
 Exercise (B+-tree index)

Suppose we have a relation r = (A,B,C), with A primary key.

Assume

nr = 100.000 number of records in the relation

Lr = 50 byte size of a record (fixed length record)

LA = 6 byte size of attribute A

Lp = 4 byte size of a pointer

Lb = 1000 byte size of a block

Heap file organization

1. Show the minimum and the maximum number of leaves of a B+-tree index on search-key A

2. Cost in terms of number of block transfers from disk of the following queries, assuming full/half

full nodes:

 1) select * from r where A=xxx;

 2) select * from r where 2.000 <= A < 3.000;

 assuming A uniformly distributed on the interval [1; 500.000]

3) select * from r where B = xxxx;

where B is not a key

Point 1

Heap file organization

We have a B+-tree secondary index. The index has an entry in the leaves for every search-key value

in the file. Since A is a key of the relation, the number of search-key values in the leaves of the

B+tree is equal to the number of records in the file (100.000).

We evaluate the maximum number of (key, point) in a node (blocking factor of the index, named fI)

We evaluate the minimum number of (key, point) in a node.

 m/2  = 50 minimum number of pointers in intermediate nodes

 (m-1)/2  = 50 minimum number of search-key values in leaves

6+4

1000-4

= 99

= 1011
100.000

99

(LA+Lp)

Lb - Lp

=

m = 100 fanout of the nodes: max number of pointers in a node
m-1 = 99 number of search-key values

Minimum number of leaf nodes in the B+-tree

k’ k k’

k

nonleaf node leaf node

fI =

structure of a node

Number of leaves: 1011 <= nleaves <= 2000

==

Point 2

Let h be the height of a B+-tree, it can be shown that

Full nodes:

 1 level 1

 |

 m level 2

 |

 m*m level 3

 ……………….

 m*m … *m => mh-1 level h

- number of blocks (nodes) is:

- number of search-key values is:

Given the number of leaves, the height of the B+tree can be computed as follows:

Half full nodes:

- number of blocks (nodes) is:

- number of search-key values is:

- height of the tree

 h = 1+ log m/2  (nleaves)

==

 m/2 
h-1

 -1

 m/2  -1

= 1 + 2

= 2000
100.000

50

1 + 2 + 2  m/2  + …. + 2  m/2 
h-2

=

2  m/2 
h-1

-1 (number of nodes * min number of values in the node)

m
h
-1 (number of nodes * number of values in the node)

1 + m + m
2
 + ... + m

h-1
= (m

h
 -1) / (m-1)

nleaves = m
h-1

h-1 = logm (nleaves)

h = 1 + logm (nleaves)

Maximum number of leaf nodes in the B+-tree

Hight of the B+-tree

1 + log100 (1011) <= h <= 1+log50(2000)

 h = 3

Point 2.1

Full/half full nodes

select * from R where A=xxx

Cost of the query:

 C = height of the B+-tree + 1 block for the file

 C = 3 + 1 = 4

Point 2.2
select * from R where 2.000 <=A<3.000

- Cost of the query using the index

 fs = 1.000/500.000 = 1/500 selectivity factor of the query

 Let h be the height of the B+-tree

 C = (h-1) +  fs* nleaves  +  fs* nr 

 Let us consider full nodes.

Number of leaf node transfers:
  fs* nleaves  =  1/500 *1011  =3

 Number of relation block transfers:

  fs* nr  =  1/500 *100.000 =200 (heap file organization, a block transfer for each record)

 Cfull = 2 + 3 + 200 = 205

Let us consider half full nodes.

Number of leaf node transfers:

  fs* nleaves  =  1/500 *2000 = 4

Number of relation block transfers:

  fs* nr =  1/500 *100000 =200

 (heap file organization, a block transfer for each record)

 Chalf full= 2 + 4 + 200 = 206

 - Cost of sequential scan of the file

 Number of blocks of the file: 5000

 The worst case cost is 5000 and the best case cost is 1. On average, we have:(nb + 1)/2

 C =

Point 2.3

select * from r where B = xxxx;

No index on B. Moreover B is not a key. We estimate C = nb

 C = 5.000

Exercise (B+-tree index)

Same exercise, assuming sequential file organization on search key A.

We have number of values in the index equal to number of blocks of the file. We evaluate the

number of blocks in the file.

 Number of leaves: 51 <= nleaves <= 100

1 + log100 (51) <= h <= 1+log50(100)

 2 <= h <= 3

= 100
5.000

50

= 5.000

100.000

nb =

20

nr
nb =

fr

50

= 20

1000

fr =

Lr

Lb
fr =

= 51
5.000

99

(nb +1) /2 = 2.500

Maximum number of leaf nodes in the B+-tree

Minimum number of leaf nodes in the B+-tree

blocking factor of the relation r
max number of records in a
block of the file

number of blocks of the file

 Let us consider half full nodes: h =3

Point 2.1

select * from R where A=xxx

- Cost of the query using the index

 C = height of the B+-tree + 1 block for the file

 C = 3 + 1 = 4

- Cost of the query using binary search

 C’ = log2 nb =  log2 5.000 = 13

Cost of the query: min(C, C’) = min(4, 13) = 4

Point 2.2

select * from R where 2.000 <=A<3.000

- Cost using the index:

 fs = 1/500

 C = (h-1) +  fs* nleaves  +  fs* nb 

Number of leaves transfers:

  fs* nleaves  =  1/500 *100 =1

 Number of file block transfers:

  fs* nb  =  1/500 *5000 =10

 (sequential file organization, records are stored in search-key order in the blocks)

 C = 2 + 1 +10 = 13

 Point 2.3

 select * from r where B = xxxx;

 No index on B. Moreover B is not a key. We estimate C = nb

 C = 5.000

