
Elements of Applied Cryptography

Key establishment

! Trusted third party: KDC, KTC

! Diffie-Helmann protocol

! The man-in-the-middle attack

!"#$%&'()"*+&,#- .

Point-to-point key establishment

Alice Bob

Carol

Dave

Eve

! Each pair of users must share

an a priori, long-term secret key

! Each user has (n 1) keys

! The overall number of keys is

22

1
2nnn or

)(
2nO

Point-to-point key establishment

! Pros

! If a subject is compromised only its communications are

compromised; communications between two other subjects are

not compromised

! Cons

! Poor scalability: the number of keys is quadratic in the number of

subjects

! "##$%&'()(*+)+,-.%(%/01%202*0$3&%4#+/+/5%(/6%(%202*0$3&%)0(7+/5%

affect all current members

!"#$%&'()"*+&,#- /

!"#$%&'()"*+&,#- 0

Establish a session/ephemeral key

A

W

B

W

K

! Parties know each other
e.g., a client A has an account on

server B

! A and B a priori share a

long term key W

! A and B wants to establish

a session key K

! Session key is used for a communication session

! Session key is used for bulk encryption

! Long term key is used for key establishment

!"#$%&'()"*+&,#- 1

Establish a session/ephemeral key

1 : , ,
W A

M A B E t B K

1 :

2 : , ,

B

W B

M A B n

M A B E n B K

1 :

2 : , , ,

3 , , ,

B

W A B A

W B A B

M A B n

M A B E K n n B

M A B E K n n A

one-pass

with challenge-response

both parties contribute to the session key

! nB is a nonce !"#$%&'()* quantity)

! nA and nB are nonces
! KA and KB are keying

materiale
! K = f(KA, KB)

! tA is a timestamp !"#$fresh*#+,"-./.01
requires synchronized clocks

Key distribution with Trusted Third Party

! T allows pair of users to establish a

session key

! Each user shares a long-term, a

priori key with T

! The overall number of long-term

keys is !!""

! T is a trusted third-party

! Maintain a database ##$%$%#&

! Guarantee integrity and secrecy of the

database

! Correctly play the key distribution

protocol

!"#$%&'()"*+&,#- 2

T

A B

KBTKAT

!"#$%&'()"*+&,#- 3

Key Distribution Center

! A and B share distinct secret keys, KAT and KBT, with KDC

! KDC generates the session key K and distributes it to A

and B

! KDC is trusted to correctly generate the key

!"#$%&'()"*+&,#- 4

The Otway-Rees protocol (1987)

M1: , , , , , ,
ATK A

M A B E n M A B

A

T

B

M2: , , , , , , ,

, , ,

AT

BT

K A

K B

M A B E n M A B

E n M A B
M3: , , ,

,

AT

BT

K A AB

K B AB

M E n K

E n K

M3: , ,
ATK A AB

M E n K

Key distribution with KDC
M, nA, nB: nonces

Trusted Third Party

!
"#

!
$#

!
$"

%

KAT: shared key between Trent

and Alice

KBT: shared key between Trent

and Bob

Objective: Alice and Bob

establish a secret shared session

key KAB

Kerberos (Unix, Active directory)

5!"#$%&'()"*+&,#-

Trusted Third Party: il protocollo

$&%$'%

$'&(

M1 A T: A, B

M2 T A: E((T, L, KAB, B), KAT),

 E(T, L, KAB, A), KBT)

M3 A B: E((A, T), KAB),

 E(T, L, KAB, A), KBT)

M3 B A: E(T+1, KAB)

T: timestamp (nonce)

L: lifetime di KAB

67!"#$%&'()"*+&,#-

!"#$%&'()"*+&,#- 66

Decentralized key management

! A and B share distinct secret keys, KAT and KBT, with KTC

! One of the parties generates the session key K; KTC

transmits that key to the other peer

! The party is trusted to correctly generate the key

!"#$%&'()"*+&,#- 6.

The Wide-mouthed frog protocol

M1: , , ,
ATK A AB

A E T B K

A

T

B

Key distribution with KTC

M2: , , ,
BTK S AB

B E T A K

! Synchronized clocks

! Bob trusts Alice to be competent in generating keys

!"#$%&'()"*+&,#- 6/

Key distribution with symmetric encryption

Pros

! It is easy to add and remove entities from the network

! Each entity needs to store only one long-term secret key

Cons

! All communication require initial interaction with the TTP

! The TTP must store n long-term keys

! The TTP has the ability to read all messages

! If the TTP is compromised, all communications are

insecure

!"#$%&'()"*+&,#- 60

Public key distribution system

A public key distribution systems allows two

users to securely exchange a key over an insecure

channel

89+,:+0)6%;+::+0<%=The first ten years of public key cryptography<>%"$#'006+/5&%#:%

IEEE, Vol. 76, no. 5, May 1988.

89+,:+0)6%;+::+0%(/6%?($,+/%@0))2(/<%=New directions in cryptography<>%ABBB%

Transactions on Information Theory, Vol. 22, no. 6, pages 644-654, November

1976.

!"#$%&'()"*+&,#- 61

The discrete logarithm problem

! Let p be prime

! Let 1 g < p be a generator, i.e.,

1 n < p, t s.t. gt mod p = n

! DISCRETE EXPONENTIATION

Given g and x,

computing y = gx mod p is computationally easy

! DISCRETE LOGARITHM

Given g, 1 y p 1,

it is computationally difficult to determine x (0 x p 2) s.t.

y = gx mod p

log mod
g

x y p

!"#$%&'()"*+&,#- 62

Diffie-Hellman protocol: scenario

KAB?

! Let p be a large prime

! Let 1 g < p

! Let p e g publicly known

a
b

Alice chooses a random number a
Bob chooses a random number b

M1 A B: A, YA = g
a
 mod p

M2 B A: B, YB = g
b
 mod p

Alice computes KAB = (YB)
a
 mod p = g

ab
 mod p

Bob computes KAB = (YA)
b
 mod p = g

ab
 mod p

!"#$%&'()"*+&,#- 63

Security of Diffie-Hellman

! An adversary can compute KAB from YA and YB by

computing, for example,

! If logs mod p are easily computed then the system can

be broken

! There is no proof of the converse, i.e., if logs mod p are

difficult to compute then the system is secure

! We don't see any way to compute KAB from YA and YB

without first obtaining either a or b

log
modg BY

AB A
K Y p

!"#$%&'()"*+&,#- 64

Security of Diffie-Hellman

! Let p be a prime, p < 2n, then

All quantities are representable as n-bit numbers

Exponentiation takes at most 2 log2 p = 2n

multiplications mod p

Taking logs mod p requires p! = 2n/2 operations

! Example n = 512

Exponentiation requires at most 1024 multiplications

Taking logs mod p requires 2256 = 1077 operations

!"#$%&'()"*+&,#- 65

Diffie-Hellman protocol: an example

KAB?

a

b

Let p = 11, g = 7

Alice chooses a = 3 and computes YA =

ga mod p = 73 mod 11 = 343 mod 11 = 2

A B: 2

B A: 4

Alice receives 4 and computes KAB = (YB)a mod p =

43 mod 11 = 9

Bob receives 2 and computes KAB = (YA)b mod p =

26 mod 11 = 9

Bob chooses b = 6 and computes YB = gb

mod p = 76 mod 11 = 117649 mod 11 = 4

!"#$%&'()"*+&,#- .7

Alice has no guarantee that she is actually talking with

Bob and vice versa

The man-in-the-middle attack

c
a

b

!"#$%&'()"*+&,#- .6

The man-in-the-middle

, mod
a

A g p

, mod
b

B g p

mod
ac

AM
K g p

ca b

, mod
c

A g p

, mod
c

B g p

mod , e

mod

ac

AM

bc

BM

K g p

K g p
mod

bc

BM
K g p

!"#$%&'()"*+&,#- ..

The man-in-the-middle

KAM, KBM
KAM KBM

! Alice believes to communicate with Bob by means of KAM

! Bob believes to communicate with Alice by means of KBM

! The adversary can

! read messages between Alice and Bob

! inject messages between Alice and Bob

(impersonate Alice and Bob)

!"#$%&'()"*+&,#- ./

Diffie-Hellman protocol

,

,

,

A

B

C

Alice Y

Bob Y

Carol Y

a
b

Public read-only file trusted
to preserve the integrity of
the pairs X, YX

Gimme Bob's Y

Here, it is! YB

!"#$%&'()"*+&,#- .0

,

,

,

A

B

C

Alice Y

Bob Y

Carol Y

Diffie-Hellman protocol

a

b
Gimme Bob's Y

Here, it is! YC

Here, it is! YB

The man-in-the-
middle always

lies in wait

!"#$%&'()"*+&,#- .1

Key distribution with public encryption

! Pros

! No TTP is required

! The public file could reside with each entity

! Only n public keys need to be stored to allow secure

communications between any pair of entities,

assuming that the only attack is that by a passive

adversary

! Cons

! Key management becomes more difficult in the

presence of an active adversary

!"#$%&'()"*+&,#- .2

Key distribution with public keys

, ,

, ,

, ,

A A T A

B B T B

D D T D

Alice Y s S Alice Y

Bob Y s S Bob Y

Dave Y s S Dave Y

Public file

c ,

A

T A A

e

V Alice e s

c E m

! '%(()%*+,-./.+0%-1+%2345.*%

6+7%8/%+9*1%+:-.-7

!)% 9:;%*% 9,+%-1+%0.<:.:<%

9:;%=+,./.*9-.8:%6+70%8/%-1+%

(()%

certificate

!"#$%&'()"*+&,#- .3

Key distribution with certificates

! Pros

! Prevent an active adversary from impersonation

! Entities need to trust the TTP only to bind identities to

public keys properly

! Certicates can be stored locally so eliminating per-

communication interaction with the public file

! C9222D/#,%$0())-E

! Disadvantages

! if the signing key of TTP is compromised, all

communications become insecure

! All trust is placed with one entity

