UNIVERSITA DI PISA

Secure Information Flow In Programs

Prof. Cinzia Bernardeschi
Department of Information Engineering
University of Pisa, Italy
cinzia.bernardeschi@unipi.it

May 7-10, 2019 — Thessaloniki, Greece

Outline

UNIVERSITA DI PISA

* Background
Data leakage

Multi-level Security policy
Information flow in programs
Examples of illegal flow of information
* A static analysis approach for secure information flow checking

* A case study: secure flow in AUTOSAR models

 Conclusions

May 7-10, 2019 Secure Information Flow in Programs 2

Data leakage '

* private data made publicly available

* interference between private and public data

(information on private data revealed indirectly)

* colluding applications for data leakage

UNIVERSITA DI PISA

-

o

Information flow analysis

May 7-10, 2019

Secure Information Flow in Programs

Private data made publicly available

UNIVERSITA DI PISA

Secure
Private . .
Data: DDD application | —— |Nternet Informatlon
flow is
~— violated

DDD

Application authorized to access private data

- : Limit of Firewall
Application authorized to access Internet

and Access control
mechanisms

May 7-10, 2019 Secure Information Flow in Programs 4

Interference between private and public data

UNIVERSITA DI PISA

Private ey o
Data: Wallet application | = |nternet Secure
\ 4 information
2.000.000 ,
Wallet Hello! ﬂOW IS
violated
Data: Wallet applicaton | = |nternet «Hello!»
else «Goodbye!»
1.000 _/
Wallet Goodbye!

May 7-10, 2019 Secure Information Flow in Programs 5

Colluding applications for data leakage

UNIVERSITA DI PISA

Secure
Hi Bob, this is my _ _
. secret: information
Alice: | do not flow is
want Charlie .
violated

Hi Charlie, this is
the
Alice secret:

May 7-10, 2019 Secure Information Flow in Programs 6

Colluding applets

UNIVERSITA DI PISA

April 2017

| sANRID APPS SECRETLY STEAL USERS' |
Y DATA BY COLLUDING WITH EACH OTHER, |

FINDS RESEARCH = "““‘z

4

[
|

the team reports that the types of app fall into two major categories / fustin Sullivan/Getty images

The biggest security risks can come from some of the least capable apps

The Independent (British online newspaper)

Taken from: http://www.independent.co.uk/life-style/gadgets-and-
tech/news/android-app-steal-users-data-colluding-each-other-research-cartel-

information-a7663976.html

May 7-10, 2019 Secure Information Flow in Programs

Multi-level Security policy

* asecurity policy that allows the classification of data and users private
based on a system of hierarchical security levels ‘

public

- Inputs and outputs are classified as either public (low sensitive) or private
(high sensitive). A program has the non-interference property if and only if

any sequence of low inputs will produce the same low outputs, regardless of
the high level inputs.

* the program responds in exactly the same manner on low outputs whether
or not high sensitive data are changed. The low user will not be able to

acquire any information about data and the activities (if any) of the high
user.

May 7-10, 2019 Secure Information Flow in Programs 8

Multi-level Security policy

Non-interference property
the security domain private is non-interfering with

domain public if no input by private can influence ‘
subsequent outputs seen by public.

private

public

- ™
Secure Information flow

property

May 7-10, 2019 Secure Information Flow in Programs 9

Basics of information flow

UNIVERSITA DI PISA

Simple high-level language
Let x, y be variables
Y i=X; explicit flow

variable y is assigned the value of x; there is an explicit flow xtoy

X y X Y
The final value of y
5 9 —) 5 5 reveals the value
of x

May 7-10, 2019 Secure Information Flow in Programs 10

Basics of information flow

UNIVERSITA DI PISA

if (x=0)
theny :=2; L
elsezl =1 implicit flow
implicit flow from variable x to y, since y is assigned different values depending
on the value of the condition of the control instruction (variable x)

X y X Y

0 9 ——> 0 2 Observing the final
value of y reveals
information on the
value of x

5 9) 5 1

May 7-10, 2019 Secure Information Flow in Programs 11

Information flow: implicit flow

UNIVERSITA DI PISA

A conditional instruction in a program causes the beginning of an
implicit flow.

The implicit flow begins when the conditional instruction starts (we
have an opened implicit flow);

All the instructions in the scope of the if depend on the condition of
the if.

May 7-10, 2019 Secure Information Flow in Programs 12

Secure Information Flow

UNIVERSITA DI PISA

LI program P Lattice
Let be given a set A and order relation

. . <onA.
e a lattice of security levels £

(A, <) is a lattice if every pair of

* every variable of P is assigned a elements in A has both a greatest

security level in £ lower bound (g/b) and a least upper
bound (/ub).

* A program P satisfies Secure private

Information Flow if information at a ‘

given security level does not flow to public

lower levels

D. E. Denning, P. J. Denning. Certification of
programs for secure information flow.
Communications of the ACM, 20(7), 1977

May 7-10, 2019 13 Secure Information Flow in Programs 13

Secure Information Flow '

L={L H}, with L<H

L: public, H: private

Llet x:H, vy:L

* Explicit information flow

y =X s

e [mplicit information flow

if (x=0) theny:=2; else y:=1

(

_

SIF: the final value of each variable does not depend
on the initial value of variables with higher level

~

UNIVERSITA DI PISA

J

May 7-10, 2019

Secure Information Flow in Programs

14

Secure Information Flow violation

UNIVERSITA DI PISA

Y =X
explicit flow
X
X Y y Anyone can see
9) 5 5 the value of the
> high sensitive
variable x !l

May 7-10, 2019 Secure Information Flow in Programs 15

Secure Information Flow violation

UNIVERSITA DI PISA

Let x:H, vy:L
if (x=0) theny:=2; implicit flow
elsey:=1;

X y X

0 9) 0 2 Anyone can infer
information on
the value of the
high sensitive
variable x !l

5 9) 5 1

May 7-10, 2019 Secure Information Flow in Programs 16

Secure Information Flow checking

Typing approach: the security information of a variable belongs to its type, and
secure Information flow is checked by means of a type system. Hierarchy
between types. Types=H, L

Semantic-based approach: execute the program

Abstract interpretation approach: execute the program on abstract domains

An advantage of 3) with respect to those based on 1) is that it is semantics based and thus
keeps information on the dynamic behavior of programs, allowing to check more precisely the
desired properties.

y=X : . -
y=0; if 0 then y=Xx; else skip;

rejected by 1) rejected by 1) and by 3)

May 7-10, 2019 Secure Information Flow in Programs 17

Abstract Interpretation of the Operational semantics

UNIVERSITA DI PISA

 Definition of a concrete instrumented semantics recording the
Information flow (collecting semantics)

* Definition of an abstract semantics taking only what concerns
the information flow

* Proof of correctness of the abstraction

May 7-10, 2019 Secure Information Flow in Programs 18

Basics of Operational semantics

UNIVERSITA DI PISA

exp = const | var | exrp op exp m = [(x, 1) (y, 0)]
com::=var := exrp | if exp then com else com P
while exp do com | COm . com \ skip cliy:=7;
y:=7;

c2:if (x=0) y:=2; else y:=5;

constants V ={k, k’,}

memory m: var - V Transition system
c=coml; comz2; ..., comj

<cl;c2, [(x, 1) (y, 0)]>
m: [(x, k) (y, k')] le

state: <c, m>
<c2 , [(X; 1) (yr7)]>

Q¢ = set of states 1‘9 .
—* C Cf x Qf transition system <=, 1 2) (v, 5) ...

May 7-10, 2019 Secure Information Flow in Programs 19

Operational semantics

UNIVERSITA DI PISA

Expr. Expr, .

comst {kJ m) _>;:::pv' k R {fff: T.'I.) _:';:r:p'r' m(.r:)
Expr (er,m) —i., k1 {ea,m) —0,,, ko ki op ks = ks

o {(f‘l op Fg) m) _:';:::p'r' ka
Ass e m) —eapr b Skip

(r:=e,m) —° ml|k/x] (skip, m) —" {m)

(e, m) —¢ ., true

If:.
"M (if e then) else ca,m) —° (c1,m)

) (e,m) —,,, true

While:rue (while ¢ do ¢, m) —* {c;while ¢ do ¢, m)
) (e, m) —¢.,, false

While sy (while ¢ do ¢, m) —° (m)

SE(] {(-"l: m) _>F {m;) Seq {Clsm) _>F {F‘g:m;)
1 (c1i02, m)y —° {2, m;) 2 (criea,m) — {coicq,m’)

May 7-10, 2019 Secure Information Flow in Programs 20

s D
K=
vy
Our approach
2
B
1343 °
UNIVERSITA DI PISA

* We attach a security level o to each data k.

* During the execution of a program, o indicates the least upper
bound of the security levels of the information flows, both explicit
and implicit, on which k depends.

* To deal with implicit flow, the concept of execution environment is
introduced

May 7-10, 2019 Secure Information Flow in Programs 21

Concrete Operational sematics

An instrumented semantics which:

e Handles values (k, o) annotated with a security level.
During the execution of a program, o indicates the least upper bound of
the security levels of the information flows, both explicit and implicit, on
which k depends.

e Executes instructions under a security environment . During the
execution, o represents the least upper bound of the security levels of the
open implicit flows. o is (possibly) upzraded when a branching instruction
begins and is (possibly) downgraded when all branches join.

C(P) : concrete transition system for a program P

May 7-10, 2019 Secure Information Flow in Programs 22

Concrete Operational sematics

UNIVERSITA DI PISA

Security levels L={L<H} c,T, .. :/I-:c[o(r);; ('kéc?n)q) .(V, .(|c<(;;‘)) o]
Constants V k, k', .. - 1 2 j
Concrete Values V=Vvx.L (k, o) o
Concrete Memories M =var—> U M, M’,.. state: <c?, M>

: where
Environments L o, T, ..

o is the execution
environment

Q = set of states
— C QxQ transition system

May 7-10, 2019 Secure Information Flow in Programs 23

Concrete Operational sematics

UNIVERSITA DI PISA

Let x:H, vyl Concrete transition system C(P)
m = [(x, (1,H) (y, (O,1))] <(c1;¢c2) Y [(x, (1,H)) (y, (O,L))]>
initial execution environment: L l

<(c2)Y, [(x, (L,H)) (y, (7,L))]>
P l

cl:y:=7, <(y:=5)", [(x, (1,H)) (y, (7,L))]>

c2: if (x=0) y:=2; else y:=5; l
<()Y [(x, (1,H))]>

Secure information flow violation

May 7-10, 2019 Secure Information Flow in Programs 24

Concrete Operational sematics

UNIVERSITA DI PISA

Let x:H, y:L Concrete transition system C(P)
m =[x (1.H) {y, (O,L)] <(c1;c2) &, [(x, (LH) (v, (O.L)]>
Initial execution environment: L i

<(c2)Y, [(x, (7,L)) (y, (O,L))]>
P l
cl: x:=7; .
c2: if (x=0) y:=2; else y:=5; <(y:=5)", [(x, (17’L)) v, (O,LNI>

<(* [(x, (7,1)) (v, (5,L))]>

May 7-10, 2019 Secure Information Flow in Programs 25

Concrete Operational sematics

UNIVERSITA DI PISA

M(x)= (k1)
var {:(,'O—: ﬂf) —>e:njj?' {k, T LI T)

Expr Expr

const (k”: ﬂf} —:'&’T»I”' (k (T:l

<PT, i"rir) _:’r-::I:IJ?' (kl: Tl) (Pg, i"’f) _>E”:f”' (kg: T:E)
o {(f—l op ,!-:12:]”': ﬂf) —Fexpr (kl o) kjg:Tl (| Tfa}

Expr

(", M) —copr v

Ass T)7 M) — Mo/7] SKip o557 3 — (1)
It (e, M) —copr (true, 7)
U [(if e then ¢, else c2)”, M) — (¢, Impl(M, Mod(c1) U Mod(c2), 7))
i (7. M) —cppr (true,)
Whiletrue ((while ¢ do)7, M) — {(eswhile e do)", Impl(M, Mod(c), 7))
. (7, M) —c.pr (false, 1)
Whilefats. ((while ¢ do)7, M) — (Impl(M, Mod(¢c), 7))
T E E ! LT E J E !
Seq, (e, M) — (M") Sed, (T, M)y — (w', M")

{eTiw, MYy — {w, M'") {cTyw, My — {(w';w, M")

May 7-10, 2019 Secure Information Flow in Programs 26

Abstract Operational semantics

UNIVERSITA DI PISA

 abstracts concrete values into their security level: a (k, o) = o
e uses the same rules of the concrete semantics on the abstract
domains

A(P) : abstract transition system for program P

- finite

- multiple path

- each path of C(P) is correctly abstracted onto a path of A(P)

4 N
A program P has secure information flow if in each final

state of A(P), each x: o holdsavalue t1<o
\ y,

May 7-10, 2019 Secure Information Flow in Programs 27

Abstract Operational sematics

Abstract security levels
Abstract constants
Abstract Values
Abstract Memories
Environments

LH=L o,T, ..

V# {.}
V#=L (o)
M#=var > V# M¥# M# ..
L# c, T, ..

UNIVERSITA DI PISA

M#: [(x, o) (y, T) ...]

C = com,; com,; ...; com,

state: <c®, M# >

where

o is the execution
environment

Q¥ = set of states
— C Q% x Q¥ transition
system

May 7-10, 2019

Secure Information Flow in Programs

28

Abstract Operational sematics

Let x:H, vy:L
M# = [(x, H) (y, L))]

Initial execution
environment: L

Abstract transition system A(P)

<(c1;¢2) L, [(x, H) (y, L)]>
l#

<(c2)t, [(x, L) (y, L)]>

: A e

cl:y:=7; o L
c2: if (x=0) y:=2; else y:=5; <(y:=2) '[l(#X’ Dy, LI> <(y:=5) ’l[(X’ L) (y, L)]>

<04 (% L <04 [(x L

Secure information flow violation

May 7-10, 2019 Secure Information Flow in Programs 29

Stack-based low-level languages

Main problems:

- How data flow through the operand stacks

- Scope of the implicit flow computed using the control flow graph and
the notion of immediate postdominator (ipd)- the first instruction
common to all the branches

May 7-10, 2019 Secure Information Flow in Programs 30

Java Bytecode

UNIVERSITA DI PISA

op pop two operands off the stack, perform the operation, and push the result
onto the stack
pop discard the top value from the stack

push k push the constant k onto the stack
load x push the value of variable x onto the stack
store x pop off the stack and store the value into x

if j pop off the stack and jumpto j if non-zero

gotoj jumpto j

jsrj at address p, jump to address j and push p+1 onto the operand stack
ret x jump to the address stored in x

halt stop

May 7-10, 2019 Secure Information Flow in Programs 31

Standard Operational semantics '

X:5
y: 1

state: <program counter, memory, operand stack>

0 load y
1if 4
2pushl
3 goto 5
4 push 0
5 store x
6 halt

(PC,[MEM(z) MEM (y)], STACK)

(0,
(1,
(4,
(5,

(63

5,1
Y1oad
9,1
5,1

5,1

0,1]

iferue
erush

wlrstore

) A)
;1)
, A)
,0)
) A)

UNIVERSITA DI PISA

May 7-10, 2019

Secure Information Flow in Programs

32

Concrete Operational semantics

UNIVERSITA DI PISA

x: (5,L) ipd: immediate post-dominator
y: (1,H) ipd(1) =5

state: <env, program counter, memory, operand stack, ipd stack>

(ENV, PC,[MEM(z) MEM(y)], STACK, IPD)

0 load Yy ("':01 [(5:‘1):(11}")]1)‘1 A)

1if 4 04,16, (L (1) Y

2 push 1 050, 0L 0.8)

3 goto o (h, 4, [(5,1)14(:1,1‘;)],)\, (5,1))
ush

Spush) (8,065,000, 5,

6 halt (1,5, 1(5,1), E‘f?a)], (0,h), %)

(1,6,[(0,h), (1, h)], A, A)

May 7-10, 2019 Secure Information Flow in Programs 33

Abstract Operational semantics

(ENV, PC,[MEM?(z) MEM?!(y)], STACK?, IPD)

(1,0,[1, h], A, A)
}1oad
0 load y (1,1,[l, k], h, A)
1if 4 ¢ iferue Nifratee
2 push 1 (hy4, [, R, A, (5, 1)) (R, 2,[1, h], A, (5,1))
3 goto 5 Jpush
4 pUSh 0 J—push (h, 3, [Ir h’]: h! (53 E))
5 store z lgoto
6 halt (h,5,[l, h], h, (5,1))
Jﬁlpd
(IF 5? [EF h’]? h") A)
store
(1,6, [h, h], A, A)

May 7-10, 2019 Secure Information Flow in Programs 34

Information Flow in programs

* Information flow occurs through

simple variables, input/output files
array, structures, objects

pointers, references

global variables

function calls
(parameters by value, parameters by reference, return)

UNIVERSITA DI PISA

May 7-10, 2019

Secure Information Flow in Programs

35

Function invocations

UNIVERSITA DI PISA

If a function call is executed in the scope of a conditional instruction, the
function is executed under the implicit flow.

if (y <0)
then f();

Function f() is invoked depending on the value of variable y.

Instructions of f() are executed under the implicit flow of the condition of the
if statement

May 7-10, 2019 Secure Information Flow in Programs 36

Function invocation

UNIVERSITA DI PISA

Data propagation caused by actual parameter and return of a function

type fun (type x1, ..., type xn) {

return expr;

—

k = fun(al, ..., ak)
\

May 7-10, 2019 Secure Information Flow in Programs 37

The security context

Secure information flow studied by using a security context

* For each global variable: the highest level of data stored
var: o

 For each function: the highest level of input/output parameters,
return and the security environment of each invocation

fun(cl, ..., on): c, ¢’
PN

return calling environment

May 7-10, 2019 Secure Information Flow in Programs 38

A case study: secure flow in AUTOSAR models

UNIVERSITA DI PISA

Modern automotive electronics systems are real-time embedded system running over networked
Electronic Control Units (ECUs) interconnected by wired networks such as the Controller
AreaNetwork (CAN) or Ethernet.

Over 80 different embedded processors,
— gl — interconnected with each other.

indow lift
s UNIversal light

Key ECUs (Electronic Control Unit):

* Engine Control Modul (ECM)

e Electronic Brake Control Module (EBCM)
* Transmission Control Module (TCM)

g

Universal motor

priveratpaned * Vehicle Vision System (VVS)
G7S Global Postioning System ..
Ao ominators * Navigation Control Module (NCM)

MOST Media-orianted systems transport

May 7-10, 2019 Redundancy in Fault Tolerant Computing

39

A case study: secure flow in AUTOSAR models

UNIVERSITA DI PISA

Automotive systems: Mixed-criticality safety critical systems

g High criticality A g D

Braking system, Throttle LC,)W criticality
Infotainment system, ..
\system,

J G J

Recent research has shown that it is possible for external intruders to

compromise the proper operation of safety functions getting access to
the infotainment system.

Low security level data must not compromise
the computation of high criticality functions

May 7-10, 2019 Secure Information Flow in Programs 40

A case study: secure flow in AUTOSAR models

UNIVERSITA DI PISA

AUTomotive Open Systems ARchitecture: open industry standard for automotive software
architectures, spanning all levels, from device drivers, to operating system, communication
abstraction layers and the specification of application-level components

SWC SWC Application Layer sSWe

Autosar Autosar Autosar
Interface Interface Interface

AUTOSAR Runtime Environment (RTE)

A
Basic Software
AUTOSAR COM Layer

CSM

PDU Router A T

Routing ¢ i SecOC

table BSW ¢

CAL
Communication Services System Services

May 7-10, 2019 Secure Information Flow in Programs 41

Mixed-criticality

Path Planning, Lane Keeping and Autonomous driving
Lane Departure Warning are Lane

. . Departure
active safety functions that Camera Warning Braking

receive such data and send
commands to actuators oy
(steering, throttle and brakes). Lane

- Throttle component is

) . . Road
assigned the high trust level; Detection

Path

- Throttle request link is .
Planning Throttle

assigned the integrity security

requirement. AUTOSAR models are extended with security annotations.

May 7-10, 2019 Secure Information Flow in Programs 42

Mixed-criticality

Data received by Throttle on the link Throttle_request must satisfy
high trust level and integrity security requirement

The point is that:
the way in which security annotations are specified must consider the causal
dependencies between data that traverse the model.

If Throttle requires integrity on its input data sent by Path Planning,

then integrity must be guaranteed also along the path from the data originator
(GPS) to Path Planning (the Vehicle_position link),

otherwise, the security constraint cannot be satisfied and the set of annotations
is not correct.

Similarly, Path Planning and GPS must have high trust level.

May 7-10, 2019 Secure Information Flow in Programs 43

AUTOSAR security annotations

UNIVERSITA DI PISA

The simplest solution assigns integrity/high to all
links/components directly or indirectly connected
to Throttle/Throttle_request.

-

In order to obtain a more efficient solution,
nformation flow theory can be exploited to compute
the dependency between data

May 7-10, 2019 Secure Information Flow in Programs 44

AUTOSAR architecture

UNIVERSITA DI PISA

A fundamental concept of AUTOSAR is the separation between:
« application and

e Infrastructure.

An application in AUTOSAR consists of Software Components interconnected by connectors

passenger_door

driver_door
ComingHome
>] rain_light_condition Lea‘""é‘hﬂi:'@me if_light_request _
light_request []—C—-. N _O_E Light
= Master
AutomaticLight if_light_request Im
Control . .
alc . >—|::| outside_brightness
7’
e
outside_brightness[]—D’
if_outside brightness

May 7-10, 2019 Secure Information Flow in Programs 45

Runnables

UNIVERSITA DI PISA

* Runnables define the behavior of components

* Runnables are entry points to code-fragments and are
(indirectly) a subject for scheduling by the operating system.

Runnable 1a

Runnable 2a

Runnable 1b
Runnable 2b

Runnable 1c

Runnable 2c¢
Runnable 1d

Provided/Required Sender-Receiver port
[O] Provided Client-Server port
Required Client-Server port

May 7-10, 2019 Secure Information Flow in Programs 46

AUTOSAR runnable interaction

UNIVERSITA DI PISA

Runnable interaction
Global variables

FPorts define interaction points between (runnables belonging to)
different SWCs.

For interactions among runnables belonging to the same component
nter Runnable Variables (IRVS)

The RTE provides protection mechanisms for IRVs (as opposed to
global variables)

May 7-10, 2019 Secure Information Flow in Programs 47

AUTOSAR security policy

* Trust level of a software component
software components with high trust level are executed on secure and

reliable hardware
-we assume two trust levels: high, low

* Security requirement of a communication link
the level of security that data sent on links must satisfy to protect in-vehicle
communications from cyber threats such as eavesdropping, integrity and
spoofing.

The proposed security extensions are:
confidentiality and integrity of the exchanged information

-the security requirement can assume one of the following values:
none, conf, integr, both.

May 7-10, 2019 Secure Information Flow in Programs 48

AUTOSAR extensions in Rhapsody

deit | A swcrinswar |] swezinswez | [vBinvie x|

«CompositionSwComponentType»

—[I%] inl:interfl

1 «SwComponentPrototype 1 «SwComponentPrototy
outl:interf2 [];{ /Uéj in2:interf2

outZinterf1 [F[_

secure_communication

—

o o o

&
©
B
B

=) S_ga;rityRequiemnt_

SecReqmtld
cLevellndicator
iLevellndicator

ririggerPort
pririggerPort
pModeSwitchPort
prModeSwitchPort

UNIVERSITA DI PISA

May 7-10, 2019

Secure Information Flow in Programs

49

AUTOSAR Secure Flow analysis

UNIVERSITA DI PISA

An AUTOSAR model satisfies data secure flow if data sent on a link at run-time,

always have a security requirement and a trust level not lower than those
specified by the security annotations.

For each link, we compute:
- the lowest trust level of data sent on the link

- the lowest security requirement of data sent on the link

May 7-10, 2019 Secure Information Flow in Programs 50

AUTOSAR Secure Flow analysis

UNIVERSITA DI PISA

Deps(p); set of ports Lattice of security levels
on which data sent
at port p depends both
a high /N
| conf integr
Abstract interpretation low N/
none

Information flow analysis

glb: greatest lower bound between levels
lub: least upper bound between levels

May 7-10, 2019 Secure Information Flow in Programs 51

The abstract interpreter: EXEC

UNIVERSITA DI PISA

Each runnable is executed starting from the abstract
memory and the context file, and applying the abstract rules.

All branches of conditional/iterative instructions are
always executed, due to the loss of real data in the
abstract semantics

May 7-10, 2019 Secure Information Flow in Programs 52

v {)
K=

) QI B

Abstract semantics AGJE
2

NEZSS

1343 °

UNIVERSITA DI PISA

A PORT is a variable.

RTE function for reading from or writing onto ports are mapped to
read and write of the port variable.
For simplicity, the name of the port variable is equal to the name
of the port.

RTE functions that invoke remote services trigger the runnable that
implements the service. The function implementing the service is
invoked

May 7-10, 2019 Secure Information Flow in Programs 53

STk
. VRS
Abstract semantics
R
NEZ
0134?,Q
UNIVERSITA DI PISA

A POINTER is assumed to be simple variable, that maintains the
dependencies of the pointer, plus the dependencies of the pointed
data in the abstract execution.

An ARRAY is assumed to be a simple variable, that maintains the whole
dependencies of each element in the array.

A STRUCTURED VARIABLE is mapped to a set of simple variables, one
for each member (we use the notation, as usual). If we have a
variable data that is a structure with two fields a and b, we map such
variable into two simple variables, data:a and data:b, respectively.

May 7-10, 2019 Secure Information Flow in Programs 54

),
N =
. . QA X
= =)
erative analyslis 59
Q 34 ©
UNIVERSITA DI PISA

Iterative analysis until fixpoint is reached

A= AY
1T =R
while(T # 0)
selectr el
T:=T—-{r}
A":'=FEXEC(r, A)
if(A"# A)
A=A
T =R

A: security context
R: set of all runnables

May 7-10, 2019 Secure Information Flow in Programs 55

An example: Front Light Manager

UNIVERSITA DI PISA

Daytime running

lights :
- Front Light
Management e

Light Switch —~ a

- Haad'ghl R

Safety Use Case Example, release 4.2.2. http://www.autosar.org/fileadmin/files/
releases/4-2/software-architecture/safety-and security/auxiliary/
AUTOSAR_EXP_SafetyUseCase.pdf

May 7-10, 2019 Secure Information Flow in Programs 56

Front Light Manager

UNIVERSITA DI PISA

Security annotations: Daytime_running_lights : High FLM_TO DRL: integr

Data secure flow 1 Ignition_key 1 Headlight
. . []|
is not satisfied 1 Headlight_request
::; outl [
‘ in3
1 Front_light_manager

1 Light_switch out3 | 1 HMI
data sent on the ﬂ in6
. outd [T
link FLM_TO_DRL in7
are not protected outs
along the path N
from the sources to © Power_supply L Daytime_light_request @ FLM_to_DRL

| ind) —
; out2 | 1 Daytime_running_lights

in5]
p --- high

Simplest solution: assignment of high trust level to Front_light_manager, Headlight_request,
Daytime_light_request, Light_switch, Ignition_key, Power_supply. Similarly for links.

the destination

May 7-10, 2019 Secure Information Flow in Programs 57

An example of component: Front light manager

UNIVERSITA DI PISA

Front_light manager

4’@ out3

in6 Runnable 1

!

IRV1

Runnable 3 —»E out4

IRV2

in7 Runnable 2

?

4’@ outb

void FLM_Runnable3(void) {
Rte_IWrite_Runnable3_PPort_out3(Rte_IrvIRead_Runnable3_[RV1

()):
Rte_IWrite_Runnable3_PPort_out5((Rte_IrvIRead_Runnable3_IRV2());
if ((Rte_IrvIRead_Runnable3_IRV1 () = REQHEADLIGHT ON) ||
(Rte_IrvIRead_Runnable3_IRV2 () =— REQDAYTIMEON)){
Rte_IWrite_Runnable3_PPort_out4 (LIGHTS5_ON);

}

else

}

Rte_IWrite_Runnable3_PPort_out4 (LIGHTS_OFF);

May 7-10, 2019 Secure Information Flow in Programs 58

Information for generating the context

UNIVERSITA DI PISA

% ports
% global variables intinl;
int HR_voltage_thresholdl; intin2;
int HR_voltage_threshold2;
int DLR_voltage_thresholdl; int outl;
int out?2;
% inter runnable variables
intl6_t FLM_IRV1; % functions
intl6_t FLM_IRV2; void flm_Runnablel() O;
intl6_t DLR_IRV1; void flm_Runnable2() O;
% links
out2 ->in7;
outl -> in6;

May 7-10, 2019 Secure Information Flow in Programs 59

Using Deps to annotate the model

UNIVERSITA DI PISA

1 Ignition_key 1 Headlight
1 Headlight_request]
the output port of Front " ot |
light manager u ! o gn_monager
connected to the L | (high) P
in6

(hi'gh)

Daytime_running_lights

(out5 in our integr
implementation) does integr] | FLM to_DRL
1 P Ver s pply M
not depend on the (hikn) i Daytime_running_lights

input port connected to o S |
the Headlight request

component (in6 in our
implementation)

Model satisfies Secure flow property

May 7-10, 2019 Secure Information Flow in Programs 60

Conclusions

Abstract interpretation allows automated verification of secure
information flow in programs

Intermediate level between typing approaches and sematics-based
approaches

Analysis can be improved to reduce the number of false positive

Other works
e Secure information flow in Java cards applications
e Secure information flow in concurrent programs

May 7-10, 2019 Secure Information Flow in Programs 61

Conclusions

UNIVERSITA DI PISA

Future work

* Privacy of data in Android smart phones
* Malicious Colluding apps
* Privacy of data in medical app

May 7-10, 2019 Secure Information Flow in Programs 62

References

R. Barbuti, C. Bernardeschi, N. De Francesco, Abstract interpretation of operational semantics for
secure information flow, Information Processing Letters, num. 2, vol. 83, pp. 101-108, 2002.

R. Barbuti, C. Bernardeschi, N. De Francesco, Analyzing Information Flow Properties in Assembly
Code by Abstract Interpretation, Computer Journal, num. 1, vol. 47, pp. 25-45, 2004.

Avvenuti M, Bernardeschi C, De Francesco N, Masci P. JCSI: A Tool for Checking Secure Information
Flow in Java Card Applications . The Journal of Systems and Software, vol. 85, p. 2479-2493, 2012.

Cinzia Bernardeschi, Marco Di Natale, Gianluca Dini, Maurizio Palmieri: Verifying data secure flow in
AUTOSAR models. J. Computer Virology and Hacking Techniques 14(4): 269-289, 2018.

May 7-10, 2019 Secure Information Flow in Programs 63

