0 1

1-pf
pf

pr

1-pr



Simplex system with repair
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probability of being in a state  after  1  time-step

1-pf pf

pr 1- pr

[p0(n), p1(n)] = [p0(n-1), p1(n-1)]

n
1-pf pf

pr 1- pr

[p0(n), p1(n)] = [p0(0), p1(0)]

probability of being in a state  after  n  time-steps

0 1

1-pf
pf

pr

1-pr



Continuous-time Markov model
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• state transitions occur at random intervals 

• transition rates assigned to each transition 

Markov property assumption

the length of time already spent in a state does not influence either the probability 
distribution of the next state or the probability distribution of remaining time in the 

same state before the next transition 

These assumptions imply that the waiting time spent in any one state is exponentially distributed 

Thus the Markov model naturally fits with the standard assumptions that failure rates are constant, 
leading to exponential distribution of interarrivals of failures



Simplex system with repair
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state 0: working

state 1: failed 

l failure rate

m  repair rate                   

Continuous time 

Transition matrix P: transition rate

Probability of being in state 0 or 1 at time t+Dt

Taken from: [Siewiorek et al.1998]

:

1−l∆𝑡 l∆𝑡
m∆𝑡 1−m∆𝑡

P =



Simplex system with repair
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Performing multiplication, rearranging and dividing by Dt, taking the limit 

as Dt approaches to 0:

probability of being in 

state 0 at time t+Dt

1−l∆𝑡 l∆𝑡
m∆𝑡 1−m∆𝑡

[p0(t+Dt), p1(t+Dt)]  = [p0(t), p1(t)] 

dp0(t)
dt

= -lp0(t) + mp1(t) 

dp1(t)
dt

= lp0(t) - mp1(t) 



Simplex system with repair
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The set of equations can be written by inspection of a transition diagram 

without self-loops and Dt’s

T matrix

The change in state 0 is minus the flow out of state 0 times the probability 

of being in state 0 at time t, plus the flow into state 0 from state 1 times 

the probability of being in state 1.

Continuous time Markov model graph

[dp0(t)
dt

,
dp1(t)

dt
]= [p0(t), p1(t)] 

−l l

m −m

Taken from: [Siewiorek et al.1998]



Simplex system with repair
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A(t)

p0(t) probability that the system is in the operational state at time t, availability 
at time t

The availability consists of a steady-state term and an exponential decaying 
transient term 

Taken from: [Siewiorek et al.1998]



Availability as a function of time 
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l = 0.001

m = 0.1

The steady-state value is 
reached in a very short time

Taken from: [Siewiorek et al.1998]



Continuous-time Markov models: Reliability
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failed state as  trapping state  

Single system without repair

T =

Continuous time Markov model graph
lDt = state transition probability

l = failure rate

We can prove that:

Reliability

Unreliability  

−l l

0 0

p0(t)  = e –lt 

p1(t)  = 1 - e –lt 



TMR system with repair
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Rates: l and m

Identification of states: 
3 processors working, 0 failed
2 processors working, 1 failed
1 processor working, 2 failed

Reliability   R(t) = 1- p2(t)
p(0) = [1, 0, 0]

T =
−3l 3l 0

m −2l−m 2l

0 0 0



Comparison with nonredundant system and TMR without repair 
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Taken from: [Siewiorek et al.1998]



Dual processor system with repair
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A, B processors    Rates: l1, l2 and m1, m2

Identification of states: 
A, B working
A working, B failed
B working, A failed
A, B failed

Rates: l1= l2 and m1=m2

Availability

A(t) = p0(t) + p1(t) + p2(t)
A(t) = 1- p3(t)

p(0) = [1, 0, 0]

T =
−2l 2l 0

m −l−m l

0 m m

Availability

A(t) = 1- p2(t)
Taken from: [Siewiorek et al.1998]



Dual processor system with repair
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steady-state availability

Steady state value

Taken from: [Siewiorek et al.1998]



Reliability model
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p(0) = [1, 0, 0]

Reliability   R(t) = 1- p2(t)       R(t)=p0(t) + p1(t)

making state 2 a trapping state

T =
−2l 2l 0

m −l−m l

0 0 0

Taken from: [Siewiorek et al.1998]



TMR system with repair
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Rates: l and m

Identification of states: 
3 processors working, 0 failed
2 processors working, 1 failed
1 processor working, 2 failed

Reliability   R(t) = 1- p2(t)

p(0) = [1, 0, 0]

T =
−3l 3l 0

m −2l−m 2l

0 0 0

Taken from: [Siewiorek et al.1998]



Comparison with nonredundant system and TMR without 
repair 
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Conclusions

Quantitative dependability evaluation
- guiding design decisions
- assessing systems as built
- mandatory for safety critical systems

Model construction techniques 
- scalability challenge
- decomposition/aggregation approaches

High-level modelling formalisms
Stochastic petri Nets
Stochastic Activity networks 

Tools: Sharpe, SPNP, Mobius, etc …..
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The overall model is
decoupled in simpler and 
more tractable
submodels, and the 
measures obtained from 
the solution of the sub-
models are then
aggregated to compute 
those concerning the 
overall model


