
Lecture 4

May 7-10, 2019 – Thessaloniki, Greece

Prof. Cinzia Bernardeschi

Department of Information Engineering

Univerisity of Pisa, Italy

cinzia.bernardeschi@unipi.it

Basic buiding blocks in Fault Tolerant
distributed systems

Outline

• Fault models in distributed systems

• Atomic actions

• Consensus problem

• Conclusions

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 2

Fault models in distributed systems

Multiple isolated processing nodes that operate concurrently on shared
informations

Information is exchanged between the processes from time to time

The goal is to design the system in such a way that the distributed
application is fault tolerant

- A set of high level faults are identified

- Systems are designed that tolerate those faults

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 3

Fault models in distributed systems

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 4

Node failures

-Byzantine

-Crash

-Fail-stop

-...

Communication failures

-Byzantine

-Link (message loss, ordering loss)

-Loss (message loss)

-...
Byzantine

• Processes :

– can crash, disobey the protocol, send contradictory messages,
collude with other malicious processes,...

• Network:

– Can corrupt packets (due to accidental faults)

– Modify, delete, and introduce messages in the network

Fault models in distributed systems

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 5

The more general the fault model, the more costly and
complex the solution (for the same problem)

Byzantine

Crash

Fail-stop

No failure

GENERALITY COST / COMPLEXITY

Arbitrary failure approach (Byzantine failure mode)

Architecting fault tolerant systems

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 6

We must consider the system model:

- Asynchronous

- Synchronous

- Partially synchronous

- …

Develop algorithms , protocolos that are useful building blocks
for the architect of faut tolerant systems:

- Atomic actions

- Consensus

- Trusted components

- …….

Basic building blocks for fault tolerance

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 7

• Atomic actions

action executed in full all or has no effect

• Consensus protocols

correct replicas deliver the same result

• etc …

Atomic Actions

Atomic actions

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 9

Atomic action: an action that either is executed in full or has no effects at all

• Atomic actions in distributed systems:

- an action is generally executed at more than one node

- nodes must cooperate to guarantee that

- either the execution of the action completes successfully at each node
or the execution of the action has no effects

• The designer can associate fault tolerance mechanisms with the underlying
atomic actions of the system:

- limiting the extent of error propagation when faults occur and

- localizing the subsequent error recovery

An example: Transactions in databases

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 10

• Transaction: a sequence of changes to data that move the data base from a
consistent state to another consistent state.

• A transaction is a unit of program execution that accesses and possibly updates
various data items

• Transactions must be atomic:

all changes are executes successfully or data are not updated

Transactions in databases

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 11

Let T1 and T2 be transactions

Transaction T2

Transaction T1

1) A failure before the termination of the transaction,
results into a rollback (abort) of the transaction

2) A failure after the termination with success (commit)
of the transaction must have no consequences

Banking application

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 12

Account =(account_name, branch_name, balance)

t1: distributed transaction (access data at different sites)

t1: begin transaction

UPDATE account

SET balance=balance + 500

WHERE account_number=45;

UPDATE account

SET balance=balance - 500

WHERE account_number=35;

commit

end transaction

branch1 branch2

t11: UPDATE account
SET balance=balance + 500
WHERE account_number=45;

site1

t12:UPDATE account
SET balance=balance - 500
WHERE account number=35;

site2

t1

Client:
t1

account_number 45
……………..
……………..

account_number 35
……………..
……………..

Each branch responsable
of data on local accounts

Atomicity requirement

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 13

• Atomicity requirement
• if the transaction fails after the update of 45 and before the update of 35,

money will be “lost” leading to an inconsistent database state
• the system should ensure that updates of a partially executed transaction are

not reflected in the database

• Atomicity of a transaction:

Commit protocol + Log in stable storage + Recovery algorithm

A programmer assumes atomicity of transactions

A main issue: atomicity in case of failures of various kinds, such as
hardware failures and system crashes

Two-phase commit protocol

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 14

Tolerates: loss of messages

crash of nodes

- One transaction manager TM
- Many resource managers RM
- Log file (persistent memory)
- Time-out

Prepare

ReadyPrepare
msg

Ready
msg

TMComplete

Local
decision

Decision
msg

Ack
msg

Global
decision

RM

………………

………………

………………

Uncertain period:
if the transaction manager crash, a participant with Ready

in its log cannot terminate the transaction

Stable storage

Three-phase commit

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 15

Prepare CompletePre-commit Global Commit

Local
Commit

Pre
CommitReady

Precommit phase is added. Assume a permanent crash of the coordinator.
A participant can substitute the coordinator to terminate the transaction.

A participant assumes the role of coordinator and decides:

- Global Abort, if the last record in the log Ready
- Global Commit, if the last record in the log is Precommit

Recovery and Atomicity

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 16

Physical blocks: blocks residing on the disk.
Buffer blocks: blocks residing temporarily in main memory

Block movements between disk and main memory through the following operations:
- input(B) transfers the physical block B to main memory.
- output(B) transfers the buffer block B to the disk

Transactions
- Each transaction Ti has its private work-area in which local copies of all data items accessed
and updated by it are kept.
-perform read(X) while accessing X for the first time;
-executes write(X) after last access of X.

System can perform the output operation when it deems fit.
Let BX denote block containing X.

output(BX) need not immediately follow write(X)

Data Access

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 17

X

Y

A

B

x1

y1

main memory : buffer

Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)

write(Y)
disk

work area
of T1

work area
of T2

transaction
private
memory

x2

From: [Silberschatz et. al,2005]

Physical Blocks

Recovery and Atomicity

• Several output operations may be required for a transaction

• A transaction can be aborted after one of these modifications have been made
permanent (transfer of block to disk)

• A transaction can be committed and a failure of the system can occur before all
the modifications of the transaction are made permanent

• To ensure atomicity despite failures, we first output information describing the
modifications to a Log file in stable storage without modifying the database itself

Log-based recovery

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 18

DB Modification: an example

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 19

Log Write Output

<T0 start>

<T0 , A, 1000, 950>

A = 950

<To , B, 2000, 2050>

B = 2050

Output(BB)

<T1 start>

<T0 commit>

<T1, C, 700, 600>

C = 600

Output(BC)

CRASH

Recovery actions

- undo (T1) A reset to 950
B reset to 2050

- redo (T0) C is restored to 700

Checkpointing

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 20

CK(T1,T2)

Crash

<T1 start>
<T2 start>

<T2 commit> <T3 start>

<T3,…><T1, Z, …><T1,Y, …>

dump

<T2,X, … >
<T1 abort>

<T1, W, …>

CK(T1,T3)

CHECKPOINT operation: output all modified buffer blocks to the disk

To Recover from system failure:
- consult the Log
- redo all transactions in the checkpoint or started after the checkpoint that committed;
- undo all transaction in the checkpoint not committed or started after the checkpoint

To recover from disk failure:
- restore database from most recent dump
- apply the Log Recovery

Atomic actions

Advantages of atomic actions:

a designer can reason about system design as

1) no failure happened in the middle of a atomic action

2) separate atomic actions access to consistent data
(property called “serializability”, concurrency control).

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 21

Consensus protocols

Consensus problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 23

Module

Voter

node2

Communication
Network

Module

Voter

node3

Module

Voter

node1

In order for the majority voting to yield a reliable system,
the following two conditions should be satisfied:

- all non faulty components must use the same input value
- if the sender is non-faulty, then all non-faulty components

use the value it provides as input

One way to achieve reliability is to have multiple replicas and
take the majority voting among them

Faulty

What happen with Byzantyne failures?

The faulty replica can send different values to the other replicas.

The inputs to the voter can be different

Consensus problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 24

The Consensus problem can be stated informally as:

how to make a set of distributed processors achieve agreement
on a value sent by one processor despite a number of failures

“Byzantine Generals” metaphor used in the classical paper by [Lamport et al.,1982]

The problem is given in terms of generals who have surrounded the enemy.

Generals wish to organize a plan of action to attack or to retreat. They must take the same decision.

Each general observes the enemy and communicates his observations to the others.

Unfortunately there are traitors among generals and traitors want to influence this plan to the
enemy’s advantage. They may lie about whether they will support a particular plan and what other
generals told them.

Byzantine Generals Problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 25

GeneralGeneral

enemy

General

General General

Consensus:
A: All loyal generals decide upon the same plan of actions
B: A small number of traitors cannot cause loyal generals to adopt a bad plan

General: either a loyal general or a traitor

Byzantine Generals Problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 26

Assume

- n be the number of generals

- v(i) be the opinion of general i (attack/retreat)

- each general i communicate the value v(i) by messangers to each other general

- each general final decision obtained by:
majority vote among the values v(1), ..., v(n)

Absence of traitors:
generals have the same values v(1), ..., v(n) and they take the same decision

Byzantine Generals Problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 27

Consensus:
A: All loyal generals decide upon the same plan of actions
B: A small number of traitors cannot cause loyal generals to adopt a bad plan

In presence of traitors:

to satisfy condition A
every general must apply the majority function to the same values
v(1),...,v(n)

to satisfy condition B
for each i, if the i-th general is loyal, then the value he sends must
be used by every loyal general as the value v(i)

Interactive Consistency

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 28

Simpler situation:

1 Commanding general (C)
n-1 lieutenant generals (L1, ..., Ln-1)

The Byzantine commanding general C wishes to organize a plan of action to
attack or to retreat; he sends the command to every lieutenant general Li

IC2:
The decision of loyal lieutenants
must agree with the commanding
general’s order if he is loyal

Interactive Consistency

IC1:
All loyal lieutenant
generals obey the same
command

Byzantine Generals Problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 29

Commanding general lies and sends
- attack to some lieutenant generals
- retreat to some other lieutenant generals

How loyal lieutenant generals may all reach the
same decision either to attack or to retreat ?

retreat

attack

L1

Commanding

General C L4

L2

L3

Commanding
general is loyal:
IC1 and IC2 are
satisfied

Commanding general
lies but sends the same
command to
lieutenants:
IC1 and IC2 are satisfied

Byzantine Generals Problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 30

L1

C

what L4 says he received by C

what L3 says he received by C

what L2 says he received by C

decision sent by C

what L1 says he received by C

L4

L2

L3

L1= (v1, v2, v3, v4)
L2= (v1, v2, v3, v4)
L3= (v1, v2, v3, v4)
L4= (v1, v2, v3, v4)

Lieutenant generals send messages back and forth among themselves
reporting the command received by the Commanding General.

3 Generals: one lieutenant traitor

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 31

C

L1 L2

<attack> <attack>

<C said retreat>

L2 traitor

In this situation (two different commands, one from the commanding general and the other from a
lieutenant general), assume L1 must obey the commanding general.

If L1 decides attack, IC1 and IC2 are satisfied.

If L1 must obey the lieutenant general, IC2 is not satisfied

RULE: if Li receives different messages, L1 takes the decision he received
by the commander

n = 3
no solution exists

3 Generals: Commander traitor

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 32

L1 must obey the commanding general and decides attack
L2 must obey the commanding general and decides retreat

IC1 is violated
IC2 is satisfied (the comanding general is a traitor)

To cope with 1 traitor, there must be at least 4 generals

C

L1 L2

<attack> <retreat>

<C said retreat>

C traitor

The situation is the same as before, and the same rule is applied

<C said attack>

Oral Message (OM) algorithm

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 33

Assumptions

1. the system is synchronous

2. any two processes have direct communication across a network not prone to failure itself
and subject to negligible delay

3. the sender of a message can be identified by the receiver

In particular, the following assumptions hold

A1. Every message that is sent by a non faulty process is correctly delivered

A2. The receiver of a message knows who sent it

A3. The absence of a message can be detected

Moreover, a traitor commander may decide not to send any order. In this case we assume a
default order equal to “retreat”.

Oral Message (OM) algorithm

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 34

The Oral Message algorithm OM(m) by which a commander sends an order to n-1 lieutenants,
solves the Byzantine Generals Problem for n = (3m +1) or more generals, in presence of at most m
traitors.

__

majority(v1, ..., vn-1)

if a majority of values vi equals v,

then

majority(v1, ..., vn-1) equals v

else

majority(v1, ..., vn-1) equals retreat

Deterministic majority vote on the values

The function majority(v1, ..., vn-1) returns “retrait” if there not exists a majoirity among values

The algorithm

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 35

Algorithm OM(0)

1. C sends its value to every Li, i{1, ..., n-1}

2. Each Li uses the received value, or the value retreat if no value is received

Algorithm OM(m), m>0

1. C sends its value to every Li, i{1, ..., n-1}

2. Let vi be the value received by Li from C
(vi = retreat if Li receives no value)
Li acts as C in OM(m-1) to send vi to each of the n-2 other lieutenants

3. For each i and j  i, let vj be the value that Li received from Lj in step 2 using
Algorithm OM(m-1) (vj = retreat if Li receives no value).
Li uses the value of majority(v1, ..., vn-1)

OM(m) is a recursive
algorithm that invokes n-1
separate executions of
OM(m-1), each of which
invokes n-2 executions of
O(m-2), etc..
For m >1, a lieutenant sends
many separated messages to
the other lieutenants.

The algorithm OM(1)

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 36

4 generals, 1 traitor

Point 1

- C sends the command to L1, L2, L3.

- L1 applies OM(0) and sends the command he received from C to L2 and L3

- L2 applies OM(0) and sends the command he received from C to L1and L3

- L3 applies OM(0) and sends the command he received from C to L1 and L2

• Point 2

- L1: majority(v1, v2, v3)

- L2: majority(v1, v2, v3)

• //v1 command L1 says he received

• //v3 command L3 says he received

- L3: majority(v1, v2, v3)

v3

C

L1 L2

<…> <…>

v1 L3

<…>

v3

v1

v2v2

4 Generals: Commander traitor

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 37

C

L1 L2

<attack>
<attack>

<attack> L3

<attack>

<attack>

L1, L2 and L3 are loyal. They send the same command when applying OM(0)
IC1 and IC2 are satisfied

Li: v1 = attack, v2 =attack, v3 = attack

majority(....)= attack

C is a traitor but sends the same command to L1, L2 ad L3

...................

4 Generals: Commander traitor

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 38

C

L1 L2

<attack> <retrait>

<attack> L3

<attack>

<retrait>

C is a traitor and sends:
- attack to L1 and L2
- retrait to L3

L1: v1 = attack, v2 =attack, v3 = retrait majority(...)= attack

L2: v1 = attack, v2 =attack, v3 = retrait majority(...)= attack

L3: v1 = attack, v2 =attack, v3 = retrait majority(...)= attack

IC1 and IC2 satisfied

L1, L2 and L3 are loyal.

<retrait>

……….

4 Generals: one Lieutenant traitor

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 39

• A leutenant is a traitor

• L3 is a traitor:
sends retrait to L2 and attack to L1

C

L1 L2

<attack> <attack>

<attack>
L3

<attack>

<retrait>

L1: v1 = attack v2 = attack, v3 = attack majority(...) = attack

L2: v1 = attack v2 = attack, v3 = retrait majority(...) = attack

IC1 and IC2 satisfied

…………….

Oral message (OM) Algorithm

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 40

The following theorem has been formally proved:

Theorem:

For any m, algorithm OM(m) satisfies conditions IC1 and IC2 if there are more than
3m generals and at most m traitors. Let n the number of generals:

n >= 3m +1

4 generals are needed to cope with 1 traitor;

7 generals are needed to cope with 2 traitors;

10 generals are neede to cope with 3 traitors

.......

Byzantine Generals Problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 41

Original Byzantine Generals Problem

Solved assigning the role of commanding general to every lieutenant general, and running the algorithms
concurrently

General agreement among n processors, m of which could be faulty and behave in arbirary manners.

No assumptions on the characteristics of faulty processors

Conflicting values are solved taking a deterministic majority vote on the values received at each processor
(completely distributed).

GeneralGeneral

General

General General

enemy

Byzantine Generals Problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 42

Solutions of the Consensus problem are expensive

OM(m):
each Li waits for messages originated at C and relayed via m others Lj

OM(m) requires

n = 3m +1 nodes

m+1 rounds

message of the size O(nm+1) - message size grows at each round

Algorithm evaluation using different metrics:

number of fault processors / number of rounds / message size

In the literature, there are algorithms that are optimal for some of these aspects.

Byzantine Generals Problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 43

• The ability of the traitor to lie makes the Byzantine Generals problem difficult

Restrict the ability of the traitor to lie

A solution with signed messages:

allow generals to send unforgeable signed messages (authenticated messages)

Byzantine agreement becomes much simpler

A message is authenticated if:

1. a message signed by a fault-free processor cannot be forged

2. any corruption of the message is detectable

3. the signature can be authenticated by any processors

Byzantine Generals Problem

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 44

Assumptions:

(a) The signature of a loyal general cannot be forged, and any alteration of the
content of a signed message can be detected

(b) Anyone can verify the authenticity of the signature of a general

No assumptions about the signatures of traitor generals

Signed messages

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 45

Let V be a set of orders. The function choice(V) obtains a single order from a set of orders:

For choice(V) we require:

choice() = retreat

choice(V) = v if V consists of the single element v

choice(V) = retrait if V consists of more than 1 element

• x:i denotes the message x signed by general i

• v:j:i denotes the value v signed by j (v:j) and then

the value v:j signed by i

General 0 is the commander
For each i, Vi contains the set
of properly signed orders that
lieutenant Li has received so far

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 46

Algorithm SM(m)

Vi = 

1. C signs and sends its value to every Li, i{1, ..., n-1}

2. For each i:

(A) if Li receives v:0 and Vi is empty

then Vi = {v};

sends v:0:i to every other Lj

(B) if Li receives v:0:j1:...:jk and v  Vi

then Vi = Vi  {v};

if k < m then

sends v:0:j1:...:jk:i to every other Lj , j {j1, ..., jk}

3. For each i: when Li will receive no more msgs, he obeys the order choice(Vi)

Signed messages SM(m) algorithm

Observations:
- Li ignores msgs containing an order
vVi
- Time-outs are used to determine
when no more messages will arrive
- If Li is the m-th lieutenant that adds
the signature to the order, then the
message is not relayed to anyone.

Signed messages

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 47

3 generals, 1 traitor
C

L1 L2

<attack:0>

<attack:0:1>

<retreat:0>

<retreat:0:2>

V1 = {attack, retreat} V2 = {attack, retreat}

- L1 and L2 obey the order choice({attack, retreat})

- L1 and L2 know that C is a traitor because the signature of C
appears in two different orders

The following theorem asserting the correctness of the algorithm has been formally proved.

Theorem :
For any m, algorithm SM(m) solves the Byzantine Generals Problem if there are at most m traitors.

C is a traitor and
sends:
attack to L1 and L2
retrait to L3

Remarks

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 48

Assumption A1.

Every message that is sent by a non faulty process is delivered correctly

Assumption A2.

The receiver of a message knows who sent it

Assumption A3:

The absence of a message can be detected

Assumption A4:

(a) a loyal general signature cannot be forged, and any alteration of the content of a signed message can be
detected

(b) anyone can verify the authenticity of a general signature

Impossibility result

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 49

Asynchronous distributed system:

no timing assumptions (no bounds on message delay,

no bounds on the time necessary to execute a step)

Asynchronous model of computation: attractive.

- Applications programmed on this basis are easier to port than those incorporating
specific timing assumptions.

- Synchronous assumptions are at best probabilistic:

in practice, variable or unexpected workloads are sources of asynchrony

Impossibility result

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 50

Consensus cannot be solved deterministically in an asynchronous distributed system
that is subject even to a single crash failure [Fisher et al. 1985]

difficulty of determining whether a process has actually
crashed or is only very slow

Stopping a single process at an inopportune time can cause any distributed protocol
to fail to reach consensus

Circumventing the problem: Adding Time to the Model (using the notion of partial
synchrony), Randomized Byzantine consensus, Failure detectors, etc …

SIFT case study

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 51

SIFT (Software Implemented Fault Tolerance) is a Fault-Tolerant Computer for Aircraft Control

“a system capable of carrying out the calculations required for the control of an advanced
commercial transport aircraft”

developed for NASA as an experimental case study for fault tolerant system research

Reliability requirement:
probability of failure less than 10-9 per hour in a flight of ten hours' duration.

The SIFT system executes a set of tasks, each of which consists of a sequence of iterations.

The input data to each iteration of a task are the output data produced by the previous iteration of
some collection of tasks (which may include the task itself).

SIFT

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 52

Replicated Hardware
A processor write only its private memory.

Replicated Software
each iteration of a task independently executed by
a number of modules

Reliability is achieved by replication + voting

Loose synchronization

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 53

• voting is executed only at the beginning of each iteration

due to the iterative nature of the tasks

• processors need be only loosely synchronized

guarantee that different processors allocated to a task are executing
the same iteration, do not need tight synchronization to the
instruction or clock level.

median clock algorithm

the traditional clock synchronization algorithm for reliable systems

each clock observes every other clock and sets itself to the median
of the values that it sees

Clock synchronization

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 54

Assumption:

in the presence of only a single fault, either the median value must be (i) the value of one of the
valid clocks or else (ii) it must lie between a pair of valid clock values.

Let Clock A < Clock B.

Proc A

Proc B

Proc C
faulty

The weakness of this algorithm is
the Byzantine fault, that may
cause other processors to
observe different values for the
failing clock

Case 1)
Clock C < A, B

C A B

Case2)
Clock C > A, B

A B C

Case 3)
Clock A < C < B

A C B

Clock synchronization

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 55

Let clock A < clock B.

Assume failure mode of clock C is such that

- proc A sees a value for clock C that is slightly earlier than its own value, while

- proc B sees a value for clock C that is slightly later than its own value (Byzantine faults).

Proc A

Proc B

Proc C
faulty

C A B

A B C

To synchronise clocks SIFT
applies a Consensus algorithm
(5 processors)

Processorss A and B will both
see their own value as the
median value, and therefore
not change it.

Assumption is violated

A: B: 20 C -> Clock A=
A:10 B: C:

10

8

22

10 20

20

Byzantyne fault tolerance

Many application fields:

• Airbone self-separation (Future generation of ATC)
An operating environment where pilots are allowed to
select their flight paths in real-time
Byzantine Fault Tolerance algorithms for coordination
between aircrafts to take local decisions

• Block-chains
Byzantine Fault Tolerance algorithms for Block-chain

• etc …

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 56

Conclusions

In real world, reliability problems are really subtle

there is a cause that evolves. It propagates into the system, something
happens in a subsystem, something else happens in another subsystem,
…., and then we have a failure

• From Reliability to Resilience

unforseen environmental changes and new type of threats

• Resilience

the persistence of service delivery that can be justifiably be
trusted when facing changes

• Resilience engineering

how to design, implement operate, etc … comple systems so that
they can be resilient

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 57

Other references

[Fisher et al., 1985] M.Fisher, N. Lynch, M. Paterson. Impossibility of Distributed Consensus with
one faulty process.
Journal of the Ass. for Computing Machinery, 32(2), 1985.

[Chandra et al. 1996] T. D. Chandra, S. Toueg, Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the Ass. For Computing Machinery, 43 (2), 1996.

May 7-10, 2019 Basic building blocks in Fault Tolerant distributed systems 58

