
Lecture 1

May 7-10, 2019 – Thessaloniki, Greece

Prof. Cinzia Bernardeschi

Department of Information Engineering

Univerisity of Pisa, Italy

cinzia.bernardeschi@unipi.it

Redundancy in Fault Tolerant Computing

Outline

• fault tolerant computing: why and what

• computer-based systems: faults and failures

• forms of redundancy:

- Hardware redundancy

- Information redundancy

- Timing redundancy

- Software redundancy

• effectiveness of fault tolerance

May 7-10, 2019 Redundancy in Fault Tolerant Computing 2

Fault tolerant computing: why and what

Computers are increasingly used in safety-critical systems:

- transport (automotive, railways, aerospace, ...)

- medicine

- process control

-

Future safety-critical systems will be more automated and more dependent on computers

Fault tolerant computing:

the ability of the system to deliver the expected functionality during its operational life also in case of
malfunctions (important in safety-critical systems, systems whose failure may result in death or serious
injury to people, loss or serious damage of equipment, or environmental harm)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 3

Transport systems: Aerospace

Fly-by-wire (FBW) system: all commands and signals are transmitted
electrically along wires.

• These signals are sent to flight-control computers (FCS) that reconvert the
electrical impulses into instructions for control surfaces like wing flaps or
the tail.

May 7-10, 2019 Redundancy in Fault Tolerant Computing 4

http://www.aviationcoaching.com/wp-content/uploads/2015
/08/fly-by-wire-system.jpg

Earliest aircraft: controlled by the pilot using
the steel cables, pulleys and hydraulic
actuators

http://www.aviationcoaching.com/wp-content/uploads/2015

Transport systems: Automotive

May 7-10, 2019 Redundancy in Fault Tolerant Computing 5

Over 80 different embedded processors,
interconnected with each other.

Key ECUs (Electronic Control Unit):
• Engine Control Modul (ECM)
• Electonic Brake Control Module (EBCM)
• Transmission Control Module (TCM)
• Vehicle Vision System (VVS)
• Navigation Control Module (NCM)
• …

Sensing and Computing in Cars

Main vehicle control systems replaced with electronic controls (no physical connection):
• throttle - Electronic Throttle Control
• brakes - Brake-by-Wire
• steering - Steer-by-Wire

Fault tolerant computer-based systems

• For a computer based safety-critical system, the safety of the system depends
strongly on its computers.

• Faults are unexpected events that may compromise the system functionality

• Faults in computer systems:

hardware faults (e.g., stack-at 0 of a line, memory cell bit flip)

software faults (e.g., a bug in the code)

• General questions: How to build dependable computer-based systems.
Can we justifiably trust the dependability of such systems?

May 7-10, 2019 Redundancy in Fault Tolerant Computing 6

Fault tolerant computer-based systems

1. a system is as strong as its weakest component
• Hw and sw systems relaying on hidden components

2. small hidden faults may have large effects (digital machine)
• Computer failures differ from failures of other equipment

• Subtler failures than “breaking down” or “stopping working”, ..

• The computer is used to store information: there are many ways information
can be wrong, many different effects both within and outside the computer

May 7-10, 2019 Redundancy in Fault Tolerant Computing 7

Chain of threats: Faults -> Errors -> Failures

May 7-10, 2019 Redundancy in Fault Tolerant Computing 8

Taken from [Avizienis et al. 2004]

Replication

• Make available

- two or more copies of data item that may be corrupted

- a mechanism that compares them and declares an error if they differ

• The two copies must be unlikely to be corrupted together and in the same way

Examples: Duplicated circuitry, Transmit messages twice, Store data in two
separate places (e.g. mirrored disks)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 9

Replication:
can have a very important impact on a system in the area of performance, size,
weight, power consumption and others

Redundancy in fault tolerant computing

HARDWARE REDUNDANCY
Physical replication of hw (the most common form of redundancy)
The cost of replicating hw within a system is decreasing because the costs of hw is
decreasing

INFORMATION REDUNDANCY
Addition of redundant information to data in order to allow fault detection and fault
masking

TIME REDUNDANCY
Attempt to reduce the amount of extra hw at the expense of using additional time

SOFTWARE REDUNDANCY
Tolerating faults in software

May 7-10, 2019 Redundancy in Fault Tolerant Computing 10

May 7-10, 2019 Redundancy in Fault Tolerant Computing 11

HARDWARE REDUNDANCY

Hardware redundancy

Passive fault tolerant techniques

• use fault masking to hide the occurrence of faults
• rely upon voting mechanisms to mask the occurrence of faults
• do not require any action on the part of the system / operator
• generally do not provide for the detection of faults

Active fault tolerance techniques

• use fault detection, location and recovery
• detect the existence of faults and perform some actions to remove the faulty hw from

the system require the system to perform reconfiguration to tolerate faults
• common in applications where temporary, erroneous results are acceptable while the system

reconfigures (satellite systems)

Hybrid approach

• very expensive
• often used in critical computations in which fault masking is required to prevent momentary

errors and high reliability must be achieved

May 7-10, 2019 Redundancy in Fault Tolerant Computing 12

Passive fault tolerance technique:TMR

1. Triple Modular Redundancy (TMR) – fault masking

May 7-10, 2019 Redundancy in Fault Tolerant Computing 13

Module 1

Module 3

Module 2 Voter
output

Triplicate the hw (processors, memories, ..) and perform a majority vote to determine the output

- 2/3 of the modules must deliver the correct results

- effects of faults neutralised without notification of their occurrence

- masking of a failure in any one of the three copies

Good for transient faults

For permanent faults, since the faulty module is not isolated, the fault tolerance decreases

Voter is a single point of failure

Cascading TMR with triplicated voters

The effect of partitioning of modules (A, B, C) is that the design can withstand

more failures than the solution with only one large triplicated module

The partition cannot be extended to arbitrarily small modules, because reliability
improvement is bounded by the reliability of the voter

Triplicated voters: voter errors propagates only of one step

May 7-10, 2019 Redundancy in Fault Tolerant Computing 14

Taken from [Siewiorek etal., 1998]

TMR: the Voter

Difficulties

Delay in signal propagation:
- due to the voter
- due to multiple copies synchronisation

Trade-off : achieved fault tolerance vs hw required

May 7-10, 2019 Redundancy in Fault Tolerant Computing 15

Reliable Voters

Hardware voters are bit voters that compute the majority
on n input bits.
Optimal designs of hardware voters with respect to
circuit complexity, number of logic levels, fan-in and fan-
out and power dissipation

1 bit voter

OUT = AB + BC + AC

Problems with voting procedure on analog signals

using multiple analog to digital convertes and performing bit-by-bit voting on their
digital output is not satisfactory

The three results from the analog to digital converters may not completely agree,
for example, they could produce a result which differs for the least-significant bit
even if the exact signal is passed through the same converter

• perform voting in the analog domain:

→ average the three signals
→ choose the mean of the two most most similar signals
→ choose the median of the three signals (pseudo voting)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 16

N-Modular Redundancy

2. NMR
N is made an odd number

Coverage:
m faulty modules, with N = 2m +1

May 7-10, 2019 Redundancy in Fault Tolerant Computing 17

5MR: tolerates 2 faulty modules

7MR: tolerates 3 faulty modules

……..

Module 1

Module 3

Module 2

Module 5

Module 4

Voter
output

Active hw redundancy

1. Duplication with comparison scheme
(Error detection)

Two identical pieces of hw (Module1 and Module 2) are employed
• they perform the same computation in parallel
• when a failure occurs, the two outputs are no more identical and a simple comparison detects the fault

Then the comparator (hw component) selects the correct output and reconfigure the switch to select the
correct value

• the comparator must select the correct value

May 7-10, 2019 Redundancy in Fault Tolerant Computing 18

Module 1

Module 2

output
input

comparator
switch

Dual-modular redundancy
(also Duplex system)

Active hw redundancy: the comparator

Assumption:
the two copies must be unlikely to be corrupted together in the same way

The comparator applies checks to select the correct output

May 7-10, 2019 Redundancy in Fault Tolerant Computing 19

-Coding

-Self-checking circuitry

-Reversal Checks
Assumption: the specified function of the system
is to compute a mathemathical function F and
the function has an inverse function F’, such that
F’(F(x))=x
Check: let output = F(input). Compute F’(output)
and verify that F’(output) = input

-Specification checks (use the definition
of “correct result”)
Example: Specification: find the solution
of an equation Check: substitute results
back into the original equation

- Reasonableness Checks
Divide by 0
Acceptable ranges of variables
Acceptable transitions
Probable results

-…………..

Types of checks

Active hw redundancy: the comparator

Problems

• need to check if the output data are valid. The comparator may not be able to perform
an exact comparison, depending on the application area (digital control applications)

• faults in the comparator may cause an error indication when no error exists (false
postive) or possible faults in duplicated modules are never detected (false negative)

Coverage
• detects all single faults except those of the comparison element

Advantages
• simplicity, low cost, low performance impact of the comparison technique, applicable

to all levels and areas

May 7-10, 2019 Redundancy in Fault Tolerant Computing 20

Active redundancy

2. Stand-by sparing
(error detection, reconfiguration)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 21

input output

Module 1

Module 2

Module n

error detection

error detection

error detection

switch.
.
.

Part of the modules are operational, part of the modules are spares modules (used as replacement modules)
The switch can decide no longer use the value of a module (fault detection and localization). The faulty module is
removed and replaced with one of the spares.

- hot spares

the spares operate in synchrony with the on line modules, and

they are prepared to take over

- warm spares

the spares are running but receive inputs only after switching

- cold spares

the spares are unpowered until needed to replace a faulty module

As long as the outputs agree, the spares are not used.

Different schemes can be implemented

- A module is a duplex system, pairs
connected by a comparator

- Duplex systems are connected to spares
by a switch

- As long as the two outputs agree, or the
comparator can detect the right value, the
spare is not used.

- Otherwise, the comparator signals the
switch that it is not able to compute the
right value and the switch operates a
replacemnet
using the spare.

May 7-10, 2019 Redundancy in Fault Tolerant Computing 22

input

output

Module 1

Module 2

switch

Module 1

Module 2

comparator

comparator

spare

Pair-and-spare approach

Pair results are used in a spare arrangment. Spare components at coarser granularity.
Not all four copies must be synchronised (only the two pairs)

Hybrid approaches

Combine both the active and passive approaches

Very expensive in terms of the amount of hw required to implement a system

Applied in commercial systems, safety critical system (aviation, railways, …)

NMR with spares (Reconfigurable NMR):

Modules arranged in a voting configuration
- spares to replace faulty units
- rely on detection of disagreements and determine the module(s)

not agreeing with the majority

May 7-10, 2019 Redundancy in Fault Tolerant Computing 23

Reconfigurable NMR

- N redundant module configuration (active
modules)

- Voter (votes on the output of active modules)

- The Fault detection units
1) compares the output of the Voter with the output of the
active modules
2) replaces modules whose output disagree with the output
of the voter with spares

May 7-10, 2019 Redundancy in Fault Tolerant Computing 24

Fault detection

unit

SWITCH

(select N

out-of N+M)

output

Module 1

Module N

Spare

Module 1

Spare

Module M

Voter

. .

Active

units outputs

Disagreement

detection

. .

.

.

.

.
Reliablity
as long as the spare pool is not empty

Coverage
TMR with one spare can tolerate 2 faulty modules

(mask the first faulty module; replace the module;
mask the second faulty module)

Hw redundancy techniques: summary

Key differences
Passive: rely on fault masking
Active: rely on error detection, location and recovery
Hybrid: emply both masking and recovery

• Passive provides fault masking but requires investment in hw
(5MR can tolerate 2 faulty modules)

• Active has the disadvantage of additional hw for error detection and recovery,
sometimes it can produce momentary erroneous outputs

• Hybrid techniques have the highest reliability but are the most costly
(3MR with one spare can tolerate 2 faulty modules)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 25

May 7-10, 2019 Redundancy in Fault Tolerant Computing 26

INFORMATION REDUNDANCY

Coding

May 7-10, 2019 Redundancy in Fault Tolerant Computing 27

Information is represented with more bits that strictly necessary: says, an n-bit

information chunck is represented by

n+c= m bits

Among all the possible 2m configurations of the m bits, only 2n represent

acceptable values (code words)

if a non-code word appears, it indicates an error in

transmitting, or storing, or retrieving …

Parity code

for each unit of data, e.g. 8 bits, add a
parity bit so that the total number of 1’s
in the resulting 9 bits is odd

Set of

code words

Set of all

possible words

2n

2m

10100000 1

byte parity
bit

10100100 1

not a codeword

communication
channel

sender
node

receiver
node

one bit flip

Two bit flips are not detected

Coding

May 7-10, 2019 Redundancy in Fault Tolerant Computing 28

Separable code: a code in which the original information is appended with new information to form the

codeword. The decoding process consists of simply removing the additional information and keeping

the original data

Nonseparable code: requires more complicated decoding procedures

Parity code is a separable code

Additional information can be used for error detection and may be for error correction

Codes

encoding: the process of determining the c bit configuration for a n bit data item

decoding: the process of recovering the original n bit data from the m bit total bit

Examples of codes

May 7-10, 2019 Redundancy in Fault Tolerant Computing 29

3-bit words – 4 code words

4-bit words – 8 code words

Parity-code

4-bit words – 8 code words

• boxed words: code words

odd parity

Examples of codes

May 7-10, 2019 Redundancy in Fault Tolerant Computing 30

m/n code:
m bit equal to 1

4-bit words - 4 code words

2/4 code

CD - complemented
duplication

4-bit words - 6 code words

Distances and data spaces

Hamming distance between two data items: count the number of bits that are different

A code such that the Hamming distance between two code
words is > k will detect all errors that flip up to k bits

Memories of computer systems.
Parity bit added before writing the memory. Parity bit is checked when reading.

Useful distance measures depend on type of data and faults

Bank account numbers should be such that mistyping a digit
does not credit the wrong account.

May 7-10, 2019 Redundancy in Fault Tolerant Computing 31

010

011

110

100

101001

000

111

Parity-code: Hamming distance 2

undetectable

detectable

Codes for error correction

May 7-10, 2019 Redundancy in Fault Tolerant Computing 32

correctable

correctable

uncorrectable

The corrupted data is closer to the correct
data than to any other code word

Hamming distance 3:
detects 1 or 2 bits errors
correct 1 bit error

A code such that the minimum Hamming distance is k will
detect up to k-1 single bit errors

Minimum Hamming distance:
minimum distance between two code words

A code such that the minimum Hamming distance is k will
correct up to d errors, where k = 2d +1

Arithmetic codes

May 7-10, 2019 Redundancy in Fault Tolerant Computing 33

An arithmetic code guarantees that

if inputs are code words and the operation is performed correctly results are code words too

Arithmetic
operation

Implementation of the arithmetic operation (hardware or software) must be modified to operate on the code

The set of code words of an arithmetic code A is closed with respect to a specific set of operations.

A(b*c) = A(b) * A(c) where * is one of a set of operations

3N codes
Multiply the data by 3 (this add 2 bits of redundancy)
Error checking is performed by confirming that the received word is divisible by 3

Checksumming

• applied to large block of data in
memories

• coverage: single fault

May 7-10, 2019 Redundancy in Fault Tolerant Computing 34

dn

dn-1

d2

d1

rn

rn-1

r2

r1

Original data Received data

Checksum on

Original data
Checksum on

received data

Received version

of checksum

compare

checksum for a block of n words is formed by adding together
all of the words in the block modulo-k, where k is arbitrary (one
of the least expensive method)

- the checksum is stored with the data block

- when blocks of data are transferred (e.g. data transfer
between mass-storage device) the sum is recalculated and
compared with the checksum

- checksum is basically the sum of the original data Code word = block + checksum

Checksumming

• Disadvantages
- if any word in the block is changed, the checksum must also be
modified at the same time

- allow error detection, no error location: the detected fault could be in
the block of s words, the stored checksum or the checking circuitry

- single point of failures for the comparison and encoder/detector
element

• Different methods differ for how summation is executed

May 7-10, 2019 Redundancy in Fault Tolerant Computing 35

Error correcting codes -ECC

May 7-10, 2019 Redundancy in Fault Tolerant Computing 36

Two-dimensional parity

1 0 1 …. 0 1
0 0 1 …. 1 1
1 1 1 …. 0 0
1 0 0 …. 0 0

k words

n-bit words

column
parity

row
parityOdd parity

0

parity error

parity error

Error location is possible for single-bit error:
one error in the row parity vector, one error in the column parity vector

A single-bit error in the parity column or parity row column is detected

Single-error correcting code (SEC): detect and correct 1-bit error

Hamming Code (I)

Parity bits spread through all the data word

May 7-10, 2019 Redundancy in Fault Tolerant Computing 37

Parity bit pj covers all bits whose position has the j least significant bit equal to 1

Each data bit is included in a unique set of 2 or more parity bits, as determined by the
binary form of its bit position

Taken from: http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes

Data bits
all other bit positions

(number the bit positions starting
from 1: bit 1, 2, 3, etc..)

Parity bits
all bit positions that are
powers of two : 1, 2, 4, 8, etc.

Hamming code (II)

Parity bit p1 covers all bit positions which have the
least significant bit set:

bit 1 (the parity bit itself), 3, 5, 7, 9, etc.

Parity bit p2 covers all bit positions which have the
second least significant bit set:

bit 2 (the parity bit itself), 3, 6, 7, 10, 11, etc.

May 7-10, 2019 Redundancy in Fault Tolerant Computing 38

Parity bit 4 covers all bit positions which have the
third least significant bit set:

bits 4–7, 12–15, 20–23, etc.

Parity bit 8 covers all bit positions which have the
fourth least significant bit set:

bits 8–15, 24–31, 40–47, etc.

Taken from: http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes

Hamming code (III)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 39

Overlap of control bit: a data bit is controlled by more than one parity bits

Minimum Hamming distance: 3

Double-error detection code
Single-error correction code

SEC-DED code

Taken from: http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes

Self checking circuitry

Necessity of reliance on the correct operation of comparators and code checkers
that are used as hard-core for fault tolerant systems

Self-checking circuit
given a set of faults, a circuit that has the ability to automatically detect the
existence of the fault and the detection occurs during the normal course of its
operations

Typically obtained using coding techniques:
circuit inputs and outputs are encoded (also different codes can be used)

Basic idea:
• fault free + code input -> output: correct code word
• fault + code input -> output: (correct code word) or (non code word)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 40

Self checking circuitry

• Self-testing circuit: if, for every fault from the set, the circuit produces
a noncode output for at least one code input (each single fault is
detectable)

• Fault-secure circuit: if, for every fault from the set, the circuit never
produces a incorrect code output for a code input (i.e. correct code
output or noncode output)

• Totally self-checking (TSC): if the circuit is self-testing and fault-
secure

May 7-10, 2019 Redundancy in Fault Tolerant Computing 41

two-input TSC comparator

two signal input comparator (A, B)

output equal to 0 if inputs are equal; 1 otherwise

Fault assumption:

- single fault

- stuck-at-1/stuck-at-0 of each line in the circuit

Coding: 1/2
(dual-rail signal: coded signal whose two bits are
always complementary)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 42

A B C
0 0 0
0 1 1
1 0 1
1 1 0

A

B C

A : A1 A2

0 : 0 1
1 : 1 0

two-input TSC comparator

May 7-10, 2019 Redundancy in Fault Tolerant Computing 43

0

1

1

0

0

1

Taken from:[Siewiorek et al., 1998]

output 0 if inputs are equal; 1 otherwise

Fault free
A =0, B =1 different input
m=1, n =1, q=0
o = 0, p=1, r= 1
c2=0
c1=1
c1c2: code word
Output = c1 = 1 correct

1

1

0

1

0

1

two-input TSC comparator

May 7-10, 2019 Redundancy in Fault Tolerant Computing 44

0

1

1

0

0

1

Taken from:[Siewiorek et al., 1998]

output 0 if inputs are equal; 1 otherwise

Faulty:
A=0, B=1 different input
m: stuck-at-0
c2 = 1
c1 = 1
c1c2: non code word
Output = error

1

1

0

1

0

1

two-input TSC comparator

May 7-10, 2019 Redundancy in Fault Tolerant Computing 45

0

1

1

0

0

1

Taken from:[Siewiorek et al., 1998]

output 0 if inputs are equal; 1 otherwise

Faulty:
A=0, B=1 different input
m: stuck-at-1
c2=0
c1=1
c1c2: code word
output = c1 = 1 correct

1

1

1

0

1

0

two-input TSC comparator

• For each fault, there exists at least one input configuration such that the output is a non code word

• If the output is a code word, the output is correct

May 7-10, 2019 Redundancy in Fault Tolerant Computing 46

Taken from:[Siewiorek et al., 1998]

n-input TSC comparator

• n-input TSC comparator:
tree of two input self checking comparators

May 7-10, 2019 Redundancy in Fault Tolerant Computing 47

May 7-10, 2019 Redundancy in Fault Tolerant Computing 48

TIME REDUNDANCY

Time redundancy techniques (I)

Attempt to reduce the amount of extra hw at the expense of using additional time

• Repetition of computations
- compare the results to detect faults
- re-execute computations (disagreement disappears or remains)

good for transient faults
no protection against permanent fault

- problem of guaranteeing the same data when a computation is executed

May 7-10, 2019 Redundancy in Fault Tolerant Computing 49

Computation

Computation
Encode

Data
Decode

result

Store

result

Compare

results

Store

resulttime t0

time t0+d

Data

Data

error

Time redundancy techniques (II)

• Use a minimum of extra hw to detect also permanent faults
- encode data before executing the second computation

May 7-10, 2019 Redundancy in Fault Tolerant Computing 50

Example: data transmitted over a parallel bus

- stuck at of a line of the bus

t0: transmit original data

t0+d : transmit complement data

When a fault occurs: received data not complements of each other

t0 : 1 0 1 1 -> 1 0 0 1

t0+d : 0 1 0 0 -> 0 1 0 0

Transmission error free, each bit line alternate between a logic 1 and a logic 0 (alternating logic)

line stuck at 0

May 7-10, 2019 Redundancy in Fault Tolerant Computing 51

SOFTWARE REDUNDANCY

Faults in the software

Software is subject to

design flaws:
- mistakes in the interpretation of the specification

that the software is supposed to satisfy (ambiguities)
- mistakes in the implementation of the specification:

carelessness or incompetence in writing code, inadequate testing

operational faults:
incorrect or unexpected usage faults (operational profile)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 52

sw

input output

Faults in the software

Design flaws:
hard to visualize, classify, detect, and correct.

closely related to human factors and the design
process, of which we don't have a solid understanding

May 7-10, 2019 Redundancy in Fault Tolerant Computing 53

only some type of inputs will
exercise that fault to cause
failures. Number of failures
depend on how often these
inputs exercise the sw flaw

apparent reliability of a piece of
software is correlated to how
frequently design faults are
exercised as opposed to number
of design faults present

Software redundancy

Due to the large cost of developing software, most of the
software dependability effort has focused on

fault prevention techniques and testing strategies

Multi-version approaches
replicate the software
mainly used in safety-critical systems (due to cost)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 54

Multi-version approaches

Software diversity

a simple duplication and comparison procedure will not detect software faults if
the duplicated software modules are identical

Independent generation of N >= 2 functionally equivalent programs,
called versions, from the same initial specification.

Upon disagreement among the versions?
- retry or restart (fault containment)
- trasition to a predefined safe state
- reliance on one of the versions

May 7-10, 2019 Redundancy in Fault Tolerant Computing 55

N-version programming (I)

independently developed versions
of design and code

Technique: independent
design teams using different design
methodologies, algorithms, compilers,
run-time systems and hardware
components

- vote on the N results produced

May 7-10, 2019 Redundancy in Fault Tolerant Computing 56

Program

Inputs

Program

Inputs

Program

Version 1

Program

Version N

Program

Version 2 Voter

Program

Outputs

.

.

.

.

N-version programming (II)

Disadvantages
-cost of software development
-cost of concurrent executions
-potential source of correlated errors, such as the original specification.

Specification mistakes: not tolerated

Practical problem
in implementing the software Voter for comparing the results generated by the
copies because of the differences in compilers, numerical techniques and format
conversions.

May 7-10, 2019 Redundancy in Fault Tolerant Computing 57

N-version programming (II)

Software voter (single point of failure)

• not replicated: must be simple and verifiable

• must assure that the input data vector to each of the versions is identical

• must receive data from each version in identical formats or make efficient
conversions must implement some sort of communication protocol to wait
until all versions complete their processing or recognize the versions that
do not complete

May 7-10, 2019 Redundancy in Fault Tolerant Computing 58

N-self-checking programming

N versions of the program are written
- each version is running simultaneously

and includes its acceptance tests

The selection logic chooses the results
from one of the programs that passes
the acceptance tests

Tolerates N-1 faults (independent faults)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 59

Program

Version 1

Program

Version N

Acceptance

tests

Accepptance

tests
Selection

Logic

.

.

Program

Inputs

Program

Outputs

Program

Inputs

based on acceptance tests rather than comparison with equivalent versions

Design diversity

1. Cannot adopt the hardware analogy and assume versions fail
independently

2. Empirical evidence that there will be common faults
There is evidence that diversity delivers some improvement over
single versions

3. Related faults may result from dependencies in the separate
designs and implementations (example: specification mistakes)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 60

Design diversity

Design diversity

Functional diversity

Assign to independent software versions diverse functions that compute
the same task

For example, in a plant, diverse measurement signals, actuators and
functions exists to monitoring the same phenomenon

Diverse functions
for example, functions that ensure independently that the plant safety
targets are met.

May 7-10, 2019 Redundancy in Fault Tolerant Computing 61

Recovery-block technique

May 7-10, 2019 Redundancy in Fault Tolerant Computing 62

Basic structure: Ensure T
By P

else by Q

else error

Accettability of the result is decided by an acceptance test T. Primary alternate P, secondary alternates Q

1. variables global to the block automatically checkpointed if they are altered within the block

2. the primary alternate is executed and subjected to an acceptance test to detect any error in the result.
If the test is passed, the block is exited; otherwise the content of the recovery cache pertinent to the block is
reinstated, and the second alternate is executed.

3. This cycle is executed until either an alternative is successful or no more alternatives exist. In this last case
an error is reported.

checkpoint

Acceptance

test

based on an one acceptance test and a single alternate is run at a time

Recovery-block technique

Combines elements of checkpointing and backup

May 7-10, 2019 Redundancy in Fault Tolerant Computing 63

Primary

Version

Secondary

Version N-1

Secondary

Version 1

Program Outputs

.

.

.

.

Program Inputs

N-to-1

Program

Switch

Acceptance

Tests

Test Result

- checkpoint: a copy of the current state
for possible use in fault tolerant
techniques

- releases the programmer from
determining which variables should
be checkpointed and when

- linguistic structure for recovery blocks
requires a suitable mechanism for
providing automatic backward error
recovery.

Checkpointing: basic issues

- may be taken automatically (periodically) or upon request by program

- resetting the system and process state to the state stored at the latest checkpoint
needs mechanisms in run-time support (rollback)

- need to be correct
(consistency of checkpoints)

- need eventually to be discarded

- overhead of saving system state
(minimize the amount of state
information that must be saved)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 64

x

1

2

3

a

b 4

5

c 6

dProcess A

Process B

Process C

e

Checkpoint

x Error

Message passed domino effect

Effectiveness of fault tolerance

Example: Stable storage

RAID (Redundant Arrays of Independent Disks) technology

disk organization techniques that manage a large numbers of disks,
providing a view of a single disk of high capacity and high speed by
using multiple disks in parallel, and high reliability by storing data
redundantly

May 7-10, 2019 Redundancy in Fault Tolerant Computing 65

Magnetic disk

May 7-10, 2019 Redundancy in Fault Tolerant Computing 66

Read failure
To deal with read failure, computes and attaches checksums to each
sector to verify that data is read back correctly
If data is corrupted, with very high probability stored checksum won’t
match recomputed checksum

Write failure
Ensure successful writing by reading back sector after writing it

RAID

Redundant information stored on multiple disks to recover from failures

• Mirroring

• Coding: Block-Interleaved Parity

May 7-10, 2019 Redundancy in Fault Tolerant Computing 67

Disk Mirrored Disk

block 8

block 4

block 0

block 9

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

parityblock 8-11

parityblock 4-7

parityblock 0-3

Block-level striping

Parity block on a diferent
disk for toleranting
disk failure

block 17

block 13

block 16

block 12

block 18

block 14

block 19

parityblock 11-15

parityblock 15-19

RAID

May 7-10, 2019 Redundancy in Fault Tolerant Computing 68

block 8

block 4

parityblock 0-3

block 15

block 9

parityblock 4-7

block 0

parityblock 8-11

block 5

block 1

block 10

block 6

block 2

block 11

block 7

block 3

• Coding: Block-Interleaved Distributed Parity

RAID

May 7-10, 2019
Redundancy in Fault Tolerant Computing

69

…

Disk1 Disk2 Disk7 Disk8

1 0 0 0 1 1 0 1

Byte

0 0 1 0 0 1 1 1

Byte

10 00

Disk1 Disk2 Disk3 Disk4

10 00

Disk5 Disk6 Disk7

Hamming(7, 4)

• Coding: Hamming code

Bit-level striping

Conclusions

• Fault tolerance uses replication for error detection and system
recovery

• Fault tolerance relies on the independency of redundancies with
respect to the process of fault creation and activations

• Fault masking will conceal a possibly progressive and eventually
fatal loss of protective redundancy

• Practical implementations of masking generally involve error
detection (and possibly fault handling), leading to masking and
error detection and recovery

May 7-10, 2019 Redundancy in Fault Tolerant Computing 70

Conclusions

• When tolerance to physical faults is foreseen, the channels may
be identical, based on the assumption that hardware components
fail independently

• When tolerance to design faults is foreseen, channels have to
provide identical service through separate designs and
implementation (through design diversity)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 71

