

Congestion Control

Acknowledgements

These Slides have been adapted from the originals made available by J. Kurose and K. Ross All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

1

Goals

- $\hfill\Box$ Present principles of congestion control
- Instantiation in existing netorks
 - ATM Networks
 - Internet (TCP protocol)

Congestion Control

Roadmap

- □ Principles of congestion control
- □ Congestion Control in ATM Networks
 - ABR Congestion Control
- Congestion Control in Internet
 - TCP congestion control algorithm

Congestion Control

3

Principles of Congestion Control

Congestion:

- □ informally: "too many sources sending too much data too fast for *network* to handle"
- manifestations:
 - lost packets (buffer overflow at routers)
 - long delays (queueing in router buffers)
- different from flow control!

Congestion Control

Approaches to Congestion Control

Network-assisted

- routers provide feedback to end systems
 - single bit indicating congestion
 - · SNA,
 - DECnet,
 - ATM
 - · TCP/IP ECN
 - explicit rate sender should send at
 - ATM
 - XCP (rated increase/decrease sent to sources)

End-to-end

- no explicit feedback from network
 - congestion inferred from end-system observed loss, delay
 - o approach taken by TCP

Congestion Control

11

Roadmap

- Principles of congestion control
- Congestion Control in ATM Networks
 - ABR Congestion Control
- Congestion Control in Internet
 - TCP congestion control algorithm

Congestion Control

Asynchronous Transfer Mode: ATM

- □ 1990's/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture
- □ <u>Goal:</u> integrated, end-end transport of carry voice, video, data
 - meeting timing/QoS requirements of voice, video (versus Internet best-effort model)
 - "next generation" telephony: technical roots in telephone world
 - packet-switching (fixed length packets, called "cells") using virtual circuits

Data Link

VC implementation

a VC consists of:

- 1. path from source to destination
- 2. VC numbers, one number for each link along path
- 3. entries in forwarding tables in routers along path
- packet belonging to VC carries VC number (rather than dest address)
- VC number can be changed on each link.
 - New VC number comes from forwarding table

Data Link

ATM Service Classes

- Constant Bit Rate (CBR)
- □ Variable Bit Rate (VBR)
- Available Bit Rate (ABR)
- Unspecified Bit Rate

Data Link

17

ATM ABR Service

- "elastic service"
 - o guaranteed minimum rate
- □ if sender's path "underloaded":
 - o sender should use available bandwidth
- □ if sender's path congested:
 - osender throttled to minimum guaranteed rate

Congestion Control

ATM ABR congestion control

RM (resource management) cells:

- □ sent by sender, interspersed with data cells
- bits in RM cell set by switches ("network-assisted")
 - NI bit: no increase in rate (mild congestion)
 - OCI bit: congestion indication
- RM cells returned to sender by receiver
 - o possibly after modifying the contents

Congestion Control

19

ATM ABR congestion control RM cells data cells destination Switch Swit

Roadmap

- Principles of congestion control
- Congestion Control in ATM Networks
 - ABR Congestion Control
- Congestion Control in Internet
 - TCP congestion control algorithm

Congestion Control

21

TCP Congestion Control

□ GOAL: TCP sender should transmit as fast as possible, but without congesting network

Three Fundamental Questions

- □ How the sender *limit* its rate based on perceived congestion?
- □ How the sender *perceive* congestion?
- □ How the sender adjust the rate based on perceived congestion?

Congestion Control

Rate Limitation: Congestion Window

☐ sender limits rate by limiting number of unACKed bytes "in pipeline":

LastByteSent-LastByteAcked ≤ cwnd

- o cwnd: differs from rwnd (how, why?)
- o sender limited by min(cwnd,rwnd)
- roughly,

rate =
$$\frac{\text{cwnd}}{\text{RTT}}$$
 bytes/sec

 cwnd is dynamic, function of perceived network congestion

How Congestion is Perceived?

Each TCP sender sets its own rate, based on *implicit* feedback

- □ ACK: segment received (a good thing!), network not congested, so increase sending rate
- Lost segment: assume loss due to congested network, so decrease sending rate
 - □ Time-out
 - 3 duplicate acks

Congestion Control

Congestion Control Algorithm

Basic idea

"probing for bandwidth"

increase transmission rate on receipt of ACK, until eventually loss occurs, then decrease transmission rate

- o continue to increase linearly on ACK (additive increase)
- o decrease on loss
 - half of the current value (multiplicative decrease)

Congestion Control 3-25

Congestion Control Algorithm

Phases

- Slow Start
- Congestion Avoidance
- OReaction to Timeout Events

Congestion Control 3-27

Slow Start Phase $\ \square$ when connection begins: Host A Host B cwnd = 1 MSS one segment rate= MSS/RTT two segments available bandwidth may be >> MSS/RTT four segments □ increase rate exponentially until first loss event or when threshold reached o double cwnd every RTT time o done by incrementing cwnd by 1 for every ACK received Congestion Control 28

Transitioning out of slowstart

Threshold: cwnd threshold maintained by TCP

- ☐ If(cwnd >= Threshold) then
 transition from slow start to congestion
 avoidance phase
- ☐ In the congestion avoidance phase cwnd is increased linearly

Congestion Control

29

Reaction to Loss

- □ 3 Duplicate ACKs
 - O Threshold=Cwind/2
 - O Cwind=Cwind/2
 - Congestion avoidance (cwind increases linearly)
 - · Fast Recovery
- □ Timeout
 - Threshold=Cwind/2
 - O Cwind=1
 - Slow Start (cwind increases exponetially)

Congestion Control

TCP Congestion Control: Summary

- when cwnd < Threshold, sender in slow-start phase, window grows exponentially.
- when cwnd >= Threshold, sender is in congestion-avoidance phase, window grows linearly.
- □ when triple duplicate ACK occurs, Threshold set to cwnd/2, cwnd set to ~ Threshold
- when timeout occurs, Threshold set to cwnd/2, cwnd set to 1 MSS.

Congestion Control

33

TCP with lossy links

- □ The TCP CC assumes that packet loss is due to congestion
- □ This assumption is not true with lossy links
 - Wireless links
 - Networks with mobile nodes
- □ TCP CC misinterprets these losses as congestion signals and decreases the rate
 - Explicit congestion notification suggested

Congestion Control

What's average throughout of TCP as function of window size, RTT?

- □ let W be window size when loss occurs.
 - o when window is W, throughput is W/RTT
 - just after loss, window drops to W/2, throughput to W/2RTT.
 - o average throughout: .75 W/RTT

Congestion Control

35

TCP Futures: TCP over "long, fat pipes"

- example: 1500 byte segments, 100ms RTT, want 10
 Gbps throughput
- □ requires window size W = 83,333 in-flight segments
- throughput in terms of loss rate:

$$\frac{1.22 \cdot MSS}{RTT \sqrt{L}}$$

- $\Box \rightarrow L = 2.10^{-10} Wow$
- □ new versions of TCP for high-speed

Congestion Control

Fairness (more)

Fairness and UDP

- multimedia apps often do not use TCP
 - do not want rate throttled by congestion control
- instead use UDP:
 - pump audio/video at constant rate, tolerate packet loss

Fairness and parallel TCP connections

- nothing prevents app from opening parallel connections between 2 hosts.
- web browsers do this
- example: link of rate R supporting 9 connections;
 - new app asks for 1 TCP, gets rate R/10
 - new app asks for 11 TCPs, gets R/2!

Congestion Control

39

Summary

- Transport-layer services
- Multiplexing and demultiplexing
- □ Connectionless transport: UDP
 - o message structure
- Connection-oriented transport: TCP
 - o segment structure
 - o reliable data transfer
 - flow control
 - o connection management
- Principles of congestion control
- TCP congestion control

Congestion Control

Summary

- Process-to-process data delivery is now possible
- □ Synthesis: a day in the life of a web request

Congestion Control

41

A day in the life of a web request

- journey down protocol stack complete!
 - o application, transport, network, link
- putting-it-all-together: synthesis!
 - goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - scenario: student attaches laptop to campus network, requests/receives www.google.com

Congestion Control

Let's take a breath

- □ journey down protocol stack *complete* (except PHY)
- □ solid understanding of networking principles, practice
- could stop here but lots of interesting topics!
 - security
 - o wireless
 - o multimedia