
1ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Software Reliability
Engineering

Karama Kanoun

Karama.Kanoun@laas.fr

Research Group on

Dependable Computing and Fault Tolerance

Toulouse, France

2ReSIST courseware — Karama Kanoun — Software Reliability Engineering

OUTLINE

! Motivations

! Methods for software reliability engineering

• Data collection and analysis

! Data collection and validation

! Descriptive statistics

! Trend analysis

• Software dependability evaluation

! Reliability growth models

! Models in stable reliability

! Controlled experimentation

! The maturity Process

! Case studies

! References

3ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Why Software Reliability Engineering?

! Increasing role of software in real life systems

! System dependability is more and more synonymous of software reliability

! Difficulties in mastering the software development process and in reducing
design faults for complex systems

! Increasing cost of system non-dependability

! Real needs for improving software reliability to improve system
dependability and reduce maintenance cost

! Dependability requirements are part of system requirements (as important
as functional requirements)

! Quantification is essential

4ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Objectives of software reliability engineering

! Short term

• Manage and improve the reliability of the software

• Check the efficiency of development activities

• Estimate the software reliability at the end of validation activities and in
operation

• Estimate the maintenance effort to “correct” faults activated during
development and residual faults in operation

! Long term

• Capitalize experience

• Improve software reliability of successive generations

! Needs for experimental & analytical methods and

techniques to reach these objectives

5ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Software vs hardware reliability

Hardware

• Physical faults

• Operational life

• Stable reliability (constant failure rate)

• White-box approach

• Markov models

• Database for components failures

Software in operation

Hardware in operation

Software

• Only design faults

• Development and operation

• Reliability growth (! failure rate)

• Usually black-box approach

• Specific models

• Based on data collection

Failure
Rate

Time

6ReSIST courseware — Karama Kanoun — Software Reliability Engineering

! Supplier point of view

• During development:

! development follow up
(failure intensity, fault density)

! evaluation of software reliability before operation
 (MTTF, pre-operational failure rate)

• During operation

! product reliability follow up
(residual failure rate, MTTF)

! maintenance planning
(cumulative number of failures)

! Users / customers, operational life

! be confident in the reliability level of the product
 (residual failure rate, MTTF)

Objectives of Software Reliability Engineering

7ReSIST courseware — Karama Kanoun — Software Reliability Engineering

! Non-repetitive process

! No relationship between failures and corrections

! Continuous evolution of usage profile

• According to the development phase

• Within each phase

! Overselling of reliability growth models

! Judgement on quality of the software developers

! What is software reliability?

! Residual number of faults, fault density, complexity measures?

! MTTF, failure intensity, failure rate?

Difficulties

8ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Measures

Static MeasuresStatic Measures
of the product andof the product and

processprocess

(quality oriented)

Dynamic MeasuresDynamic Measures

characterizing occurrence ofcharacterizing occurrence of
failuresfailures

(reliability oriented)

Failure intensity

Failure rate

MTTF

Reliability

…

Number of faults

Fault density

Complexity measures

 …

Usage profile
(environment)

9ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example:
Percentage of faults and corresponding MTTF (published by IBM)

"

 MTTF (years)
5000 1580 500 158 50 15.8 5 1.58

Product

1

2

3

4

5

6

7

8

9

28,8

28,0

28,5

28,5

28,5

28,2

28,5

27,1

27,6

17,8

18,2

18,0

18,7

18,4

20,1

18,5

18,4

20,4

10,3

9,7

8,7

11,9

9,4

11,5

9,9

11,1

12,8

5,0

4,5

6,5

4,4

4,4

5,0

4,5

6,5

5,6

2,1

3,2

2,8

2,0

2,9

2,1

2,7

2,7

1,9

1,2

1,5

1,4

0,3

1,4

0,8

1,4

1,4

0,5

0,7

0,7

0,4

0,1

0,7

0,3

0,6

1,1

0,0

34,2

34,3

33,7

34,2

34,2

32,0

34,0

31,9

31,2

"

10ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Overview of a global reliability analysis method

Validated

data

Impact
of failures

Phase Components

Data Validation

Collected data

Descriptive Analyses

Reliability EvolutionReliability EvolutionDescriptive StatisticsDescriptive Statistics Reliability MeasuresReliability Measures

Development

Validation &

Operation

Types of
faults

Data set partition

data collection

• • •

Trend Analyses Model Application

Objectives
of the analysis

Capitalize experience

Data related to
similar previous

projects

Feedback to software
development process

11ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Setting up of a data collection process

! Some rules

• Define clearly the objectives and the data to be collected

• Motivate and imply people that will be involved

• Simplify the collection process and reduce the number of data items to
be collected

! Support tools

! Practical organization of people involved

• Record and analyze data in real-time

• Feedback

! Origin of collected data

• Internal: recorded during development and validation

• External: by the customers

12ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Data to be collected

! Background information

• Product itself: software size, language, functions, current version, workload

• Usage environment: verification and validation methods, tools, etc.

! Data relative to failures and corrections

• Date of occurrence, nature of failures, consequences

• Type of faults, fault location

! Usually, recorded through

• Failure Reports (FR)

• Correction Reports (CR)

! Well defined headings, well structured, easy to fill in

! Short tick-off questions

! Manually or automatically

13ReSIST courseware — Karama Kanoun — Software Reliability Engineering

! Failure Report (FR)

Required Information

• Serial number (for identification)

• Report editor

• Product reference, version affected (or prototype)

• Date and time of failure occurrence

Desirable Information

• Failure occurrence condition

• Failure criticality or consequences

• Affected function or task

• Action proposed (if any)

14ReSIST courseware — Karama Kanoun — Software Reliability Engineering

! Correction Report (CR)

Required information

• Serial number (for identification)

• Report editor

• Date of correction

• Correction nature

• Product reference

• Reference to the FR

Desirable Information

• Identification of the modified components

! Integration with already existing data collection programs

! Importance of training

15ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Data Validation

! Objectives

• check the validity and usability of the information recorded

• Keep only genuine software faults in the database

! Elimination of:

• Duplicated data (FR reporting of the same failure)

• FR proposing a correction related to an already existing FR (COR)

• False FR (signalling a false or non identified problem)

• FR proposing an improvement (IMPROVE)

• incomplete FRs or FRs containing inconsistent data (Unusable)

• FR related to a hardware failure

• …

16ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example 1: a telecommunications equipment
(analyzed at LAAS)

! 2 146 Failure Reports

! Validation # 1 172 kept in the database

! Discarded RFs:

Duplicated FRs 816 38.0%

COR 53 2.5%

False FR 29 1.4%

IMPROVE 21 1.0%

Unusable 20 0.9%

Hardware 35 1.6%

Total 974 45.4%

17ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example 2: a telephone switching system
(analyzed at LAAS)

! 3063 FRs

! Validation # 1853 Software FRs kept in the database

! Discarded RFs:

Hardware 195 (6%)

Documentation 165 (5%)

 Unusable, duplicated, … 716 (24%)

Others 134 (4%)

 Total 1210 (39 %)

18ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Life cycle of Failure and Correction Reports (FRs/CRs)

Identification
of an
abnormal
behavior

creation
of an FR

Internal
site

Interface
with users

 Database

No

Analysis &
validation

specialized
team

Correction
Proposal ?

FR
 exists ?

Already solved
or being solved

yes

No

Implementation
 of the corrections

Database
FR resolved

Creation of a CR

Report update

External
sites

19ReSIST courseware — Karama Kanoun — Software Reliability Engineering

DESCRIPTIVE STATISTICS

! Aim: make syntheses of the observed phenomena

! Simple analyses

• Fault typology

• Fault density of components

• Failure / fault distribution among software components (new, modified, reused)

! Investigation of relationships

• Fault density / size / complexity

• Fault density / life cycle phase

• Nature of faults / life cycle phases

• Nature of faults / components

• Number of components affected by changes made to resolve an FR

! Analyses related to the development / debugging process

20ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Analyses related to the development process

! Factors affecting time to locate and solve problems

• The more FRs circulating, the more time it takes to handle each one

• Tendency to resolve the easier FRs first, the remaining ones take more time

• Loss of maintainability with continued changes to resolve faults

• Introduction of new faults while resolving the old

! Average time to resolve an FR

Modification request time =

Time when the FR is resolved - time when it is created

Measures

• Responsiveness of the field support system

• Complexity of maintenance

21ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Case of the switching system of Example 2

0

50

100

150

200

250

1 10 20 30 40 50 60 68

FRs recorded / month

FRs resolved / month

0
100
200
300
400
500

600
700
800

1 10 20 30 40 50 60 68

cumulative # of unresolved FRs

0 / 6 months
66% (1615)

7 / 12 months

22% (524)

>12 months
12% (307)

Time to resolve an FR

22ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Data pre-processing for reliability analysis

! Two kinds of data sets can be extracted from FRs and CRs

• Time to failures (or between failures)

• Grouped data

! Number of failures per unit of time, n(k)

! Cumulative number of failures N(k)

failure

t1 t2
0

tk

tk = time between failure k-1 and k

1 2
0

k

n(1) n(k)

23ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Time ?

! Time between failures

• Execution time

• Wall clock or Calendar time

• Number of executions

! Number of failures per unit of time

• The length of the unit time depends on:

! accuracy expected for the dependability measures

! number of observed failures

! objectives of the study

24ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example A: Times between failures

! Real-time control system (Musa 1)

• 136 failures observed during system test (96 days)

: number of

failures

T
i

: times

between

failures

(in seconds)

Dy: day of
observation

3

30

113

81

115

9

2

91

112

15

138

50

77

24

108

88

670

120

26

114

325

55

242

68

422

180

10

1146

600

15

36

4

0

8

227

65

476

58

457

300

97

263

452

255

197

193

6

79

816

1351

148

21

233

134

357

193

236

31

369

748

0

232

330

365

1222

543

10

16

529

379

44

129

261

1800

865

1435

30

143

108

0

3110

1247

943

700

875

245

729

4897

447

386

446

122

990

948

1082

22

75

482

5509

100

10

1071

371

790

6150

3321

1045

648

5485

1160

1864

4116

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

T
i

T
i

Dy

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

T
i

Dy

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

T
i

Dy

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

810

290

300

529

281

160

828

1011

445

296

1755

1064

1783

860

983

707

33

868

724

2323

2930

1461

843

12

T
i

Dy

97

98

99

100

101

102

103

104

105

106

107

 108

109

110

111

112

113

114

115

116

117

118

119

120

T
i

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Dy

1

2

9

10

11

11

17

20

20

20

20

20

20

20

20

20

30

30

30

30

30

30

31

31

31

32

32

33

34

42

42

46

46

46

46

46

46

46

47

47

47

47

53

53

54

54

54

54

56

56

56

57

57

57

57

59

59

59

59

59

59

59

59

61

62

63

63

63

64

64

64

64

64

64

64

65

65

65

66

66

66

66

67

67

68

68

68

69

69

69

69

70

71

72

72

72

72

73

73

74

74

74

74

74

75

76

76

76

77

77

77

78

79

79

79

79

79

80

80

80

Dy

80

80

81

81

81

83

83

83

83

83

84

84

87

87

88

92

25ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example B
Number of failures per unit of time or Cumulative

! Switching system

• 52 failures in operation (15 months)

n(i)i NS(i) n(i)i NS(i)

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 2
0
2
1
1
0
2
1
2
5
2
1
2
0
0
0
0
1
1
2
1
0
4

 24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

 1
1
0
0
1
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
2
0
1

4
10
10
10
10
12
12
12
12
12
13
13
13
13
21
21
21
21
21
28
28
28
28

36
36
36
36
38
40
40
40
40
42
42
42
42
42
42
42
42
42
42
42
42
42
42

 47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

 0
0
0
1
0
1
1
0
0
1
1
6
0
0
0
1
0
0
0
1
0

 42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42

NC(i) NC(i) n(i)i NS(i)NC(i)

 2
2
4
5
6
6
8
9

11
16
18
19
21
21
21
21
21
22
22
24
25
25
29

 30
31
31
31
32
32
32
32
32
32
32
32
33
33
33
33
33
33
33
34
36
36
37

 37
 37
 37
38
38
39
40
40
40
41
42
48
48
48
48
49
49
49
49
50
50

i: unit of time (week)

n(i): number of failures

per unit of time

NC(i): cumulative

number of failures

NS(i): number of systems

in operation at i

26ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Trend analysis

! Objectives:

• Analyze software reliability evolution

• Identify periods of reliability growth and decrease

corrections

corrections

corrections
+ spec./environment

changes

. . .

Vi,1

Failure
intensity

time

Vi,2

Vi,k Vi+1,1

Vi+1,2

Vi+1,3

Vi+1,4

[See references 9 or 10]

27ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Reliability growth characterization

! Variable: time to failure

• T1, T2, … ,Tn : time between failure i and i-1

! Reliability growth: Ti ! Tk $ i < k

! Prob. {Ti < x } " Prob. {Tk ! x} # F Ti (x) " F Tk(x) $ i < k $ x

! Variable: number of failures

• N(t1), N(t2), … , N(tn) : cumulative number of failures between 0 and ti

• H(ti) = E[N(ti)] = expectation of N(ti)

• If N(ti) is a Non Homogeneous Poisson Process (NHPP):

! reliability growth if H(t1) + H(t2) " H(t1+ t2) $ t1, t2 "0 and 0! t1+ t2 !T

(inequality is strict for at least a pair t1, t2)

N(t) is a subadditive function

st

28ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Interpretation of Subadditivity

H(t1) + H(t2) " H(t1+ t2) $ t1, t2 "0 and 0! t1+ t2 !T

The number of events in an interval of the form [0, t 2] is larger than the number of

events taking place in an interval of the same length beginning later (i.e. in the form

of [T, T+t 2] The number of failures is decreasing

! Graphical interpretation

• H(t) = E[N(t)] is subadditive over [0,T] if:

 a
H
 (t) = # H(x) dx - H(t) " 0

 $ t "0 and 0! t !T

 a
H
 (t) = subadditivity factor

0

t
t

2

Chord

T

H(x)

0

a
H
(x)

29ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Trend tests

! Means

• Raw data # graphical tests

• Analytical tests # quantitative indicators

! Raw data

• Times to successive failures

• Number of failures per unit of time

• Cumulative number of failures

! Trend indicators

• Empirical (arithmetical) means

• Subadditivity factor

• Laplace factor

30ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Graphical tests: times to failures (Example A)

Times to failures

0

1000

2000

3000

4000

5000

6000

7000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Failure #

Failure #

Cumulative times
to failures

t1 + …tk

ti

31ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Graphical test: grouped data (Example B)

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

0

10

20

30

40

50

60

Failure

intensity

unit of time = one week unit of time = 4 weeks

Cumulative
number of
failures

unit of time = one week unit of time = 4 weeks

32ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Empirical mean

Global trend

%k : arithmetical mean of the times to failures (from failure 1 to k)

%k =

%k constitute a globally increasing series & reliability growth

%k constitute a globally decreasing series & reliability decrease

 Example A

t1 + t2+ … tk

k

%k

0

100

200

300

400

500

600

700

k

The trend is directly observed on
the evolution of %k

33ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Empirical mean

! Local trend

• The data items are grouped into subsets containing m successive data

• The average is evaluated for each subset

• The impact of old data items is eliminated

! Example A: m = 8 # 17 groups (136 failures)

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17

34ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Subadditivity & monotonous growth / decrease

Tt

H(x)

x

Tt

x

Monotonous growth:

 aH (x) > 0 increasing

Monotonous decrease:

aH (x) < 0 decreasing

h(x)

x

Failure intensity

Cumulative number
 of failures

H(x)

h(x)

x

35ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Subadditivity & trend change

/ /

T

x

TL

H(x)

0

0
T

x

0

H(x)

T

x

0 T

x

Decrease - Growth Growth - Decrease

TG
TL TG

TL TG

TL

TG

a
H
 (x) < 0 a

H
 (x) > 0 a

H
 (x) > 0 a

H
 (x) < 0

a
H
 (x)a

H
 (x)

tangent

36ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Subadditivity & local trend fluctuations

Example: reliability growth with local fluctuations

a
H
 (x) " 0 non decreasing

0

H(x)

x

0

h(x)

x

37ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Laplace factor

! Statistical Test of hypothesis # Laplace factor u

Random variable: times to failures Ti (realization of Ti = ti)

 u(T) = N(T) = # failures in [0,T]

! In practice

u > 0 # global reliability decrease

u < 0 # global reliability growth

'
i=1N(T)

1
N(T)

' tj - T
j=1

i

2

T (12 N(T)

1

= mid of the observation interval
2

•
T

'
i=1N(T)

1
N(T)

' tj
j=1

i

• c = = statistical centre

38ReSIST courseware — Karama Kanoun — Software Reliability Engineering

• Random variable: # failures per unit of time

 u(T) = n(i) = # failure during time unit i

• Can be put in the form:

u(T) = -

' (i-1) n(i) -
i=1

k

' n(i)
i=1

k

2

12

k2 -1

k -1

' n(i)
i=1

k

(

T
12 N(T)

1

a
H
 (T)

(

39ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Laplace factor: local and global trend

u(k)

Local trend changes

k

Reliability growth
Reliability
decrease

TL1

A B C D

Reliability
decrease

TG TL2

GG
LL
OO
BB
AA
LL

TT
RR
EE
NN
DD

Reliability
decrease

Reliability
growth

LOCAL TRENDLOCAL TREND

40ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Change of time origin

u(k)

k

TL1 TG TL2

B - C D

TL2

u(k)

TL1

k

A B C D

41ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Link : graphical tests - Laplace - Subadditivity

0

10

20

30

40

50

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

Failure intensity

Cumulative number of failures

Subadditivity factor

Laplace factor

50

0

50

100

150

250

200

0

2

4

6

8

10

-6

-5

-4

-3

-2

-1

0
1

2

3

42ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Link between trend indicators
Laplace factor

TG

Failure intensityCumulative number of failures

u(k)

k

u(k)

k

u(k)

k

u(k)

k

n(k)N(k)

k

k

k

k

n(k)

n(k)

n(k)N(k)

N(k)

N(k)

k

k

k

k

TL

TLTL

Monotonous
Growth

Monotonous
decrease

Decrease
 followed
 by growth

Stability

43ReSIST courseware — Karama Kanoun — Software Reliability Engineering

How to use trend test results

! Control of the efficiency of test activities

• Reliability decrease at the beginning of a new activity: OK

• Reliability decrease during a relatively long period of time: Pb ?

• Reliability growth after reliability decrease: OK

• Sudden reliability growth: caution!

• Stable reliability: saturation

! New tests

! Following phase

! End of test

! Application of reliability models

• Trend in accordance with model assumptions

44ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Application to RADC data sets
Rome Air Development Center (USA)

RT: Real-time

C: control

Com. : commercial

WP: word Processing

TS : Time sharing

OS: Operating system

***** : not given

System
Id.

1

2

3

4

5

6

7 (14C)

8(17)

9(27)

10(40)

11A(SS1A)

11B (SS1B)

11C (SS1C)

12 (SS2)

13 (SS3)

14 (SS4)

21 700

27 700

23 400

33 500

2 445 000

5 700

61 900

126 100

180 000

9

5

3

6

7

275

8

110

8

8

8

unknown

unknown

unknown

unknown

unknown

136

54

38

54

831

73

36

38

41

101

112

375

277

192

278

196

RT.C

RT.C

RT.C

RT.C

RT.Com.

RT.C

military

military

military

OS

OS

OS

TS

WP

OS

instructions

#
programmers

failures

Type of
system

[John Musa], “Software Reliability Data”, Rome Air Development Center, NY, USA, 1979

45ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Laplace factor

* : stable reliability

System

1 - 9,10

2 - 5,73

3 - 6,13

4 - 8,59

6 - 3,64

7 - 2,14*

8 - 4,65

9 - 5,16

10 - 9,60

11A - 1,36*

11B - 0,73*

11C - 5,15

12 + 0,74*

13 - 5,64

14 - 1,78*

Laplace
factor

46ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 2: times to failures

failures
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 6 11 16 21 26 31 36 41 46 51

Time to failures, ti

47ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 2: Laplace factor

! Variable: time to failure

failures

-6

-5

-4

-3

-2

-1

0
1 6 11 16 21 26 31 36 41 46 51

u(i)

failures

43

-2

-1

0

1

2

3

4
u(i)

31 34 37 40 46 49 52

48ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 2: failure intensity

k
0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 1718 19 20 21 22

n(k)

k: unit of times = 5000 seconds of execution time

49ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 2: Laplace factor

! Variable: # failures

Unit of time = 5000 seconds of execution time

-2

-1

0

1

2
u(k)

7 8 9 10111213141516 17 1819 202122

-6

-5

-4

-3

-2

-1

0
1 2 3 4 5 6 8 10111213 14151617 181920 2122

u(k)

failure # 31
failure # 41

7 9

k = unit of time

k = unit of time

50ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 4: arithmetical mean

failures
0

200

400

600

800

1000

10 15 20 25 30 35 40 45 50

%i

51ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 9

failures

Arithmetical
mean

failures
Laplace
Factor

0

20000

40000

60000

80000

100000

120000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

u(i)

-6

-5

-4

-3

-2

-1

0

1

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

52ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 11A

100000

120000

140000

160000

180000

200000

11 21 31 41 51 61 71 81 91 101 111

-1

0

1

2

3

11 21 31 41 51 61 71 81 91 101

111

failures

Arithmetical
mean

failures

Laplace
Factor

53ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System 14

100000

150000

200000

250000

300000

1 21 41 61 81 101 121 141 161 181

u(i)

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

1 21 41 61 81 101 121 141 161 181

failures

Arithmetical
mean

failures

Laplace
factor

54ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Conclusion

! Some systems can be modeled by an exponential distribution

• System for which -2 < u < 2

! Impact of the operational profile

• Systems 11 A, B, C are 3 copies of the same program
used in different environments

! Benefits from trend analysis

• Understanding of the underlying processes

• Follow up of the development process in real-time, fast feedback

• Helpful for reliability model application

55ReSIST courseware — Karama Kanoun — Software Reliability Engineering

SOFTWARE RELIABILITY EVALUATION

! Objectives

• Evaluate measures characterizing the software reliability and its evolution

! Methods

• evaluation from data collected on the software during testing and / or operation

! with fault removal

! without fault removal

Reliability growth models Models in stable reliabilityReliability growth models Models in stable reliability

Measures:
• Test duration without failure, required

to reach a target reliability
• Probability of accepting/rejecting a

piece of software
• Probability of failure in operation

 Measures:

• Failure rate
• Failure intensity
• Cumulative number of failures
• MTTF

[See reference 1]

56ReSIST courseware — Karama Kanoun — Software Reliability Engineering

OUTLINE

Reliability growth models

• Presentation of some reliability growth models

• Reliability growth models and trend analysis

• Application of reliability growth models

• Tools

Models in stable reliability

Other approaches

57ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Modeling difficulties

! Corrections + specification changes # varying behavior

 # absence of repetitive phenomenon # absence of statistics

! Variations in the usage environment

! No direct relationships between failures and corrections

Objectives of reliability growth models:

Estimation of dependability measures as resulting from the above variations

restrictive assumption for some models: correction after each failure

RELIABILITY GROWTH MODELS

 Failures

Corrections

58ReSIST courseware — Karama Kanoun — Software Reliability Engineering

RELIABILITY GROWTH MODELS

! Failure rate models
(Failure rate equations & relationship between successive failure rates)

• Deterministic, piecewise Poisson Process models: Jelinski Moranda, Musa

• Stochastic, doubly stochastic process model: Littlewood-Verrall

! Failure intensity models: succession of failures
(based on Non-Homogeneous Poisson Process (NHPP))

• Exponential model (Goel Okumoto)

• Hyperexponential model (Kanoun-Laprie)

• S-Shaped model (Yamada et al)

! Selection depends on

• Objectives

Development follow-up, evaluation of operational MTTF and residual failure rate

• Trend displayed by the data set

59ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Jelinski Moranda model: assumptions

! First software reliability model (1972)

! Assumptions

H1 : the total number of faults is finite (N0)

H2 : No fault introduction while correcting detected faults: each activated
fault is corrected before new executions

H3 : Faults are independent and their manifestation rate is constant

H4 : Inputs are selected randomly and tests are representative of
operational profile

H5 : All failures are observed

60ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Jelinski Moranda model: equations

! Parameters

N0 = total number of faults

) = fault manifestation rate

*(i) = failure rate of the i-th failure

Ti = random variable: time between failures i-1 and i (observation = ti)

! Relations

 *(i) =) [N0 - (i - 1)] = di / dt i = 1, 2, …, N0

Prob. (Ti < ti) =) (N0 - i + 1]. exp {) (N0 - i + 1).ti}

MTTFi = =

N(t) = N0 [1 - exp (-) t)] = number of faults detected at t

! Parameters to be estimated: N0 ,)

1

*(i)

1

) [N0 - (i - 1)]

61ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Jelinski-Moranda model: *(t)

! the failure rate is constant and tends to 0 when t tends to $

N0)

(N0 -1))

2)

)

 *(t)

t1

.

.

.

0
t2 tN0-1 ttN0

62ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Musa model

! Assumptions similar to the Jelinski-Moranda model

! Parameters definition

M0 = number of faults in the software

N0 = number of failures

B = fault reduction factor: number of faults / number of failures M0 = B.N0

C = compression factor (execution time in operation / in test)

) = fault manifestation rate

! Relations

*(i) = B C) (N0 - i +1) MTTF(i) =

N(t) = N0 [1 - exp (-B C) t)] = number of failures observed at t (execution time)

! Parameters to be estimated: N0 ,) (B product characteristics; C operational profile)

1

B .).(N0 - i +1)

63ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Littlewood-Verrall model

! Stochastic relationship between the successive failure rates

! Distinction

• Input uncertainty: *i

• Impact of corrections uncertainty: *1 , *2 , …, *i series of random variables

! Randomness of inputs

f(Ti | *i) = *i exp. (- *i t)

f : probability density function (pdf)

Ti : time to failure i since failure i-1 (time to failure i)

! Impact of corrections

f(*i| +, ,) =

, : programmer skill and programming difficulty

 [, (i)] + *i
+-1 exp. (, (i)) *i

.(+)

64ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Littlewood-Verrall model

! Distribution of Ti

f(ti| +, ,) = ! f(ti|* i). f(*i| +, ,) d* i =

! Reliability growth represented by growth of , (i) :

 , (i) = /1 + /2 . i

Parameters: + , /1 , /2

0

! + [, (i)] +

[ti+ , (i)] ++1

Pareto distribution

 *i (t) =
+

t + , (i)

MTTFi =
, (i)

+ - 1

0,0010

0,0035

0,0060

0,0085

0,0110

0,0135

0,0160

0,0185

0,0210

0,0235

0,0260

0 92 192 292 392 492 592 692 792 892 992 1092 1192 1292

C3

C1

C2

 *i (t)

curve + /2

C1

C2

C3

1 100

3 150
4 100

/1

30

60

80

65ReSIST courseware — Karama Kanoun — Software Reliability Engineering

NHPP models

! Based on Non-homogeneous Poisson Process (NHPP)

• Definition

! P{ N(t+dt) - N(t) = 1 } = h(t) dt

! P{ N(t+dt) - N(t) " 2 } = o(dt)

![N(t0)], [N(t1) - N(t0)] , …, [N(tn) - N(tn-1)], t0 < t1< …< tn

are random variables with independent increments

• Properties

!number of events on [t1, t2]

 E[N(t2) - N(t1)] = # h(t) dt = H(t2) - H(t1)

Prob. {N(t) = n | N(t0) = n0 } =

t2

t1

 [H(t) - H(t0)]
n - n0

(n - n0)!

exp {- [H(t) - H(t0)]}

n > n0 and t > t0

66ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Exponential Model (EXP)

! Failure intensity

h(t) = a b exp (-bt) parameters to be estimated: a, b

! Cumulative number of failures

H(t) = a [1 - exp(-bt)]

a b

C1

C2

C3

198 0,15

198 0,4

221.5 0,25

C2

C1

C3

0

10

20

30

40

50

60

0

50

100

150

200

250

C2

C1

C3

H(t)

t

h(t)

t

67ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Hyperexponential Model (HE)

! Failure intensity

0 " 0 "1, 0+1 = 1 and 2inf " 2suph(t) =
!+!

0 e
-2sup t!!+! 1 e -2inf t

0 2sup e
-2sup t 0 2inf e

-2inf t

h(t)

t

 02sup+ 12inf

2inf

h(t)

C5

C4

C2

C1

C3

0
1

0,014

100 200 300 400 500 600 700 800 900 1000

0,012

0,010

0,008

0,006

0,004

0,002

t

variation of parameters

2inf = residual failure rate

68ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Hyperexponential Model (HE)

! H(t) = E [N(t)] = - Ln []

! * (t' | s) = h(s+t)

s = time of occurrence of failure i

Parameters to be estimated: 0 , 2inf , 2sup

h(t)

*(t' | s)

s t
t'

MTTFi =
!+!

0 e
-2sup s!!+! 1 e -2inf s

0 2sup e
-2sup s 0 2inf e

-2inf s

0 e
-2sup t!!+! 1 e -2inf t

69ReSIST courseware — Karama Kanoun — Software Reliability Engineering

S-Shaped model (SS)

! Failure intensity

h(t) = a b2 t exp (-bt) parameters to be estimated : a, b

! Cumulative number of failures

H(t) = a [1 - (1 + b t) exp(-bt)]

C1

C3

C2

0

20

40

60

80

100

120

140

160

180

200

220

240

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

H(t)

t0

2

4

6

8

10

12

14

16

18
20

22

24

26

28

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

C2

C1

C3

h(t)

t

a b

C1

C2

C3

198 0,15

198 0,4

221.5 0,25

70ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model in practice

! Pre-processing of failure data

Trend analysis # reliability growth ?

! Parameter determination from observed failure data

• Inference procedures

! Prediction of next failure(s)

• Evaluation of reliability measures based on observed data

! Model validation # confidence in evaluation

 # Checking agreement between Predictions / Observations

!Predictive analysis

!Retrodictive analysis

71ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model application: predictive analysis

OBSERVATIONS

Time to failures, # failures

ModelModel
applicationapplication

MeasureMeasure
valuevaluess

MTTF
Failure rates

Failure intensity
Cumulative number of failures

Numerical values

of the parameters

Trend testsTrend tests

PREDICTIONS

OBSERVATIONS

ValidationValidation
criteriacriteria

??

72ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model application: retrodictive analysis

OBSERVATIONS

Time to failures, # failures

ModelModel
applicationapplication

MeasureMeasure
valuevaluess

MTTF
Failure rates

Failure intensity
Cumulative number of failures

Numerical values

of the parameters

Trend testsTrend tests

PREDICTIONS

ValidationValidation
criteriacriteria

??

73ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Trend tests & models

! Trend test: identification of periods of reliability growth / decrease

! Reliability growth models are selected depending on the trend

displayed by the observed data set

n(k)

k

k

n(k)

k

n(k)

k

n(k)

Failure intensity Applicable models Failure intensity Applicable models

Models
with

reliability
growth

Models with
reliability
decrease

followed by
reliability
growth

Models in
stable

reliability

74ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Combined use in real-time of trend tests & models

! Identify the trend

! Apply an appropriate model

! Trust model results as long as the usage conditions are not modified

• Test of the same function(s)

• No addition of new users or new sites

• No specification changes

! In case of significant variation

• Apply the trend test including the new data items:

! Reliability growth: trust the previous estimations

! Reliability decrease: wait for reliability growth

! Reliability growth after reliability decrease: new data partitioning

 and application of reliability growth models

75ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Results Validity ?

Unit tests

Static Verification

! Trend analysis

 Reliability growth models

End of Validation Operation

! Trend analysis

 +

! Reliability growth models

 ••• operational profile ?

 ••• enough data ?

! Limits: 10-3/h -10-4/h

! Trend analysis

 +

! Reliability growth models

 or models in stable reliability

 High relevance

Examples:

E10-B (Alcatel ESS):

1400 systems, 3 years

* = 5 10-6/h — *c = 10-7/h

ABB Atom Nuclear I&C Appli.

8000 systems, 4 years

* : 3 10-7 /h — *c = 4 10-8/h

76ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Conclusion

! Method

• Rigorous progressive analysis of the software behavior

• Deep thoughts about the system and the analyzed data

• Better results from reliability growth models

! Applicability

• General method: applicable to hardware design faults

• Should be integrated to the various phases of the development:

! early phases: analyses of data and trend tests

! validation and operational life: application of models (in addition)

! The method has been applied to several real-life systems

(hardware and software)

! Needs for tools

77ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example of Tool: SoRel (developed at LAAS)

Exponential
(Goel-Okumoto)

S- Shaped
(Yamada et al.)

Doubly Stochastic
(Littlewood-Verrall)

Hyperexponential
(Kanoun-Laprie)

Trend Tests Models

Laplace test

Kendall test

Arithmetical
mean

Spearman test

[See reference 6]

78ReSIST courseware — Karama Kanoun — Software Reliability Engineering

System Languages Volume Observation Phases # Systems # FR and/or CR

E10-B Assembler 100 k-bytes 3 years Val. / Op. 1400 58 FR / 136 CR

TROPICO-R 1500 Assembler 300 k-bytes 27 months Val. / Op. 15 465 FR/CR

TROPICO-R 4096 Assembler 350 k-bytes 32 months Val. / Op. 42 210 FR/CR

TROPICO-RS Assembler 420 k-bytes 47 months Op. 37 212 FR/CR

TROPICO-RA CHILL 815 KLOC 68 months Val. / Op. 146 3063 FR/CR

Telecom. Equipt PLM-86 5 10
5

 inst. 16 months Val. 4 2150 FR

Experience with SoRel

79ReSIST courseware — Karama Kanoun — Software Reliability Engineering

MODELS IN STABLE RELIABILITY

! Apply when no program evolution nor failure resolution is occurring

! Operational testing (end of validation) — certification

or when the system is in operation without fault correction

! Residual faults: expected to induce a reduced failure rate

! Two types of inferences

• Experiments without failures:

Hypothesis testing evaluate a lower bound on the software reliability

or an upper bound on the failure probability (for a given confidence level)

• Experiments with only a few failures observed (all known faults are not fixed)

1) Hypothesis testing (assessment of lower bounds) or

2) Evaluation of an unbiased estimator of the failure probability per execution

(the first approach is better when the number of failures is very low)

80ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Reliability evaluation when testing reveals no failure

! Hypothesis testing when testing reveals no failure

Prob {accepting "p ! p0" while it is false } ! +

p = actual probability of failure and p0 required probability of failure
 (objectives)

+ = risk error and (1- +) = confidence level

! Amount of execution / time required

N = number of executions without failure,

T = test duration without failure

• Discrete time: (results from (1 - p) N < +)

• Continuous time:

N #
ln (+)

ln (1-p0)

T # -
* 0

ln (+)

81ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Measure:

Test duration without failure, required to reach a target reliability objective

Discrete time: Number of program executions without failure

Risk: +

23 46 69 92

230 461 691 921

2303 4605 6908 9210

23026 46052 69078 92103

230259 460517 690776 921034

2302585 4605170 6907755 9210340

p0

Target
failure

probability

10-1 10-2 10-3 10-4

10-1

10-2

10-3

10-4

10-5

10-6

82ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Continuous time: Testing times for some values of *0 and +

Risk +

10-1 10-2 10-3 10-4 Time unit

10-1 1 2 3 4 Days

10-2 10 20 1 1.3 Months

10-3 3.2 6.4 9.6 1

10-4 2.6 5.3 7.9 10.5 Years

10-5 26.2 52.3 78.9 105.1

10-6 262.8 525.7 788.6 1051.4

*
0

Target
failure
rate

Measure:

Test duration without failure, required to reach a target reliability objective

83ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Other example: stable reliability in operation

! Problem

• The software system is in operation, some failures have been observed,
their consequences are acceptable, even if the faults have been
identified

• Modifications are not performed or, only a few modifications are
introduced without perception of any reliability growth / decrease

! Aim

Evaluate the operational failure rate

! Method

Constant failure rate, Homogeneous Poisson Process # Markov process

Average observed MTTF, associated confidence level

Usually good results

84ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Product-in-a-process approach

Supplement current approaches to software reliability evaluation with information

Product-in-a-process assessment

Validation of a product= validation of (n+1) th product

with information about: ITSELF + PREVIOUS PRODUCTS

Process Past field
experience

Framework: Bayesian probabilities

3: conditional probability of failure upon execution / failure rate

Prior and posterior distributions: conjugate distributions

 Beta distribution / Gamma distribution
[See reference 4]

85ReSIST courseware — Karama Kanoun — Software Reliability Engineering

3 = k1 3c + k2 3p k1 + k2 = 1

 3 point Bayesian estimate

 3c conventional estimate (validation of the product in isolation)

 3p prior estimate (field experience of previous products)

! Field produce much more data than validation of new software

 k2 > k1 # prior estimate dominates conventional estimate

Example:

Satellite control system

3c = 11.6 10-3/h (6 months)

3p = 2.8 10-3/h (21 months)

 k1 = 0.2 ; k2 = 0.8

3p = 4.7 10-3/h

observed (17 months): 3.9 10-3/h

86ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Conclusion

! Software systems under development and in operation

! With fault removal # Reliability growth models

• For several reasons reliability decrease

(new specifications, environment change, new usage profile, etc.)

• Identify the trend before model application

• Good results under certain conditions, for short term objectives

• Long term objectives ? other new approaches (product-in-a-process approach)

! Without fault removal # stable reliability

• Some of the work related to statistical testing could be adapted to operation

• Two situations: with a few failures or without failures

• Limitations due to prohibitive test time needed to achieve high reliability objectives

• Interesting when several systems are under use (example of avionics systems)

• Test acceleration methods

87ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Off-the shelf software components
Dependability benchmarking

! No information available from component development

! Evaluation based on controlled experimentation

Ad hoc Standard

 Evaluation of dependability measures / features

 in a non-ambiguous way 4 comparison

 5
 Properties

Reproducibility, repeatability, portability, representativeness, acceptable cost

Dependability benchmarking

[See reference 12]

88ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Context: User point of view

Which OS for my

computer system?

Operating System

MacLinux

Windows

Computer System

! Limited knowledge: functional description

! Limited accessibility and observability

! Limited intrusiveness and interference

 # Black-box approach # robustness benchmark

89ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Operating System Benchmarking and Associated Measures

Measures

 - POS: OS Robustness [%SEr %SXP %SPc %SHg %SNS])

 - Texec: OS reaction time in the presence of faults

 - Tres: OS Restart time after fault insertion

OS Outcomes
SEr Error code

SXp Exception

SPc Panic

SHg Hang

SNS No signaling

Operating system

Hardware

Device

drivers

Workload

API
Faults

Faults = corrupted parameters of system calls

90ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Experimental setup

System under benchmarking

Target Operating System

Hardware

Activity (Workload)

Interception & Substitution
of system calls

&
Observation OS reaction

API

Host Machine

Control
Machine

91ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Measurements

tExpEnd

(n)
tResume

(n)

tResponse

(n)

tWStart

 (n)

tExpStart

(n+1)

Restart time

Workload Completion Time

OS Reaction time

System Call

to intercept
Workload End

Experiments with Workload completion

92ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Measurements

tExpEnd

(n)

Restart time

tExpStart

(n+1)

Experiment End

tResume

(n)

tResponse

(n)

tWStart

 (n)

OS Reaction time

System Call

to intercept
Workload End

Experiments without Workload completion

Timeout >> Workload completion duration

93ReSIST courseware — Karama Kanoun — Software Reliability Engineering

OS reaction time (Workload = PostMark)

Windows Linux

µs
µs

In the presence of faults

Without parameter corruption

94ReSIST courseware — Karama Kanoun — Software Reliability Engineering

OS Restart time

Windows Linux

seconds seconds

In the presence of faults

Without parameter corruption

95ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Detailed OS Restart times

exp# exp

Windows XP Linux 2.2.26

Workload Abort/hang

check disksecondsseconds

96ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Summary

Validated

data

Consequences
of failures

Phase Components

Data Validation

Collected data

Descriptive Analyses

Reliability EvolutionReliability EvolutionDescriptive StatisticsDescriptive Statistics Reliability MeasuresReliability Measures

Development

Validation &

Operation

Types
of faults

Data set partition

data collection

• • •

Trend Analyses Model Application

Objectives
of the analysis

Capitalize experience

Data related to
similar previous

projects

Feedback to software

development process

97ReSIST courseware — Karama Kanoun — Software Reliability Engineering

SOFTWARE PROCESS IMPROVEMENT (SPI)
(The maturity process)

! To obtain consistent quality of the software
control the production process # improve the software process

! The engineering method:

• Observe existing solutions

• Propose better solutions

• Build / develop

• Measure and analyze

• Repeat the process until no more improvements possible

evolutionary / continuing improvement oriented approach

Models for process maturity or organization maturity

Aim: assess the organization maturity level

[See reference 11]

98ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Some existing methods / models

! Crosby: Satisfaction by Quality Scheme to software development

! Weinberg: The Software Engineering Culture Patterns

! Humphrey: A Maturity Framework # The Capability Maturity Model

! Other approaches:

• AT&T: Quality Program

• Fujitsu: Concurrent-Development Process Model

• IBM: The Cleanroom Software Development Process

• IBM Communication Systems: The Defect Prevention Process

• ODC (Orthogonal Defect Classification)

• etc.

99ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Cost and reliability evolution, taking into account process improvement

PROCESS IMPROVEMENT

RELIABILITY IMPROVEMENT

COST REDUCTION

Cost of reliability

Reliability

Cost

Basic manufacturing cost

Cost of scrap / rework

without process improvement

with process improvement

Total manufacturing cost

100ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example of benefits from SPI introduction

! IBM (cleanroom approach):

 Productivity increase = 70% for development and 100% for testing

! IBM (defect prevention approach):

 Fault density divided by 2 with an increase of 0.5 % of the product resources

! Fujitsu (concurrent development process):

Release cycle reduction = 75 %

! AT&T(quality program):

Customer reported problems divided by 10

Maintenance program divided by 10

 System test interval divided by 2

New product introduction interval divided by 3

Importance of operational profile (principal cost in SRE): % test efficiency

101ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Example of benefits from SPI introduction (Cont’d)

! Raytheon (Electronic Systems), CMM:

Rework cost divided by 2 after two years of experience

Productivity increase = 190%

Product quality: multiplied by 4

! Raytheon (Equipment Division), CMM:

Rework cost divided by 4 (elimination of $15.8 million in rework cost)

Productivity multiplied by 2

Return on investment 7.7-to-1

! Hughes Aircraft (Software Engineering Division, Fullerton CA) :

1987: level 2 # recommendations & actions # level 3 in 1990

Return on investment of process improvement initiative: 5-to-1

! Motorola (Arlington Heights), mix of methods:

Fault density reduction = 50 within 3.5 years

102ReSIST courseware — Karama Kanoun — Software Reliability Engineering

CASE STUDIES

! TROPICO-R 1500 [See reference 3]

Reliability analysis and evaluation

! TROPICO-R 4096 [See reference 7]

Software decomposition

Reliability analysis and evaluation

! Three generations of TROPICO-R [See reference 8]

Comparative evolution: fault density and reliability

103ReSIST courseware — Karama Kanoun — Software Reliability Engineering

TROPICO-R 1500

! Characteristics

• Language: Assembly

• Size: 300 k-bytes

• Validation: 10 months, 297 failures / corrections

• Field trial: 4 months, 55 failures/corrections

• Operation: 13 months, 109 failures/corrections

• Total : 461

! Data

• Number of failures / unit of time

! unit of time: 10 days

! observation duration: 81 units of times

• Times to failures

! operational life only
30 40 50 60 70

0

10

5

15

80

systems

104ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Data set
Validation Field test Operation

u. time CNF u. time CNF u. time CNF

31
32
33
34
35
36
37
38
39
40
41
42

301
302
310
317
319
323
324
338
342
345
350
352

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

356
367
373
373
378
381
383
384
384
387
387
387
388
393
398
400
407
413
414
417
419
420
429
440
443
448
454
456
456
457
458
459
459
459
459
460
460
460
461

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

7
8

36
45
60
74
82
98

106
115
120
134
139
142
145
153
157
174
183
196
200
214
223
246
257
277
283
286
292
297

CNF:
cumulative
of failures

105ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Test de Laplace & data partitioning

whole phases

Validation Field trial Operation
-14

-12

-10

-8

-6

-4

-2

0

2

4

6 u(k)

k

Data Partitioning

Validation &field trial

– P1 : {1 , 14}

– P2 : {15 , 42}

Operation

– P3 : {43 , 54}

– P4 : {55 , 81}

 Per phase

-4

-3

-2

-1

0

1

2

3

4

5

Validation Field trial Operation

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

106ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model Application
(Number of failures)

! Validation & field trial, application of the S-Shaped model

unit of time

C1 : calibrated from {1,8}
C2 : calibrated from {15,27}
C3 : calibrated from {15,29}

0

50

100

150

200

250

300

350

400

1 5 9 13 17 21 25 29 33 37 41

Cumulative #
of failures

R9,14

C1 2,6

C2 28,4 31,2

C3 5,8

R28,42 R30,42

C1

observed

C2

C3

107ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model application
(Number of failures)

! Operational life, application of the S-Shaped model (SS)

•

Prediction for next quarter (all systems)

 2 failures the next month
 & 1 failure / month the next two months

350

370

390

410

430

450

470

43 47 51 55 59 63 67 71 75 79

unit of time

Cumulative #
of failures

R 51,55

C4 1,8

C5 4,3 5,3

C6 3,5

R74,81 R76,81

C4

Observed C5

C6

Residue

108ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model application
(times to failures)

! Operational life, average system, application of the Hyperexponential model

Laplace Test

Software residual failure rate for an average system

 *sof = 1,3 10
-4

/h (all consequences)

 Hardware failure rate (known from a different study)

 *har = 4 10
-6

/h (leading to system unavailability)

 apply reliability growth models to failures leading to total unavailability

-7

-6
-5
-4

-3
-2
-1

0
1

2
429 433 437 441 445 449 453 457 461

k=65 k=69 k=81

failures

unit of time

*har « *sof

109ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Model application according to software
components & to failure consequences

! Other switching system E-10-B

• Hyperexponential model

General unavailability 1,2

Partial unavailability 7,9

Exploitation treat. delay 3,7

Loss of a hardware unit 3,1

All failures 38,2

Component

Telephony 7,5

Defense 27,4

Exploitation 7,3

Executive 8,3

All corrections 47,5

* r(10
-7

 / h) Consequence * r(10
-7

 / h)

110ReSIST courseware — Karama Kanoun — Software Reliability Engineering

TROPICO-R 4096

! Characteristics

• Language: Assembly

• Size: 335 k-bytes

• Validation : 8 months, 76 failures / corrections

• Operation: 24 months, 134 failures/corrections

• Total: 210

! Data

• Number of failures / unit of time

! observation period: 32 months

• Times to failures

! for operational life

111ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Software decomposition and # of systems

! Decomposition

! Number of systems

0
5

10
15
20
25
30
35
40
45

0 8 12 16 20 24 28 32

Validation Operation

months

Volume # failures

Telephony 75 k-bytes 74 (34 - 40)

Defense 117 k-bytes 67 (20 - 47)

Interface 115 k-bytes 61 (20 - 41)

Management 44 k-bytes 31 (13 - 18)

4

112ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Laplace Test

2

4

6

2 4 60 8

u(k)

Validation

Operation: all systems

-8

-6

-4

-2

0

2

9 11 13 15 17 19 21 23 25 27 29 31

Operation: average system-10

-8

-6

-4

-2

0

2

9 11 13 15 17 19 21 23 25 27 29 31

u(k)

u(k)

113ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Laplace Test for the software components

Telephony

Interface

Defense

Management

-6

-5
-4

-3
-2

-1
0

1

13 15 17 19 21 23 25 27 29 31

u(k)

11

-4

-3

-2

-1

0

1

11 13 15 17 19 21 23 25 27 29 31

u(k)

-8

-6

-4

-2

0

11 13 15 17 19 21 23 25 27 29 31

u(k)

-8

-6

-4

-2

0

2

11 13 15 17 19 21 23 25 27 29 31

u(k)

114ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Failure intensity: Hyperexponential model application

observed failure intensity

Hyperexponential model

0

0.2

0.4

0.6

0.8

1

17 19 21 23 25 27 29 31

observed failure intensity

Hyperexponential model

0

0.1

0.2

0.3

0.4

0.5

17 19 21 23 25 27 29 31

observed failure intensity

Hyperexponential model

0

0.1

0.2

0.3

0.4

17 19 21 23 25 27 29 31

observed failure intensity

Hyperexponential model

0

0.1

0.2

0.3

0.4

17 19 21 23 25 27 29 31

Telephony

Interface

Defense

Management

115ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Residual failure rates (Hyperexponential model)

Residual
failure rate

6

5

5

6

-

-

-

-

-5

Telephony 1.2 10 /h

Defense 1.4 10 /h

Interface 2.9 10 /h

Management 8.5 10 /h

Sum 5.3 10 /h

75

103

115

42

335

Observed failure intensity

0

0.5

1

1.5

2

2.5

17 19 21 23 25 27 29 31

Failure intensity estimated by HE
(Residual failure rate: 5.7 10-5 /h

Sum of the failure intensities of the
components estimated by HE

Size (Kb)

116ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Maintenance planning

Estimated # failures from 20 to 32: Exponential: 33

 Hyperexponential: 37

 S-Shaped: 9

Observed: 34

70

90

110

130

150

170

190

210

230

9 11 13 15 17 19 21 23 25 27 29 31

prediction

observed

Cumulative # of failures

Unit of time

SS

HE

EXP

117ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Maintenance planning

Estimated # failures from 20 to 32: 40

Observed: 34

0

20

40

60

80

100

120

140

160

180

200

220

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Cumulative # of failures

Unit of time

prediction

observed

SS

118ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Software Reliability Analysis of Three
Successive Generations of a Switching System

Outline

• The products investigated

• Data collected

• Statistics on failures and faults

• Residual failure rates

• Conclusion

119ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Products & Software

• Three products

TROPICO-R 1500 (PRA)

TROPICO-R 4096 (PRB)

TROPICO-RS (PRC)

(Applicative & Executive software) • Software components

Elementary Implementation Blocks (EIB)

Functions

Telephony (TEL)

Defense (DEF)

Interface (INT)

Management (MAN)

120ReSIST courseware — Karama Kanoun — Software Reliability Engineering

EIB size (Kbytes)

TEL 6 72

DEF 9 93

INT 10 113

MAN 4 42

Sum 29 320

PRA

EIB size (Kbytes)

TEL 6 75

DEF 12 117

INT 10 115

MAN 4 44

Sum 32 351

PRB

EIB size (Kbytes)

TEL 8 111

DEF 12 130

INT 10 129

MAN 4 51

Sum 34 421

PRC

Software decomposition and size

121ReSIST courseware — Karama Kanoun — Software Reliability Engineering

EIB Distribution

• Two types of EIBs: new — reused (modified / unchanged)

According to the size of EIBs According to # of EIBs

PRB

PRC

37%

(84 % in Executive)

50%
(75 % in Applicative Soft.)

13%

76%

18%

6%

21%

67%

12%

64%

34%

2%

Unchanged

Modified

New

122ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Test environment and failure data

• Software test program

Steps: unit tests, integration tests, validation tests, field tests

Validation tests: functional, quality, performance, overload tests

• Failure reports & Trouble reports (FRs & TRs)

• Date of failure occurrence (static analysis & date of detection)

• Description of system configuration in which the failure was observed

• Type: hardware, software, documentation, affected EIBs

• Analysis: identification— classification of faults (coding, specification, etc.)

• Solutions

• Regression testing

• Rediscoveries are not recorded

• An FR is a failure report and also a correction report

123ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Data Collection

0

5

10

15

20

25

30

35

40

45

0 8 12 16 20 24 28 32

months

Validation
Operation

PRB systems

Validation Operation

0

5

10

15

1 9 13 17 21 25 27

PRA systems

 Field test

Operation

months

PRC systems

0

10

20

30

40

1 5 9 13 17 21 25 29 33 37 41 45 47

124ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Statistics on Failures and Faults

! >70 % of failures led to modification of one EIB

FR (# TR) # CF

PRA 465 637

PRB 210 282

PRC 212 (105) 394

! identify EIBs which are dependent w.r.t failure occurrence
(2 pairs of strongly dependent EIBs)

corrected EIBs # FR in PRA # FR in PRB #FR+TR in PRC

 1 362 (77.8%) 165 (78.6%) 228 (71.9%)

 2 72 (15.5%) 33 (15.7%) 69 (21.8%)

" 3 31 (6.7%) 12 (5.7%) 20 (6.3%)

125ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Statistics on Failures and Faults (cont’d)

! 90% of FRs led to modification of only one Function

PRA PRB

FR # CF Size

TEL 74 102 75

DEF 67 71 117

INT 61 68 115

MAN 31 41 44

Sum 233 282 351

FR # CF Size

TEL 146 190 72

DEF 138 164 93

INT 170 191 113

MAN 78 92 42

Sum 532 637 320

PRC
FR (# TR) # CF Size

TEL 65 (52) 155 111

DEF 63 (21) 88 130

INT 72 (27) 112 129

MAN 25 (10) 40 51

Sum 225 (110) 395 421

126ReSIST courseware — Karama Kanoun — Software Reliability Engineering

PRA

PRC

PRB

26%

30%

30%

14%

25%

36%

24%

15%

40%

22%

28%

10%

TEL

DEF

INT

MAN

Distribution of faults among functions

127ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Distribution of faults per EIB type

PRB PRC

10%

83%

7%

58%

42%

0%

Unchanged
Modified
New

128ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Average fault density

 PRA PRB PRC

After 13 months 0.34 0.35 0.3

After 24 months - 0.47 0.6

Size PRA PRB PRC
(all faults)

PRC

(only faults relative
to FRs)

EIB size > 15 Kb 1.80 1.08 0.99 0.65

10 Kb <EIB size< 15 Kb 2.02 0.68 0.58 0.47

5 Kb <EIB size< 10 Kb 2.31 0.60 0.96 0.52

EIB size< 5 Kb 2.56 0.71 0.62 0.56

Average fault density 2.1 0.76 0.79 0.55

! data collected during operation

! versus EIB size

129ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Fault density evolution / EIB type (Operation)

Unchanged EIBs Modified EIBs

0

0.2

0.4

0.6

0.8

1

PRA

PRB

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

PRC

0

0.2

0.4

0.6

0.8

1

1.2

1 year

2 years

130ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Residual failure rates

PRA PRB PRC

TEL 2.6 10-5 / h 1.2 10-6 / h 4.3 10-5 / h

DEF 4.3 10-5 / h 1.4 10-5 / h 1.9 10-5 / h

INT 4.2 10-5 / h 2.9 10-5 / h 3.2 10-5 / h

MAN 1.4 10-6 / h 8.5 10-6 / h 9.9 10-6 / h

Sum 1.124 10-4 / h 5.27 10-5 / h 1.03 10-4 / h

131ReSIST courseware — Karama Kanoun — Software Reliability Engineering

Conclusion

• PRA & PRB

• Similar development environment # reliability improvement

• PRC

• Additional experimental studies

factors impacting the reliability of a family of products

• Residual failure rates: same order of magnitude

• Failure rate of the software =

sum of the failure rates of its components

• PRA, PRB & PRC

• Learning process interrupted # reliability improvement?

132ReSIST courseware — Karama Kanoun — Software Reliability Engineering

References

1. Handbook of Software Reliability Engineering, Edited by Michael R. Lyu, Published
by IEEE Computer Society Press and McGraw-Hill Book Company, 1996.

2. Software Reliability Engineering: More Reliable Software Faster and Cheaper, 2nd
Edition, John Musa, September 2004.

3. A method for software reliability analysis and prediction, application to the TROPICO-
R switching system, K Kanoun, M. R. Bastos Martini, J. Moreira de Souza, IEEE
Transactions on Software Engineering, N° 4, pp. 334-344, April 1991.

4. For a product-in-a-process approach to software reliability evaluation,J. C. Laprie,
Third IEEE International Symposium on Software Reliability Engineering (ISSRE'92),
Research-Triangle Park (USA), October 7-10 1992, pp.134-13

5. Operational Profiles in Software-Reliability Engineering, John D. Musa, IEEE
Software 10 (2), pp. 4-32, 1993.

6. SoRel: a tool for reliability growth analysis and prediction from statistical failure data,
K. Kanoun, M. Kaâniche, J. C. Laprie and S. Metge, 23rd IEEE International
Symposium on Fault-Tolerant Computing (FTCS'23), Toulouse, France, June 22-24,
1993, pp.654-659.

133ReSIST courseware — Karama Kanoun — Software Reliability Engineering

7. Experience in software reliability: from data collection to quantitative evaluation, K. Kanoun, M.
Kaâniche, and J. C. Laprie, 4th International Symposium on Software Reliability Engineering,
Denver (USA), 3-6 November 1993, pp.234-245.

8. Software failure data analysis of tthree successive generations of a switching system, M.
Kaâniche, K. Kanoun, M. Cukier, M. R. Martini, 1st European Dependable Computing
Conference (EDCC-1), Berlin, Germany, 4-6 October 1994, pp. 473-490.

9. Software Reliability Trend Analyses: From Theoretical to Practical Considerations,
K. Kanoun and J. C. Laprie, IEEE Transactions on Software Engineering, Vol.20, N°9, pp.740-
747, September 1994.

10. Trend Analysis, Kanoun, K. and J.-C. Laprie, in Handbook of Software Reliability Engineering,
Ed. M. Lyu, Mc Graw Hill, Chapter 10, pp. 401-437, 1996. Freely available at:
http://www.cse.cuhk.edu.hk/~lyu/book/reliability/

11. A measurement-based framework for software reliability improvement, K. Kanoun, Annals of
Software Reliability, Vol.11, N°1, pp.89-106, November 2001.

12. Windows and Linux Robustness Benchmarks With Respect to Application Erroneous Behavior,
K. Kanoun, Y. Crouzet, A. Kalakech, A. E. Rugina, in Dependability Benchmarking for Computer
Systems, Chapter 12, pp. 277-254. Editors: Karama Kanoun and Lisa Spainhower, IEEE
Computer Society and WILEY, August 2008.

