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Outline
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* fault tolerant computing: why and what
* computer-based systems: faults and failures

* forms of redundancy:
- Hardware redundancy
- Information redundancy
- Timing redundancy
- Software redundancy

o effectiveness of fault tolerance
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Fault tolerant computing: why and what
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Computers are increasingly used in safety-critical systems:
- transport (automotive, railways, aerospace, ...)
- medicine

- process control

Future safety-critical systems will be more automated and more dependent on computers

Fault tolerant computing:

the ability of the system to deliver the expected functionality during its operational life also in case of
malfunctions ( important in safety-critical systems, systems whose failure may result in death or serious
injury to people, loss or serious damage of equipment, or environmental harm)

May 7-10, 2019 Redundancy in Fault Tolerant Computing 3



Transport systems: Aerospace

Fly-By-Wire Airplane

Captain and first officer Ihﬂ;ﬂmmﬂm@l |HY$&‘°I

Earliest aircraft: controlled by the pilot using

A
the steel cables, pulleys and hydraulic

[Actuator control electronics (@) actuators

http://www.aviationcoaching.com/wp-content/uploads/2015
/08/fly-by-wire-system.jpg

Fly-by-wire (FBW) system: all commands and signals are transmitted
electrically along wires.

* These signals are sent to flight-control computers (FCS) that reconvert the
electrical impulses into instructions for control surfaces like wing flaps or
the tail.
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Transport systems: Automotive
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Sensing and Computing in Cars Over 80 different embedded processors,

interconnected with each other.

Vohiths tampatar TS Speaker & Mirres

indow lift
e Universal light

= e Key ECUs (Electronic Control Unit):
nsarionn | IS e * Engine Control Modul (ECM)
o T 1 e e Electonic Brake Control Module (EBCM)
* Transmission Control Module (TCM)
e Vehicle Vision System (VVS)
R * Navigation Control Module (NCM)

GSM  Global System for Mobile Communications PY
LN Local interconnect network
MOST Media-orianted systems transport

Universal motor
Universal panel

Main vehicle control systems replaced with electronic controls (no physical connection):
* throttle - Electronic Throttle Control

* brakes - Brake-by-Wire

* steering - Steer-by-Wire
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Fault tolerant computer-based systems
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For a computer based safety-critical system, the safety of the system depends
strongly on its computers.

Faults are unexpected events that may compromise the system functionality

Faults in computer systems:
hardware faults (e.g., stack-at 0 of a line, memory cell bit flip)
software faults (e.g., a bug in the code)

General questions: How to build dependable computer-based systems.
Can we justifiably trust the dependability of such systems?
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Fault tolerant computer-based systems
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1. a system is as strong as its weakest component
* Hw and sw systems relaying on hidden components

2. small hidden faults may have large effects (digital machine)
* Computer failures differ from failures of other equipment
* Subtler failures than “breaking down” or “stopping working”, ..

 The computer is used to store information: there are many ways information
can be wrong, many different effects both within and outside the computer
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of threats: Faults -> Errors -> Failures
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%ngumn .| Propagation @ Propagation .Propaminn q
for arro

Taken from [Avizienis et al. 2004]
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 Make available

- two or more copies of data item that may be corrupted

- a mechanism that compares them and declares an error if they differ

* The two copies must be unlikely to be corrupted together and in the same way

Examples: Duplicated circuitry, Transmit messages twice, Store data in two
separate places (e.g. mirrored disks)

Replication: v

can have a very important impact on a system in the area of performance, size,
weight, power consumption and others
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Redundancy in fault tolerant computing
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HARDWARE REDUNDANCY

Physical replication of hw (the most common form of redundancy)

The cost of replicating hw within a system is decreasing because the costs of hw is
decreasing

INFORMATION REDUNDANCY
Addition of redundant information to data in order to allow fault detection and fault
masking

TIME REDUNDANCY
Attempt to reduce the amount of extra hw at the expense of using additional time

SOFTWARE REDUNDANCY
Tolerating faults in software
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HARDWARE REDUNDANCY
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Hardware redundancy
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Passive fault tolerant techniques

 use fault masking to hide the occurrence of faults

* rely upon voting mechanisms to mask the occurrence of faults
* do not require any action on the part of the system / operator
» generally do not provide for the detection of faults

Active fault tolerance techniques

» use fault detection, location and recovery

* detect the existence of faults and perform some actions to remove the faulty hw from
the system require the system to perform reconfiguration to tolerate faults

* common in applications where temporary, erroneous results are acceptable while the system
reconfigures (satellite systems)

Hybrid approach

* very expensive
* often used in critical computations in which fault masking is required to prevent momentary
errors and high reliability must be achieved
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Passive fault tolerance technique: TMR
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1. Triple Modular Redundancy (TMR) — fault masking

»Module 1
»Module 2 Z@_Oytp“t Voter is a single point of failure
»Module 3

Triplicate the hw (processors, memories, ..) and perform a majority vote to determine the output
- 2/3 of the modules must deliver the correct results
- effects of faults neutralised without notification of their occurrence
- masking of a failure in any one of the three copies

Good for transient faults
For permanent faults, since the faulty module is not isolated, the fault tolerance decreases
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Cascading TMR with triplicated voters
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D@
2 :@—0 coe @—» B, —»@—* Output

Taken from [Siewiorek etal., 1998]

Input —»-—=| B,

ke

The effect of partitioning of modules (A, B, C) is that the design can withstand
more failures than the solution with only one large triplicated module

The partition cannot be extended to arbitrarily small modules, because reliability
improvement is bounded by the reliability of the voter

Triplicated voters: voter errors propagates only of one step
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TMR: the Voter
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Reliable Voters

Hardware voters are bit voters that compute the majority 1 bit voter
on n input bits.

Optimal designs of hardware voters with respect to
circuit complexity, number of logic levels, fan-in and fan-
out and power dissipation B—

D~

OUT=AB +BC+ AC

:)_

O |@ o P>

L
) D—our

Difficulties
Delay in signal propagation:
- due to the voter
- due to multiple copies synchronisation

Trade-off : achieved fault tolerance vs hw required
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Problems with voting procedure on analog signals
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using multiple analog to digital convertes and performing bit-by-bit voting on their
digital output is not satisfactory

The three results from the analog to digital converters may not completely agree,
for example, they could produce a result which differs for the least-significant bit
even if the exact signal is passed through the same converter

e perform voting in the analog domain:

-2 average the three signals S
—> choose the mean of the two most most similar signals

— choose the median of the three signals (pseudo voting)
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N-Modular Redundancy
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2. NMR
N is made an odd number
»Module 1
Coverage: >Module 2
m faulty modules, with N =2m +1 In ‘ output
»Module 3 > \/oter
5MR: tolerates 2 faulty modules —Module 4

— Module 5

7MR: tolerates 3 faulty modules
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Active hw redundancy
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1. Duplication with comparison scheme
(Error detection)

Two identical pieces of hw (Modulel and Module 2) are employed
* they perform the same computation in parallel

 when a failure occurs, the two outputs are no more identical and a simple comparison detects the fault

Then the comparator (hw component) selects the correct output and reconfigure the switch to select the
correct value

* the comparator must select the correct value

A 4

Module 1 Dual-modular redundancy
output (also Duplex system)

i
switch

Vv

A4

input

A 4

comparator

A4
V

Module 2
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Active hw redundancy: the comparator

Assumption:
the two copies must be unlikely to be corrupted together in the same way

The comparator applies checks to select the correct output

Types of checks
-Coding -Specification checks (use the definition
of “correct result”)
-Self-checking circuitry Example: Specification: find the solution
of an equation Check: substitute results
-Reversal Checks back into the original equation
Assumption: the specified function of the system
is to compute a mathemathical function F and - Reasonableness Checks
the function has an inverse function F’, such that Divide by 0
F'(F(x))=x Acceptable ranges of variables
Check: let output = F(input). Compute F’'(output) Acceptable transitions
and verify that F'(output) = input Probable results
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Active hw redundancy: the comparator
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Problems

* need to check if the output data are valid. The comparator may not be able to perform
an exact comparison, depending on the application area (digital control applications)

* faults in the comparator may cause an error indication when no error exists (false
postive) or possible faults in duplicated modules are never detected (false negative)

Coverage
* detects all single faults except those of the comparison element

Advantages

» simplicity, low cost, low performance impact of the comparison technique, applicable
to all levels and areas
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Active redundancy
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2. Stand-by sparing
(error detection, reconfiguration)
Part of the modules are operational, part of the modules are spares modules (used as replacement modules)

The switch can decide no longer use the value of a module (fault detection and localization). The faulty module is
removed and replaced with one of the spares.

- hot spares
the spares operate in synchrony with the on line modules, and

Module 1 :

they are prepared to take over > error detection

Vv

\ 4

input

\%

- warm spares 1| Module 2 output
—

the spares are running but receive inputs only after switching > error detection

Y

switch
- cold spares

the spares are unpowered until needed to replace a faulty module

Vv

A 4

Module n

—>| error detection | —>

As long as the outputs agree, the spares are not used.
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Different schemes can be implemented
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Pair-and-spare approach

- Amodule is a duplex system, pairs e
connected by a comparator ‘ -

.
.
e

A 4
e
3
-
.
<
-
o
o
[
D
[HEY
-

- Duplex sKstems are connected to spares
by a switc

K hd
¥
o
o
E
D
N
e
*e

- .
......
gy .t
Ty ue
" as
-------
llllllllllllll

- As long as the two outputs agree, or the .
comparator can detect the right value, the Input
spare is not used.

e R Output
- Otherwise, the comparator signals the »-"" Module 1 _ S
switch that it is not able to compute the ? comparator |
right value and the switch operates a ‘ 7 gwiteh
replacemnet >
using the spare. »[ Module 2 —
.............. spare.....”

Pair results are used in a spare arrangment. Spare components at coarser granularity.
Not all four copies must be synchronised (only the two pairs)
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Hybrid approaches
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Combine both the active and passive approaches
Very expensive in terms of the amount of hw required to implement a system

Applied in commercial systems, safety critical system (aviation, railways, ...)

NMR with spares (Reconfigurable NMR):

Modules arranged in a voting configuration
- spares to replace faulty units

- rely on detection of disagreements and determine the module(s)
not agreeing with the majority
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Reconfigurable NMR

N redundant module configuration (active
modules)

Voter (votes on the output of active modules)

The Fault detection units

1) compares the output of the Voter with the output of the
active modules

2) replaces modules whose output disagree with the output
of the voter with spares

Reliablity
as long as the spare pool is not empty

Coverage
TMR with one spare can tolerate 2 faulty modules

(mask the first faulty module; replace the module;
mask the second faulty module)

y

Module 1

Y

unit

Vv V

Module N

—» Spare
Module 1

Spare
—»Module M

Fault detection
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Disagreement
detection

A4

Y

V

Active
units outputs

SWITCH
(select N . L,
out-of N+M)

output
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Hw redundancy technigues: summary

Key differences
Passive: rely on fault masking
Active: rely on error detection, location and recovery
Hybrid: emply both masking and recovery

* Passive provides fault masking but requires investment in hw
(5MR can tolerate 2 faulty modules)

* Active has the disadvantage of additional hw for error detection and recovery,
sometimes it can produce momentary erroneous outputs

* Hybrid techniques have the highest reliability but are the most costly
(3MR with one spare can tolerate 2 faulty modules)
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INFORMATION REDUNDANCY

May 7-10, 2019 Redundancy in Fault Tolerant Computing 26



Coding
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Information is represented with more bits that strictly necessary: says, an n-bit
information chunck is represented by

n+c= m bits

Set of all
possible words

2m

Among all the possible 2™ configurations of the m bits, only 2" represent
acceptable values (code words)

Set of

if @ non-code word appears, it indicates an error in
code words

transmitting, or storing, or retrieving ...

2n

Parity code
for each unit of data, e.g. 8 bits, add a .

. . , sender receiver
parity bit so that the total number of 1’s node node

in the resulting 9 bits is odd

10100000 |1 | =) 10100100 |1

byt N communication
e ari
Y partty channel

Two bit flips are not detected bit not a codeword

one bit flip
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Coding
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Codes
encoding: the process of determining the c bit configuration for a n bit data item
decoding: the process of recovering the original n bit data from the m bit total bit

Separable code: a code in which the original information is appended with new information to form the
codeword. The decoding process consists of simply removing the additional information and keeping
the original data

Nonseparable code: requires more complicated decoding procedures

Parity code is a separable code
Additional information can be used for error detection and may be for error correction
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Examples of codes
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 boxed words: code words

Parity-code
odd parity

3-bit words — 4 code words

4-bit words — 8 code words
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Examples of codes

UNIVERSITA DI PISA

CD - complemented m/n code:
duplication m bit equal to 1
2/4 code

4-bit words - 4 code words

4-bit words - 6 code words
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Distances and data spaces
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Hamming distance between two data items: count the number of bits that are different

A code such that the Hamming distance between two code Parity-code: Hamming distance 2
words is > k will detect all errors that flip up to k bits
001 191
Memories of computer systems. 011 w11 ]
Parity bit added before writing the memory. Parity bit is checked when reading.
000
Useful distance measures depend on type of data and faults " 100
Bank account numbers should be such that mistyping a digit 010 110

does not credit the wrong account.

—» undetectable
’ detectable
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Codes for error correction

UNIVERSITA DI PISA

Minimum Hamming distance:
minimum distance between two code words

o N

correctable

A code such that the minimum Hamming distance is k will
detect up to k-1 single bit errors

uncorrectable

! correctable

A code such that the minimum Hamming distance is k will
correct up to d errors, where k = 2d +1

Hamming distance 3:
detects 1 or 2 bits errors

correct 1 bit error

The corrupted data is closer to the correct
data than to any other code word
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Arithmetic codes
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An arithmetic code guarantees that
if inputs are code words and the operation is performed correctly results are code words too

Arithmetic
— operation

Implementation of the arithmetic operation (hardware or software) must be modified to operate on the code

The set of code words of an arithmetic code A is closed with respect to a specific set of operations.
A(b*c) = A(b) * A(c ) where * is one of a set of operations

3N codes

Multiply the data by 3 (this add 2 bits of redundancy)
Error checking is performed by confirming that the received word is divisible by 3
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Checksumming

» applied to large block of data in
memories

e coverage: single fault

checksum for a block of n words is formed by adding together
all of the words in the block modulo-k, where k is arbitrary (one
of the least expensive method)

Original data

dn-l

d,

d,

!

- the checksum is stored with the data block

Checksum on
Original data

- when blocks of data are transferred (e.g. data transfer
between mass-storage device) the sum is recalculated and
compared with the checksum

- checksum is basically the sum of the original data

I

Iy

!

Checksum on

received data
A
v compare

> Received version
of checksum

Code word = block + checksum
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Checksumming

e Disadvantages

- if any word in the block is changed, the checksum must also be
modified at the same time

- allow error detection, no error location: the detected fault could be in
the block of s words, the stored checksum or the checking circuitry

- single point of failures for the comparison and encoder/detector
element

e Different methods differ for how summation is executed

UNIVERSITA DI PISA
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Error correcting codes -ECC
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Two-dimensional parity

row
Odd parity n-bit words parity
101...0 |1
k words 0 O@\'l\ 1 < parity error
111...0 [0
column 10 O/T\.... 0 |0

parity _
parity error

Error location is possible for single-bit error:
one error in the row parity vector, one error in the column parity vector

A single-bit error in the parity column or parity row column is detected

Single-error correcting code (SEC): detect and correct 1-bit error
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Hamming Code (I)
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Parity bits spread through all the data word

Parity bits
Bitpositon 12 3 4 5 6 7 /8 9 10111213 14 15 16 17 18 19 20 all bit positions that are
Encoded data bits p1 p2 d1 p4 d2 d3 d4 p8 d5 d6 d7 d8 d9 d10 d11 p16 d12 d13 d14 d15 powers of two : 1, 2, 4, 8, etc.
p1 X X| [x| [X X| |[X X X X X
parity | P2 X | x X [ x X | X X | X X | X Data bits
bit p4 X|X|X|[x X|X|x|x X all other bit positions
coverage ' g X X|X[X|X[x|x|X
p16 X X | X X X (number the bit positions starting

from 1: bit 1, 2, 3, etc..)
Taken from: http://en.wikipedia.org/wiki/Hamming_code#tHamming_codes

Parity bit pj covers all bits whose position has the j least significant bit equal to 1

Each data bit is included in a unique set of 2 or more parity bits, as determined by the
binary form of its bit position
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Hamming code (Il)
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Bitpositon 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20
Encoded data bits p1 p2 d1 p4 d2 d3 d4 p8 d5 d6 d7 d8 d9 d10 d11 p16 d12 d13 d14 d15
p1 X X| |[x| |[x X| [x]| [x X X X
Parity | P2 X | X X | X X | X X X X | X
bit p4 X|X|X|X x|x| x| x X
coverage ' g X[ X[X[X|[x|[X| x| X
p16 X|X|X|[x|X

Taken from: http://en.wikipedia.org/wiki/Hamming_code#Hamming_codes

Parity bit p1 covers all bit positions which have the Parity bit 4 covers all bit positions which have the
least significant bit set: third least significant bit set:
bit 1 (the parity bit itself), 3, 5, 7, 9, etc. bits 4—7, 12—15, 20-23, etc.

. : _ . _ Parity bit 8 covers all bit positions which have the
Parity bit p2 covers all bit positions which have the fourth least significant bit set:

second least significant bit set: bits 815, 24-31, 40-47, etc.
bit 2 (the parity bit itself), 3, 6, 7, 10, 11, etc.
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Hamming code (lIl)
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Parity bits  Total bits Data bits Name Rate

2 3 1 Hamming(3,1) (Triple repetition code) 1/13=0.333

3 T 4 Hamming(7,4) 4/7=0.871

4 15 11 Hamming(15,11) 11/15=0.733

5 31 26 Hamming(31,26) 26/31=0.839

m 2™ _1|2™ — m — 1/Hemming(2™ — 1 2™ —m —1)(2" -=m—-1)/(2" - 1)

Taken from: http://en.wikipedia.org/wiki/Hamming_code#ftHamming_codes

Overlap of control bit: a data bit is controlled by more than one parity bits

Minimum Hamming distance: 3

Double-error detection code

, , m) SEC-DED code
Single-error correction code
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Self checking circuitry

Necessity of reliance on the correct operation of comparators and code checkers
that are used as hard-core for fault tolerant systems

Self-checking circuit
given a set of faults, a circuit that has the ability to automatically detect the

existence of the fault and the detection occurs during the normal course of its
operations

Typically obtained using coding techniques:
circuit inputs and outputs are encoded (also different codes can be used)

Basic idea:
 fault free + code input -> output: correct code word
 fault + code input -> output: (correct code word) or (non code word)
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Self checking circuitry

* Self-testing circuit: if, for every fault from the set, the circuit produces
a noncode output for at least one code input (each single fault is
detectable)

* Fault-secure circuit: if, for every fault from the set, the circuit never
produces a incorrect code output for a code input (i.e. correct code
output or noncode output)

* Totally self-checking (TSC): if the circuit is self-testing and fault-
secure
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two-input TSC comparator

two signal input comparator (A, B)

output equal to O if inputs are equal; 1 otherwise

Fault assumption: A

- single fault

- stuck-at-1/stuck-at-0 of each line in the circuit

Coding: 1/2
(dual-rail signal: coded signal whose two bits are
always complementary)

J

J

@)

= O

: A1 A2

o

>
vs)

R R OO
L O L O
OHHO|O

UNIVERSITA DI PISA
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two-input TSC comparator
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output O if inputs are equal; 1 otherwise

Fault free

: : 0 g2 2 s E

A =0, B =1 different input | M1 |
m=1, n =1, q=0 | f h bl — k) @)

0=0,p=1,r=1 1 g Eb g}.,_,’— :

c2=0 : - 1 |

c1=1 : i |

clc2: code word 1 A2 3‘ a—})—lj() i
Output = c1 =1 correct : :‘ 3'—?—1—‘0

: _}_l |

0 id | R 1 i

Taken from:[Siewiorek et al., 1998]
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two-input TSC comparator
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output O if inputs are equal; 1 otherwise

|
Faulty: 0 85—y 8 £ > E
A=0, B=1 different input r —H 1 1
m: stuck-at-0 b :}’_}_O
c2=1
cl=1 :

|

clc2: non code word
Output = error

[EY
>
N~

o
>
-

[
o
-
— e ———— ———————p—————d}——
- g ae
2
H =

Taken from:[Siewiorek et al., 1998]
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two-input TSC comparator
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output O if inputs are equal; 1 otherwise

| |
Faulty: 0 gp}2 < :
A=0, B=1 different input E : 15 8 i 0
m: stuck-at-1 1 'b ) : 2
B1 —1 n '
c2=0 : 1 :
cl=1 | h i
clc2: code word E : = P !
output = c1 = 1 correct L | '.‘ | ) ‘ :, &i
| |
G et D E R
| |

Taken from:[Siewiorek et al., 1998]
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two-input TSC comparator
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Inputs Outputs C2C1 Resulting from Single Stuck-at-1 Faults
Normal
B2B1 A2A1 Output Ja b ¢ d e f« g 'h i j k I Im| n o ‘pi"tg r
01 01 10 11 10 11 100 10, 100 10 10 10 30 13 10 |10 ] 00 “10: 105108
"01 10 01 .61 01 1. 131,01 01 A% 01 01 0f 01 01 .01 00 Oisliiesiol
10 01 01 or 1w M. 01 o1, 11 11 01 01T of 0t . O1 J01 ] 61 01 -OOSS1ast
10 10 10 0 11T 100 11 100 90 10 10 11 40 .10 %1 100 | 10: 10 10010044
Inputs Outputs C2C1 Resulting from Single Stuck-at-0 Faults
Normal
B2871 A2ATY *Output: " pa” h e d™ et £ gt h j kK 1l "Im]n o ‘p igar
01 01 10 10 00 100 000 10 10/ 00 00 10 10 30 10 O | 10 TS EI00SH)
01 10 01 0r o0 00 01 ©O01 01 o001 01 00 00 O1 O1 g1 11 01 01 01 00
10 01 01 00 01 01 00 01 01 01 01 01 01 ;00 00 1|11 0V .08 50100
10 10 10 00 100 00: 100 00 00, 10 10 10 10 100 10 110 ]10! 11 031 w00

Taken from:[Siewiorek et al., 1998]

* For each fault, there exists at least one input configuration such that the output is a non code word
* If the output is a code word, the output is correct
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n-input TSC comparator
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* n-input TSC comparator:
tree of two input self checking comparators
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TIME REDUNDANCY
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Time redundancy techniques ()

UNIVERSITA DI PISA

Attempt to reduce the amount of extra hw at the expense of using additional time

e Repetition of computations

- compare the results to detect faults

- re-execute computations (disagreement disappears or remains)
good for transient faults
no protection against permanent fault
- problem of guaranteeing the same data when a computation is executed

Data q . | Store

_ > Computation "
time t, result

! error
Compare |_,
time t+d res:lts
_,| Encode »  Computation » Decode |, Store
Data result result
Data

May 7-10, 2019 Redundancy in Fault Tolerant Computing 49



Time redundancy techniques (Il)
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* Use a minimum of extra hw to detect also permanent faults
- encode data before executing the second computation

Example: data transmitted over a parallel bus
- stuck at of a line of the bus

t0: transmit original data
t0+d : transmit complement data

When a fault occurs: received data not complements of each other

l line stuck at O

tO : 1011 - 1001
t0+d ; 0100 -> 0100

Transmission error free, each bit line alternate between a logic 1 and a logic 0 (alternating logic)
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SOFTWARE REDUNDANCY
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Faults in the software '

input
_

Software is subject to

SW

output

design flaws:

- mistakes in the interpretation of the specification

that the software is supposed to satisfy (ambiguities)
- mistakes in the implementation of the specification:

v

carelessness or incompetence in writing code, inadequate testing

operational faults:

incorrect or unexpected usage faults (operational profile)

UNIVERSITA DI PISA
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Faults in the software

UNIVERSITA DI PISA

Design flaws:
hard to visualize, classify, detect, and correct.

closely related to human factors and the design
process, of which we don't have a solid understanding

only some type of inputs will
exercise that fault to cause
failures. Number of failures
depend on how often these
inputs exercise the sw flaw

apparent reliability of a piece of
software is correlated to how
frequently design faults are
exercised as opposed to number
of design faults present
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Software redundancy 8

Due to the large cost of developing software, most of the
software dependability effort has focused on

fault prevention techniques and testing strategies

Multi-version approaches

replicate the software
mainly used in safety-critical systems (due to cost)
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Multi-version approaches
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Software diversity

a simple duplication and comparison procedure will not detect software faults if
the duplicated software modules are identical

Independent generation of N >= 2 functionally equivalent programs,
called versions, from the same initial specification.

Upon disagreement among the versions?
- retry or restart (fault containment)

- trasition to a predefined safe state

- reliance on one of the versions
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N-version programming (I)
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independently developed versions
of design and code

Program
Inputs

Technique: independent ] program
design teams using different design - Frogam
methodologies, algorithms, compilers, T Version? :@—’
run-time systems and hardware 3
components

1 Veron N
- vote on the N results produced Program

Inputs
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N-version programming (I1)
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Disadvantages

-cost of software development

-cost of concurrent executions o -
-potential source of correlated errors, such as the original specification.

Specification mistakes: not tolerated

Practical problem

in implementing the software Voter for comparing the results generated by the
copies because of the differences in compilers, numerical techniques and format
conversions.
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N-version programming (I1)
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Software voter (single point of failure)
* not replicated: must be simple and verifiable
* must assure that the input data vector to each of the versions is identical

* must receive data from each version in identical formats or make efficient
conversions must implement some sort of communication protocol to wait
until all versions complete their processing or recognize the versions that
do not complete
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N-self-checking programming
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based on acceptance tests rather than comparison with equivalent versions

Program
Inputs

N versions of the program are written
Program

- each version is running simultaneously — ] Version 1
and includes its acceptance tests

\ 4

»Accepptance -
tests g
The selection logic chooses the results
Program -
from one of the programs that passes —— Version N >
the acceptance tests
Program R Acceptance
Inputs tests >

Tolerates N-1 faults (independent faults)

Selection
Logic

Program
Outputs
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A=
: . . Y&y
Design diversity
»‘
{13135
UNIVERSITA DI PISA

Design diversity

1. Cannot adopt the hardware analogy and assume versions fail
independently

2. Empirical evidence that there will be common faults
There is evidence that diversity delivers some improvement over
single versions

3. Related faults may result from dependencies in the separate
designs and implementations (example: specification mistakes)
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Design diversity
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Functional diversity

Assign to independent software versions diverse functions that compute
the same task

For example, in a plant, diverse measurement signals, actuators and
functions exists to monitoring the same phenomenon

Diverse functions

for example, functions that ensure independently that the plant safety
targets are met.
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Recovery-block technique
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based on an one acceptance test and a single alternate is run at a time

Basic structure: Ensure T eckpoint
By P
else by Q
else error
Acceptance

test

Accettability of the result is decided by an acceptance test T. Primary alternate P, secondary alternates Q

1. variables global to the block automatically checkpointed if they are altered within the block

2. the primary alternate is executed and subjected to an acceptance test to detect any error in the result.
If the test is passed, the block is exited; otherwise the content of the recovery cache pertinent to the block is
reinstated, and the second alternate is executed.

3. This cycle is executed until either an alternative is successful or no more alternatives exist. In this last case
an error is reported.
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Recovery-block technique
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Combines elements of checkpointing and backup

- checkpoint: a copy of the current state

for possible use in fault tolerant Program Inputs
techniques | Primary Program Outputs
\ersion >

- releases the programmer from | secondary ol Acceptance -
determining which variables should _ Version 1 | Mo | Test

: Program ests
be checkpointed and when Switch

A
Test Result

- linguistic structure for recovery blocks ,| Secondary
requires a suitable mechanism for Version N-1
providing automatic backward error
recovery.
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Checkpointing: basic issues
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- may be taken automatically (periodically) or upon request by program

- resetting the system and process state to the state stored at the latest checkpoint
needs mechanisms in run-time support (rollback)

ProcessA 1 5 d
(@)
- need to be correct orocess B 3
(consistency of checkpoints) T
Process C o) v o X
- need eventually to be discarded 2 a c 6 €
. ©  Checkpoint
- overhead of saving system state
(minimize the amount of state * Emor o
information that must be saved) > Message passed omino effect
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Effectiveness of fault tolerance

Example: Stable storage

RAID (Redundant Arrays of Independent Disks) technology

disk organization techniques that manage a large numbers of disks,
providing a view of a single disk of high capacity and high speed by
using multiple disks in parallel, and high reliability by storing data
redundantly
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Magnetic disk
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Read failure
To deal with read failure, computes and attaches checksums to each
sector to verify that data is read back correctly
If data is corrupted, with very high probability stored checksum won’t
match recomputed checksum

Write failure
Ensure successful writing by reading back sector after writing it
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RAID

Redundant information stored on multiple disks to recover from failures

Disk Mirrored Disk

* Mirroring

* Coding: Block-Interleaved Parity
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Block-level striping

parityblock 0-3
parityblock 4-7
parityblock 8-11

Parity block on a diferent
disk for toleranting
disk failure




RAID

 Coding: Block-Interleaved Distributed Parity

parityblock 0-3
parityblock 4-7
parityblock 8-11

parityblock 11-15

parityblock 15-19

May 7-10, 2019 Redundancy in Fault Tolerant Computing 68



UNIVERSITA DI PISA

 Coding: Hamming code

Bit-level striping 10- 00- - -

Disk1 Disk2 Disk7 Disk8
APEoRE0T] [opfooiti
Byte Byte
Hamming(7, 4)
Disk1 Disk2 Disk3 Disk4 Disk5 Disk6 Disk7
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Conclusions

* Fault tolerance uses replication for error detection and system
recovery

* Fault tolerance relies on the indepe_ndenc(y of redundancies with
respect to the process of fault creation and activations

* Fault masking will conceal a possibly progressive and eventually
fatal loss of protective redundancy

* Practical implementations of masking generally involve error
detection (and possibly fault handling), leading to masking and
error detection and recovery
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Conclusions
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* When tolerance to physical faults is foreseen, the channels may
be identical, based on the assumption that hardware components
fail independently

* When tolerance to design faults is foreseen, channels have to
provide identical service through separate designs and
implementation (through design diversity)
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