
1

1

Process-to-process
Data Delivery

Acknowledgements
These Slides have been adapted from the originals made available by J. Kurose and K. Ross
All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

Process-to-process delivery 2

Problem position

 GOAL: Process-to-process delivery:
 logical communication between pairs processes on

different hosts

 Network layer provides host-to-host delivery
 … but more processes typically run on the same

host

How to fill in the gap??

 Transport layer
 relies on, enhances, network layer services

2

Process-to-process delivery 3

Goals

 understand principles behind transport layer services:
 multiplexing/demultiplexing
 reliable data transfer
 flow control
 congestion control

 learn about transport protocols in the Internet:
 UDP: connectionless transport
 TCP: connection-oriented transport

Process-to-process delivery 4

Roadmap

 Transport-layer services
 Multiplexing and demultiplexing
 Connectionless transport: UDP

 Segment structure

 Connection-oriented transport: TCP
 Segment Structure
 connection management
 reliable data transfer
 flow control
 congestion control

3

Process-to-process delivery 5

Transport services and protocols
 provide logical communication

between app processes
running on different hosts

 transport protocols run in
end systems
 send side: breaks app

messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps
 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Process-to-process delivery 6

Internet transport-layer protocols

 reliable, in-order delivery
(TCP)
 connection setup/tear-down
 reliability control
 flow control
 congestion control

 unreliable, unordered
delivery: UDP
 no-frills extension of “best-

effort” IP
 services not available:

 delay guarantees
 bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

4

Process-to-process delivery 7

Roadmap

 Transport-layer services
 Multiplexing and demultiplexing
 Connectionless transport: UDP

 Segment structure

 Connection-oriented transport: TCP
 Segment structure
 connection management
 reliable data transfer
 flow control
 congestion control

Process-to-process delivery 8

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

5

Process-to-process delivery 9

How demultiplexing works

 host receives IP datagrams
 each datagram has source

IP address, destination IP
address

 each segment has source,
destination port number

 each datagram carries 1
transport-layer segment

 host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Process-to-process delivery 10

Connectionless demultiplexing

 When host receives UDP segment:
 checks destination port number in segment
 directs UDP segment to socket with that port number

 Datagrams with different source IP addresses
and/or port numbers but with the same destination
IP address and port number are directed to same
socket

 UDP socket identified by a two-tuple:
(dest IP address, dest port number)

6

Process-to-process delivery 11

Connection-oriented demux

 TCP socket identified by 4-tuple:
 source IP address, source port number
 dest IP address, dest port number

 receiving host uses all four values to direct segment
to appropriate socket

 Server host may support many simultaneous TCP
sockets:
 each socket identified by its own 4-tuple

 Web servers have different sockets for each
connecting client
 non-persistent HTTP will have different socket for each request

12

Multi-process server
#include <sys/types.h>
#include <unistd.h>
…
int sd, conn_sd;
struct sockaddr_in srv_addr, cl_addr;
pid_t child_pid;
…

sd = socket(PF_INET, SOCK_STREAM,0);
/* srv_addr initialization */
bind(sd, &srv_addr, sizeof(srv_addr));
listen(sd,QUEUE_SIZE);

while(1){
conn_sd = accept(sd, &cl_addr, sizeof(cl_addr));
child_pid = fork();
if(child_pid==0) { /* child process */

…..
…..

}
else /* main process */

close(conn_sd);
}

7

Process-to-process delivery 13

Connection-oriented demux
(cont)

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

14

Multi-threaded Server
#include <sys/types.h>
#include <unistd.h>
…
…
int sd, conn_sd;
struct sockaddr_in srv_addr, cl_addr;
pthread_t tid;
…

sock = socket(PF_INET, SOCK_STREAM,0);
/* srv_addr initialization */
bind(sd, &srv_addr, sizeof(srv_addr));
listen(sd,QUEUE_SIZE);
while(1){

conn_sd = accept(sd, &cl_addr, sizeof(cl_addr));
pthread_create(&tid, NULL, request_handler, (void*)conn_sd))

}

8

Process-to-process delivery 15

Connection-oriented demux:
Threaded Web Server

Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Process-to-process delivery 16

Roadmap

 Transport-layer services
 Multiplexing and demultiplexing
 Connectionless transport: UDP

 Segment structure

 Connection-oriented transport: TCP
 Segment Structure
 connection management
 reliable data transfer
 flow control
 congestion control

9

Process-to-process delivery 17

User Datagram Protocol [RFC 768]

 “no frills,” “bare bones” Internet transport protocol

 “best effort” service, UDP segments may be:
 lost
 delivered out of order to app

 connectionless:
 no handshaking between UDP sender, receiver
 each UDP segment handled independently of others

Why is there a UDP?

 no connection establishment
 which can add delay

 simple:
 no connection state at sender, receiver

 finer application-layer control over data
 no reliability/flow/congestion control
 UDP can blast away as fast as desired

 small segment header

Process-to-process delivery 3-18

10

Process-to-process delivery 19

Why is there a UDP?

Often used for streaming multimedia apps
 loss tolerant
 rate sensitive

Other UDP uses
 DNS
 NFS
 SNMP (Simple Network Management Protocol)
 RIP

 Reliable transfer over UDP
 add reliability at application layer
 application-specific error recovery!

Process-to-process delivery 20

Roadmap

 Transport-layer services
 Multiplexing and demultiplexing
 Connectionless transport: UDP

 Segment structure

 Connection-oriented transport: TCP
 Segment structure
 connection management
 reliable data transfer
 flow control
 congestion control

11

UDP Segment Format

Process-to-process delivery 3-21

source port # dest port #

32 bits

Application
data

(message)

length checksum
Length of UDP segment,

including header,
in bytes

Process-to-process delivery 22

UDP checksum

Sender:
 treat segment contents

as sequence of 16-bit
integers

 checksum: addition (1’s
complement sum) of
segment contents

 sender puts checksum
value into UDP checksum
field

Receiver:
 compute checksum of

received segment
 check if computed checksum

equals checksum field value:
 NO - error detected
 YES - no error detected.

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

12

Process-to-process delivery 23

Internet Checksum Example
 Note

When adding numbers, a carryout from the
most significant bit needs to be added to the
result

 Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Process-to-process delivery 24

Roadmap

 Transport-layer services
 Multiplexing and demultiplexing
 Connectionless transport: UDP

 Segment structure

 Connection-oriented transport: TCP
 Segment structure
 connection management
 reliable data transfer
 flow control
 congestion control

13

Process-to-process delivery 25

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 reliable, in-order byte
stream:
 no “message boundaries”

 Send & receive buffer
 MSS: max segment size

 flow controlled:
 sender will not

overwhelm receiver
 pipelined:

 TCP congestion and flow
control set window size

 connection-oriented:
 handshaking (exchange of

control msgs) init’s
sender, receiver state
before data exchange

 Different from virtual
circuit

 point-to-point:
 one sender, one receiver

 full duplex data:
 bi-directional data flow

in same connection

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

Process-to-process delivery 26

Roadmap

 Transport-layer services
 Multiplexing and demultiplexing
 Connectionless transport: UDP

 Segment structure

 Connection-oriented transport: TCP
 Segment structure
 connection management
 reliable data transfer
 flow control
 congestion control

14

Process-to-process delivery 27

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pointerchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Process-to-process delivery 28

TCP sequence numbers and ACKs
Seq. #’s:

 byte stream “number”
of first byte in
segment’s data

ACKs:
 seq # of next in-order

byte expected from
other side

 cumulative ACK

Host A Host B

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

time
simple telnet scenario

How receiver handles out-of-
order segments?

TCP spec doesn’t say, - up to
implementer

15

Process-to-process delivery 29

Roadmap

 Transport-layer services
 Multiplexing and demultiplexing
 Connectionless transport: UDP

 Segment structure

 Connection-oriented transport: TCP
 segment structure
 connection management
 reliable data transfer
 flow control
 congestion control

Process-to-process delivery 30

TCP Connection Management

 TCP sender, receiver establish “connection” before
exchanging data segments

 initialize TCP variables:
 seq. #s
 buffers, flow control info (e.g. RcvWindow)
 …

 client: connection initiator
res=connect(sd, …)

 server: contacted by client
conn_sd=accept(sd, …)

16

Connection Setup

1: client host sends TCP SYN
segment to server
 specifies initial seq #
 no data

2: server host receives SYN,
replies with SYN-ACK
segment
 server allocates buffers
 specifies server initial seq. #

3: client receives SYN-ACK,
replies with ACK segment
 may contain data

Process-to-process delivery 31

Client Server

Three way handskake

Process-to-process delivery 32

Connection tear-down

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client server

closing

closing

closed

tim
ed

 w
ai

t

17

Process-to-process delivery 33

Connection tear-down (cont.)

Step 3: client receives FIN,
replies with ACK.

 Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

client server

closing

closing

closed

tim
ed

w
ai

t
closed

Process-to-process delivery 34

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

18

Process-to-process delivery 35

Roadmap

 Transport-layer services
 Multiplexing and demultiplexing
 Connectionless transport: UDP

 Segment structure

 Connection-oriented transport: TCP
 segment structure
 connection management
 reliable data transfer
 flow control
 congestion control

Process-to-process delivery 36

TCP reliable data transfer

 TCP creates rdt service on top of IP’s unreliable
service

 Window-based ARQ scheme (pipeline)
 Acknowledgements
 Timeouts and Retransmissions

 How is the Timeout Interval chosen?

19

37

TCP Connection

Client

TCP

Internet

Server

TCP

There is a (virtual) connection between the TCP source
and destination

Process-to-process delivery 38

TCP Round Trip Time and Timeout

How to set TCP timeout value?
 longer than RTT

 too short: premature timeout  unnecessary retransmissions
 too long: slow reaction to segment loss

 but RTT varies

How to estimate RTT?
 SampleRTT: measured time from segment transmission until

ACK receipt
 SampleRTT will vary, want estimated RTT “smoother”

 average several recent measurements, not just current
SampleRTT

20

RTT Estimate

Process-to-process delivery 3-39

ܴ݈ܶܶ݁݌݉ܽܵ ≔ 														ܴܶܶ
ܴܶܶ݀݁ݐܽ݉݅ݐݏܧ ≔ ܴܶܶܧ					

ܴܶܧ ଵܶ ൌ ܴܶ ଴ܶ
ܴܶܧ ଶܶ ൌ ߙ · ܴܶ ଵܶ ൅ ሺ1 െ αሻ · ܴܶ ଴ܶ
ܴܶܧ ଷܶ ൌ ߙ · ܴܶ ଶܶ ൅ ሺ1ߙ െ ሻߙ · ܴܶ ଵܶ ൅ ሺ1 െ αሻଶ· ܴܶ ଴ܶ

.....
ܴܶܧ ௡ܶାଵ ൌ ߙ · ܴܶ ௡ܶ ൅ ሺ1ߙ െ ሻߙ · ܴܶ ௡ܶିଵ ൅ ሺ1ߙ െ αሻଶ · ܴܶ ௡ܶିଶ ൅⋯൅ ሺ1 െ αሻ௡ · ܴܶ ଴ܶ

ܴܶܧ ௡ܶାଵ ൌ ߙ · ܴܶ ௡ܶ ൅ ሺ1 െ ሻߙ · ሾߙ · ܴܶ ௡ܶିଵ ൅ ሺ1ߙ െ αሻ · ܴܶ ௡ܶିଶ ൅⋯൅ ሺ1 െ αሻ௡ିଵ· ܴܶ ଴ܶ]

ߙ ൏ 1

ܴܶܧ ௡ܶାଵ ൌ ߙ · ܴܶ ௡ܶ ൅ ሺ1 െ ሻߙ · ܴܶܧ ௡ܶ

Process-to-process delivery 40

RTT Estimate

EstimatedRTTn+1 = *SampleRTTn +(1-)*EstimatedRTTn

 Exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value:  = 0.125

21

Process-to-process delivery 41

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
TT

 (m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

Process-to-process delivery 42

Setting the Timeout

Algoritmo di Karn-Partridge

 Re-transmitted segments are not considered in
the RTT estimate

 The timeout value is set as

TimeoutInterval = 2*EstimatedRTT

22

Process-to-process delivery 43

Setting the Timeout

Algoritmo di Van Jacobson - Karel
 EstimtedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin
 first estimate of how much SampleRTT deviates from

EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT +
*|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

Then set timeout interval:

Process-to-process delivery 44

TCP reliable data transfer

 Window-based ARQ scheme (pipeline)
 cumulative ACKs
 TCP uses single retransmission timer
 retransmissions are triggered by:

 timeout events
 duplicate ACKs

 initially consider simplified TCP sender:
 ignore duplicate ACKs
 ignore flow control, congestion control

23

Process-to-process delivery 45

TCP sender events:
data rcvd from app:

 create segment with seq #
 seq # is byte-stream number of first data byte in segment

 start timer if not already running
 think of timer as for oldest unACKed segment
 expiration interval: TimeOutInterval

timeout:

 retransmit segment that caused timeout
 restart timer
ACK rcvd:

 if acknowledges previously unACKed segments
 update what is known to be ACKed
 start timer if there are outstanding segments

Process-to-process delivery 46

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ACKed byte
Example:
• SendBase=72 
SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
ACKed

24

Process-to-process delivery 47

TCP: retransmission scenarios

Host A

time
premature timeout

Host B

Se
q=

92
 t

im
eo

ut

Host A

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

time

Se
q=

92
 t

im
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Process-to-process delivery 48

TCP retransmission scenarios (more)

Host A

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

time

SendBase
= 120

25

Process-to-process delivery 49

Doubling the Timeout Interval

 After each retransmissions the Timeout Interval is
doubled
 Exponential increase

 Simple form of congestion control
 Similar to the backoff algorithm used in random-access MAC

protocols (e.g. CSMA/CD, CSMA/CA, …)

Process-to-process delivery 50

Fast Retransmit

 time-out period often relatively long:
 long delay before resending lost packet

 detect lost segments via duplicate ACKs.
 sender often sends many segments back-to-back
 if segment is lost, there will likely be many duplicate ACKs

for that segment

 If sender receives 3 duplicate ACKs (4 ACKS for the
same data), it assumes that segment after ACKed
data was lost.

 fast retransmit: resend segment before timer
expires

26

Process-to-process delivery 51

Host A

ti
m

eo
ut

Host B

time

X

seq # x1
seq # x2
seq # x3
seq # x4
seq # x5

ACK x1

ACK x1
ACK x1
ACK x1

triple
duplicate

ACKs

Fast Retransmit

Process-to-process delivery 52

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

27

Process-to-process delivery 53

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

Is TCP a GBN or SR protocol?

 Cumulative acks
No specific ack for individual segments

 The sender only maintains SendBase and
NexSeqNum

 But, at most one packet is retransmitted
Hybrid protocol

 Selective ACK has been proposed [RFC 2018]
 Selective ack for out-of-order segments

Process-to-process delivery 3-54

28

Process-to-process delivery 55

Roadmap

 Transport-layer services
 Multiplexing and demultiplexing
 Connectionless transport: UDP

 Segment structure

 Connection-oriented transport: TCP
 Segment structure
 connection management
 reliable data transfer
 flow control
 Congestion control

Process-to-process delivery 56

TCP Flow Control
 receive side of TCP

connection has a receive
buffer.
 app process may be slow at

reading from buffer

speed-matching
service:
matching send rate to
receiving application’s
drain rate

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

TCP segments

TCP data
(in buffer)

(currently)
unused buffer

space

Application process

29

57

Flow Control

Receive/Transmit Buffers

 Transmit Buffer
 Messages transmitted but not

yet acked
 Messages written by the

application but not yet sent

 Receive Buffer
 Out-of-order segments
 In-order segments not yet

read by the application

LastByteAcked LastByteSent

LastByteWritten
TCP

Sending
Process

NextByteExpected
LastByteRcvd

LastByteRead
TCP

Receiving
Process

30

59

Receive Window size (receiver)

LastByteRcvd – LastByteRead < RcvBuffer

AdvertisedRcvWindow = RcvBuffer – (LastByteRcvd – LastByteRead)

NextByteExpected LastByteRcvd

LastByteRead
TCP

Receiveing
Process

NextByteExpected
LastByteRcvd

LastByteRead

TCP

Process-to-process delivery 60

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pointerchecksum

FSRPAUhead
len

not
used

Options (variable length)

ACK: ACK #
valid

bytes
rcvr willing
to accept

31

61

Receive Window size (sender)

LastByteSent – LastByteAcked < AdvertisedWindow

RcvWindow = AdvertisedRcvWindow – (LastByteSent – LastByteAcked)

LastByteAcked LastByteSent

LastByteWritten
TCP

Sending
Process

Question

What happens if the available receive
buffer reduces to 0?
 Receiver: AdvertisedRcvWindow=0
 Sender: RcvWindow=0  the sender stops
 The receiver cannot send acks  block

 TCP sender periodically sends a 1-byte
segment to stimulate a reaction

Process-to-process delivery 62

32

Process-to-process delivery 63

Summary
 principles behind transport delivery services:

multiplexing, demultiplexing
 reliable data transfer
 flow control

 instantiation and implementation in the Internet
 UDP
 TCP

