Process-to-process
Data Delivery

Acknowledgements

These Slides have been adapted from the originals made available by J. Kurose and K. Ross

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved 1

Problem position

0O GOAL: Process-to-process delivery:
O logical communication between pairs processes on

different hosts
O Network layer provides host-to-host delivery

O ... but more processes typically run on the same
host

0 How to fill in the gap??

O Transport layer
O relies on, enhances, network layer services

Process-to-process delivery 2

Goals

O understand principles behind transport layer services:
o multiplexing/demultiplexing
O reliable data transfer
o flow control
O congestion control

O learn about transport protocols in the Internet:
O UDP: connectionless transport
O TCP: connection-oriented transport

Process-to-process delivery 3

Roadmap

O Transport-layer services
O Multiplexing and demultiplexing

0 Connectionless transport: UDP
O Segment structure

0 Connection-oriented transport: TCP
O Segment Structure
O connection management
O reliable data transfer
o flow control
O congestion control

Process-to-process delivery 4

O provide /ogical communication
between app processes
running on different hosts

O transport protocols run in
end systems

O send side: breaks app
messages into segments,
passes to network layer

O rcv side: reassembles
segments into messages,
passes to app layer

O more than one transport
protocol available to apps

o Internet: TCP and UDP

transqort
netwolil
datq i

hysicd
LB

lu-..‘m
transport

physical

Process-to-process delivery 5

Internet transport-layer protocols

O reliable, in-order delivery
(TCP)
O connection setup/tear-down
O reliability control
o flow control
O congestion control

3 unreliable, unordered
delivery: UDP

o no-frills extension of "best-
effort" IP

O services not available:
O delay guarantees
O bandwidth guarantees

application
@®
networ
data link
= physical

k /
NG T
PhySZ network ‘
data link § o
Mehysical a
0
e _S
gg :é networ! ©
ﬂ” _ [datalink |\@2
physical [>
data linke

physical

network
data link
physical network anspo
data link networ

physical data Tink

LT

ication

M

Process-to-process delivery 6

Roadmap

O Transport-layer services
O Multiplexing and demultiplexing

O Connectionless transport: UDP
O Segment structure

O Connection-oriented transport: TCP
O Segment structure

0 0 0 O

connection management
reliable data transfer
flow control

congestion control

Process-to-process delivery

7

Multiplexing/demultiplexing

Multiplexing at send host:

Demultiplexing at rcv host:

delivering received segments
to correct socket

gathering data from multiple

sockets, enveloping data with
header (later used for

demultiplexing)

[1 =socket O = process
application (P3) (P1) application (P2 (P4 application
[] []
transport %-ﬁpo/r-; transport
network network network
link link link
physical physical physical
host 1 host 2 host 3

Process-to-process delivery

8

How demultiplexing works

O host receives IP datagrams «— 32 bits
O each datagram has source source port #| dest port #
IP address, destination IP
address
O each segment has source,
destination port number
O each datagram carries 1

transport-layer segment application
data

(message)

other header fields

O host uses IP addresses & port
numbers to direct segment to
appropriate socket

TCP/UDP segment format

Process-to-process delivery 9

Connectionless demultiplexing

0 When host receives UDP segment:
O checks destination port number in segment
o directs UDP segment to socket with that port number

O Datagrams with different source IP addresses
and/or port numbers but with the same destination
IP address and port number are directed to same
socket

0 UDP socket identified by a two-tuple:
(dest IP address, dest port number)

Process-to-process delivery 10

Connection-oriented demux

O TCP socket identified by 4-tuple:
o source IP address, source port humber
o dest IP address, dest port number
O receiving host uses all four values to direct segment
to appropriate socket

O Server host may support many simultaneous TCP
sockets:
O each socket identified by its own 4-tuple
0 Web servers have different sockets for each

connecting client
o non-persistent HTTP will have different socket for each request

Process-to-process delivery 11

Multi-process server

#include <sys/types.h>
#include <unistd.h>

int sd, conn_sd;
struct sockaddr_in srv_addr, cl_addr;
pid_t child_pid;

sd = socket(PF_INET, SOCK_STREAM,0);
/* srv_addr initialization */

bind(sd, &srv_addr, sizeof(srv_addr));
listen(sd,QUEUE_SIZE);

while(1){
conn_sd = accept(sd, &cl_addr, sizeof(cl_addr));
child_pid = fork();
if(child_pid==0) { /* child process */

else /* main process */
close(conn_sd);

} 12

Connection-oriented demux

(cont)
&2 S FESHCER
SP: 5775
DP: 80
S-IP: B
D-IP:C
<
SP: 9157 SP: 9157
client | DP: 80 server bP: 80 Client
IP: A S-IP: A : S-1P: B IP:B
IP:C
D-IP:C D-IP:C

Process-to-process delivery 13

Multi-threaded Server

#include <sys/types.h>
#include <unistd.h>

int sd, conn_sd;
struct sockaddr_in srv_addr, cl_addr;
pthread_t tid;

sock = socket(PF_INET, SOCK_STREAM,0);

/* srv_addr initialization */

bind(sd, &srv_addr, sizeof(srv_addr));

listen(sd,QUEUE_SIZE);

while(1){
conn_sd = accept(sd, &cl_addr, sizeof(cl_addr));
pthread_create(&tid, NULL, request_handler, (void*)conn_sd))

}

14

Connection-oriented demux:
Threaded Web Server

=
SP: 5775
DP: 80
S-IP: B
D-IP:C
A
SP: 9157 SP: 9157
client | DP: 80 server DP: 80 Client
IP: A S-IP: A IP: C S-IP: B IP:B
D-IP:C D-IP:C

Process-to-process delivery 15

Roadmap

O Transport-layer services
O Multiplexing and demultiplexing

O Connectionless transport: UDP
O Segment structure

0 Connection-oriented transport: TCP
O Segment Structure
O connection management
O reliable data transfer
o flow control
O congestion control

Process-to-process delivery 16

User Datagram Protocol [RFC 768]

3 “no frills,” "bare bones" Internet transport protocol

O “"best effort” service, UDP segments may be:
O lost
O delivered out of order to app

O connectionless:
O no handshaking between UDP sender, receiver
O each UDP segment handled independently of others

Process-to-process delivery 17

Why is there a UDP?

0 no connection establishment
O which can add delay
O simple:
O no cohnection state at sender, receiver
0 finer application-layer control over data
O no reliability/flow/congestion control
O UDP can blast away as fast as desired
0 small segment header

Process-to-process delivery 3-18

Why is there a UDP?

0 Often used for streaming multimedia apps
O loss tolerant
O rate sensitive

0 Other UDP uses
o DNS
o NFs
O SNMP (Simple Network Management Protocol)
o RIP

A Reliable transfer over UDP

O add reliability at application layer
O application-specific error recovery!

Process-to-process delivery

19

Roadmap

O Transport-layer services
O Multiplexing and demultiplexing

O Connectionless transport: UDP
O Segment structure

0 Connection-oriented transport: TCP
O Segment structure
O connection management
O reliable data transfer
o flow control
O congestion control

Process-to-process delivery

20

10

UDP Segment Format

«— 32 bits

Length of UDP segment, |Source port #| dest port #
including header, T length checksum
in bytes
Application
data
(message)

Process-to-process delivery 3-21

UDP checksum

Goal: detect "errors” (e.g., flipped bits) in transmitted

segment
Sender: Receiver:
O freat segment contents O compute checksum of
as sequence of 16-bit received segment
integers 0 check if computed checksum
0 checksum: addition (1's equals checksum field value:
complement sum) of o NO - error detected

segment contents

O sender puts checksum
value into UDP checksum
field

o YES - no error detected.

Process-to-process delivery 22

11

Internet Checksum Example

3 Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the
result

0 Example: add two 16-bit integers

1110011001 100110
110101010101 0101

wraparound @1 011101110111011
sum 1011101110111100
checksum 0100010001 000O011

Process-to-process delivery

23

Roadmap

O Transport-layer services
O Multiplexing and demultiplexing

0 Connectionless transport: UDP
O Segment structure

O Connection-oriented transport: TCP
O Segment structure
O connection management
O reliable data transfer
o flow control
O congestion control

Process-to-process delivery

24

12

TCP: Overview recs: 793, 1122, 1323, 2018, 2581

O connection-oriented: 0 reliable, in-order byte
O handshaking (exchange of stream:
control msgs) init's O no “"message boundaries"

sender, receiver state
before data exchange

o Different from virtual

0 Send & receive buffer
O MSS: max segment size

circuit O flow controlled:
0O point-to-point: o sender will not
O one sender, one receiver overwhelm receiver
A3 full duplex data: 0 pipelined:

O TCP congestion and flow

O bi-directional data flow . .
control set window size

in same connection

socket
door

Process-to-process delivery 25

Roadmap

0 Transport-layer services
O Multiplexing and demultiplexing
0 Connectionless transport: UDP
O Segment structure
O Connection-oriented transport: TCP
O Segment structure
O connection management
O reliable data transfer

o flow control
O congestion control

Process-to-process delivery 26

TCP segment structure

32 bits

URG: urgent data
(generally not used) dest port #

ACK: ACK # sequence humber
valid ——acknowledgement number

PSH: push data now WP Rglf Receive window

(generally not used)—| cheeksum Urg data pointer
RST, SYN, FIN:—| Opya(s (variable length)

connection estab
(setup, teardown

counting

by bytes

of data

(not segments!)

source port #

bytes
rcvr willing
to accept

commands) application

Internet / data

checksum (variable length)
(as in UDP)

Process-to-process delivery 27

z,

TCP sequence numbers and ACKs

Seq. #'s: @ Host A Host B @

O byte stream “number”
H H User
Segs.
of first PyTe in ypes 942 Ackrg
segment’s data c data s
. host ACKs
% receipt of
O seq # of next in-order s qoraz S~ 'C echoes
byte expected from 19, POKEES back 'C
. Sed™
other side
o cumulative ACK host ACKs
receipt s
of echoed ©g=43
‘C’ M&x
How receiver handles out-of-

order segments? time

simple telnet scenario l
TCP spec doesn't say, - up to

implementer Process-to-process delivery 28

14

Roadmap

O Transport-layer services
O Multiplexing and demultiplexing

O Connectionless transport: UDP
O Segment structure

O Connection-oriented transport: TCP
O segment structure

connection management

reliable data transfer

flow control

o)
o)
o)
O congestion control

Process-to-process delivery 29

TCP Connection Management

O TCP sender, receiver establish “"connection" before
exchanging data segments

0 initialize TCP variables:
O seq. #s
o buffers, flow control info (e.g. RcvWindow)
0 ..

O client: connection initiator
res=connect(sd, ..)

O server: contacted by client

conn_sd=accept(sd, ..)

Process-to-process delivery 30

15

Connection Setup

Three way handskake

1: client host sends TCP SYN
segment to server
O specifies initial seq #
O no data
2: server host receives SYN,

replies with SYN-ACK
segment

O server allocates buffers

O specifies server initial seq. #
3: client receives SYN-ACK,
replies with ACK segment

O may contain data

o

lient Server

Process-to-process delivery 31

Connection tear-down

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

@ client server@

closing

timed wait

closed ~

FiN

(€8 .
/ closing
/
K

Process-to-process delivery 32

16

Connection tear-down (cont.)

Step 3: client receives FIN, @ client server@

replies with ACK. closing

F
o Enters “timed wait" - U
will respond with ACK

to received FINs / .
closing
. N
Step 4: server, receives /
ACK. Connection closed. -
K

closed

timed wait

Q
o
(%]
@
Q

Process-to-process delivery 33

TCP Connection Management (cont)

wat 30 secongs \
y 4 \ send SYH
(¥
recefve FIN recene ST & ACK
send ACK send ACK
I:‘Esrmu:lsnED TCP server
lifecycle

client applisation
" Initlates close connaction

T FN_WAIT_ |-4—""cennun) CLOSED . server application

~-.., creates a listen socket

TCP client o 11 .

9

/ \
lifecycle [.
LAST_ACK LISTEN
[y
sond FIN end SYN & ACK
| ¥
CLOSE_WAIT SYN_RCVD
' \ J”I: e ACK

" sand nothing

sand ACH ESTABLISHED (e

Process-to-process delivery 34

17

Roadmap

0 Transport-layer services
O Multiplexing and demultiplexing

O Connectionless transport: UDP
O Segment structure

O Connection-oriented transport: TCP
O segment structure

connection management

reliable data transfer

flow control

congestion control

0 0 0 O

Process-to-process delivery 35

TCP reliable data transfer

O TCP creates rdt service on top of IP's unreliable
service

0 Window-based ARQ scheme (pipeline)
O Acknowledgements
O Timeouts and Retransmissions

3 How is the Timeout Interval chosen?

Process-to-process delivery 36

18

TCP Connection

<>

Thereis a (virtual) connection between the TCP source
and destination

37

TCP Round Trip Time and Timeout

How to set TCP timeout value?
O longer than RTT

O too short: premature timeout > unnecessary retransmissions
O too long: slow reaction to segment loss

O but RTT varies

How to estimate RTT?

0 SampleRTT: measured time from segment transmission until
ACK receipt

0 SampleRTT will vary, want estimated RTT “smoother”

O average several recent measurements, not just current
SampleRTT

Process-to-process delivery

38

19

RTT Estimate

SampleRTT = RTT
EstimatedRTT := ERTT
a<l1
ERTT, = RTT,

ERTT, = a - RTT; + (1 — «) - RTT,
ERTT; = a - RTT, + a(1 — a) - RTT, + (1 — «)?- RTT,

ERTTpy1 = @ RTT, + a(1 — @) - RTTy_q + a(1 — a)? - RTT,_ + -+ (1 —)™ - RTT,

4

ERTTpi1 =a-RTT,+ (1 —a) - [@- RTTy_1 + a(1 —) - RTTp_p + -+ (1 —)" 1 RTT,]

ERTTy4, = a- RTT, + (1 — a) - ERTT,

Process-to-process delivery 3-39

RTT Estimate

EstimatedRTT,,; = a*SampleRTT, +(1-a)*EstimatedRTT,

O Exponential weighted moving average
0 influence of past sample decreases exponentially fast
3 typical value: o =0.125

Process-to-process delivery 40

20

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 4

a0 Il 1

S
A A0 A,

N
a
S

RTT (milliseconds)

N
=}
S

150 A

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

—e—SampleRTT —#— Estimated RTT |

Process-to-process delivery

41

Setting the Timeout

Algoritmo di Karn-Partridge

0 Re-transmitted segments are not considered in
the RTT estimate
7 The timeout value is set as

TimeoutInterval = 2*EstimatedRTT

Process-to-process delivery

42

21

Setting the Timeout

Algoritmo di Van Jacobson - Karel

O EstimtedRTT plus “safety margin”
O large variation in EstimatedRTT -> larger safety margin

O first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
p*|SampleRTT-EstimatedRTT|

(typically, B = 0.25)

Then set timeout interval:

Timeoutlnterval

Process-to-process delivery

EstimatedRTT + 4*DevRTT

43

TCP reliable data transfer

0 Window-based ARQ scheme (pipeline)
3 cumulative ACKs
O TCP uses single retransmission timer

O refransmissions are friggered by:
O fimeout events
o duplicate ACKs

0 initially consider simplified TCP sender:

O ighore duplicate ACKs
o ignore flow control, congestion control

Process-to-process delivery

44

22

TCP sender events:

data rcvd from app:
O create segment with seq #

O seq # is byte-stream number of first data byte in segment
0 start timer if not already running

O think of timer as for oldest unACKed segment
O expiration interval: TimeOutinterval

timeout:

O refransmit segment that caused timeout

O restart timer

ACK rcvd:

0 if acknowledges previously unACKed segments
O update what is known to be ACKed
O start timer if there are outstanding segments

Process-to-process delivery 45

NextSegNum = InitialSegNum
SendBase = InitialSeqNum

TCP

loop (forever) {
switch(event)

event: data received from application above . .
create TCP segment with sequence number NextSegNum (S|mp||f|ed)
if (timer currently not running)
start timer
pass segment to IP Comment:
NextSeqNum = NextSegNum + length(data) WdBase—l' last
event: timer timeout cumulatively
retransmit not-yet-acknowledged segment with ACKed byte
smallest sequence number Ex_ampl_e:

start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

} /* end of loop forever */

Process

- SendBase=72 >
SendBase-1=71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
ACKed

rto-process delivery 46

+«— timeout ——

SendBase
=100

ti

me

lost ACK scenario

T
5

S

£

=

o

(o)

%_

[Vp}

Sendbase {r
=100 5
SendBase §
=120 £
PN

IUI'

(M

dBase N

SendBa

=120 i
time

premature timeout

Process-to-process delivery

47

SendBase
=120

.‘[
3
o
Q
£
"—

Host A Host B

Se =
9=92 8bytes data

A0
Seq=100, 20 p\CK

X S datg

loss
420
P\C\g,‘\'l

time

Cumulative ACK scenario

Process-to-process delivery

48

24

Doubling the Timeout Interval

O After each retransmissions the Timeout Interval is
doubled

O Exponential increase

0 Simple form of congestion control

o Similar to the backoff algorithm used in random-access MAC
protocols (e.g. CSMA/CD, CSMA/CA, ...)

Process-to-process delivery 49

Fast Retransmit

O time-out period often relatively long:
O long delay before resending lost packet

0 detect lost segments via duplicate ACKs.
O sender often sends many segments back-to-back

O if segment is lost, there will likely be many duplicate ACKs
for that segment

0 If sender receives 3 duplicate ACKs (4 ACKS for the
same data), it assumes that segment after ACKed
data was lost.

O fast retransmit: resend segment before timer
expires

Process-to-process delivery 50

25

Fast Retransmit

Host A Host B
seq # x1
seq z xg\
seq # x
seq # x4 X ACK x1
seq #x3 ACK x1
_ ACK x1
ACK x1
triple
duplica’re<——{
Acks N
—
3
[}
o
E
+
v
time Process-to-process delivery 51

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y
}

a duplicate ACK for

fast retransmit
already ACKed segment

Process-to-process delivery 52

26

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Process-to-process delivery 53

Is TCP a GBN or SR protocol?

0 Cumulative acks
o No specific ack for individual segments

0 The sender only maintains SendBase and
NexSeqNum

0 But, at most one packet is retransmitted
0 Hybrid protocol

0 Selective ACK has been proposed [RFC 2018]

O Selective ack for out-of-order segments

Process-to-process delivery 3-54

27

Roadmap

0 Transport-layer services
O Multiplexing and demultiplexing

O Connectionless transport: UDP
O Segment structure

O Connection-oriented transport: TCP
O Segment structure

connection management

reliable data transfer

flow control

Congestion control

@]
@]
@]
@]

Process-to-process delivery 55

TCP Flow Control

O receive side of TCP flow control
connection has a receive sender won't overflow
buffer. receiver's buffer by

be sl + transmitting foo much,
O app process may be slow a too fast

reading from buffer

Application process

speed-matching
service:

matching send rate to
receiving application’'s
(currently) drain rate

unused buffer
space

TCP segments Process-to-process delivery 56

28

Flow Control

)

Small-capacity

\ Transmission -
rate adjustment -

Transmission

network

]

receiver . %

57

Receive/Transmit Buffers

O Transmit Buffer

O Messages transmitted but not

yet acked

O Messages written by the
application but not yet sent

Sending
Process

TCP
LastByteWritten

|

LastByteAcked LastByteSent

O Receive Buffer

O Out-of-order segments

O In-order segments not yet
read by the application

Receiving
/ Process

LastByteRead

TCP

NextByteExpected LastByteRcvd

29

Receive Window size (receiver)

Receiveing
Process
TCP
TCP
LastByteRead -—
I I LastByteRead I I
LastByteRcvd

LastByteRcvd
NextByteExpected y NextByteExpected

LastByteRcvd — LastByteRead < RcvBuffer

AdvertisedRcvWindow = RcvBuffer — (LastByteRcvd — LastByteRead)

59

TCP segment structure

32 bits

source port # | dest port #
ACK: ACK # sequence number
valid—t—acknowledgement number
hlz‘:‘d UZZL]U[A|P|R|S|F Receive window
checksum Urg data pointer

bytes
revr willing
to accept

Options (variable length)

application
data
(variable length)

Process-to-process delivery 60

30

Receive Window size (sender)

Sending
Process

LastByteWritten

TCP

LastByteAcked LastByteSent

LastByteSent — LastByteAcked < AdvertisedWindow

RcvWindow = AdvertisedRcvWindow — (LastByteSent — LastByteAcked)

61

Question

0 What happens if the available receive
buffer reduces to 0?

O Receiver: AdvertisedRcvWindow=0
O Sender: RevWindow=0 - the sender stops
O The receiver cannot send acks = block

0 TCP sender periodically sends a 1-byte
segment to stimulate a reaction

Process-to-process delivery 62

31

Summary

O principles behind transport delivery services:
o multiplexing, demultiplexing
o reliable data transfer
o flow control

0 instantiation and implementation in the Internet

o UDP
o TCP

Process-to-process delivery 63

32

