Acknowledgements These Slides have been adapted from the originals made available by J. Kurose and K. Ross All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved 1 ### Goals - \Box Introduce the concept of internetwork - understand principles behind internetworking - o forwarding versus routing - o how a router works - o how data are forwarded to the final destination - o routing (path selection) - o dealing with scale - o advanced topics: IPv6, mobility - □ instantiation, implementation in the Internet Internetworking - Introduction - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - Datagram forwarding - Address resolution (ARP) - ICMP - o IPv6 - Routing algorithms - Link state, Distance Vector, Hierarchical routing - Routing in the Internet - O RIP - OSPF - BGP Internetworking 3 ### What is an inter-network (internet)? - A network of networks - A collection of networks - With different technology - · Different physical characteristics - · Different frame format - · Different addressing scheme - Linked together by routers - that appear as a single system - Users connected to the internet can communicate each other - Irrespective of the physical network they are attached to - Internetworking protocol - Creates the internet abstraction - IP is the internetworking protocol for Internet Internetworking ### Two Key Internetworking Functions - ☐ forwarding: move packets from router's input to appropriate router output - routing: determine route taken by packets from source to dest. - o routing algorithms ### Analogy: a trip to a given destination - routing: process of planning trip from source to dest - forwarding: process of getting through single interchange Internetworking ### Type of Service - □ Connectionless: each packet is managed on an individual basis - · Also known as datagram service - Connection: Virtual Circuit is preliminary established and all packets follow the same path Internetworking ### Datagram service - □ no call setup at network layer - routers: no state about end-to-end connections - o no network-level concept of "connection" - packets between same source-dest pair may take different paths - packets forwarded using destination host address ### Datagram or VC network: why? 9 ### Internet (datagram) - data exchange among computers - "elastic" service, no strict timing req. - "smart" end systems (computers) - can adapt, perform control, error recovery - simple inside network, complexity at "edge" - many link types - different characteristics - o uniform service difficult ### ATM (VC) - evolved from telephony - human conversation: - strict timing, reliability requirements - need for guaranteed service - "dumb" end systems - telephones - o complexity inside network Internetworking ### Service Models - □ Reliable Delivery - □ In-order delivery - Guaranteed Minimal Bandwidth - Guaranteed Bounded Delay - □ Guaranteed Bounded Delay - □ Guaranteed Maximum Jitter - Security Services - Data confidentiality - Data Integrity - Source Authentication Internetworking 11 ### Internet Quality-of-Service (QoS) model - ☐ The QoS model provided by the Internet is known as best effort service - Other computer networks can offer different types of QoS - ATM networks - · Constant Bit Rate (CBR) - · Variable Bit Rate (VBR) - · Available Bit Rate (ABR) - · Unspecified Bit Rate (UBR) Internetworking ## Internetworking Introduction What's inside a router IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 Routing algorithms Link state, Distance Vector, Hierarchical routing Routing in the Internet RIP OSPF BGP Internetworking ### **Switching Via Memory** - □ First generation routers - \bigcirc traditional computers with switching under direct control of CPU - o packet copied to system's memory - speed limited by memory bandwidth (2 bus crossings per datagram) - Modern Routers - Shared-memory multi-processors Cisco Catalist 8500 switches Internetworking 17 ### Switching Via a Bus - □ datagram from input port memory to output port memory via a shared bus - bus contention: switching speed limited by bus bandwidth - □ 32 *G*bps bus, *C*isco 5600 - sufficient speed for access and enterprise routers Internetworking ### Switching Via An Interconnection Network - overcome bus bandwidth limitations - Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor - □ Cisco 12000: switches 60 Gbps through the interconnection network - advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric. Internetworking 19 ### **Output Ports** switch data link queuing: processing buffer line fabric (protocol, management termination decapsulation) Buffering required when datagrams arrive from fabric faster than the transmission rate Scheduling discipline chooses among queued datagrams for transmission o First Come First Served (FCFC) Weighted Fair Queuing (WFQ) Internetworking 20 ### Output port queueing - buffering when arrival rate via switch exceeds output line speed - queueing (delay) and loss due to output port buffer overflow! Internetworking 21 ### How much buffering? - RFC 3439 rule of thumb - average buffering equal to "typical" RTT (say 250 msec) times link capacity C - o e.g., C = 10 Gbps link: 2.5 Gbit buffer - Recent recommendation - with NTCP flows (with large N), buffering equal toRTT·C √N Internetworking - Scheduling algorithms - o First Come First Served (FCFS) - Weighted Fair Queuing (WFQ) - □ What to do when a new packet arrive and there is no more space? - Drop the arriving packet (drop tail) - Drop one or more already-queued packet - Active Queue Management (AQM) - Random Early Detection (RED) 23 ### **Input Port Queuing** - □ Fabric slower than input ports combined -> queueing may occur at input queues - □ Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward - queueing delay and loss due to input buffer overflow! Internetworking ### Internetworking Introduction What's inside a router IP: Internet Protocol Datagram format IPv4 addressing Datagram forwarding Address resolution (ARP) ICMP IPv6 Routing algorithms Routing in the Internet RIP OSPF BGP Internetworking 25 Link state, Distance Vector, Hierarchical routing The Internet Network layer Host, router network layer functions: Transport layer: TCP, UDP ICMP protocol Routing protocols ·error reporting ·path selection ·router "signaling" ·RIP, OSPF, BGP Network layer IP protocol forwarding ·datagram format table ·addressing scheme ARP protocol packet handling conventions Address conversion Link layer physical layer Internetworking 26 - □ Introduction - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - Datagram forwarding - Address resolution (ARP) - ICMP - o IPv6 - Routing algorithms - o Link state, Distance Vector, Hierarchical routing - Routing in the Internet - O RIP - OSPF - BGP Internetworking 31 ### IP Addressing: introduction 223.1.1.1 - □ IP address: 32-bit identifier for host, router interface - □ interface: connection between host/router and physical link - o router's typically have multiple interfaces - o host typically has one interface - IP addresses interface Internetworking 32 ### Addresses in different classes | Address
Class | Bits In
Prefix | Maximum Number
of Networks | Bits In
Suffix | Maximum Number Of
Hosts Per Network | |------------------|-------------------|-------------------------------|-------------------|--| | Α | 7 | 128 | 24 | 16777216 | | В | 14 | 16384 | 16 | 65536 | | C | 21 | 2097152 | 8 | 256 | 37 ### IP addressing: CIDR ### CIDR: Classless InterDomain Routing - \circ subnet portion of address of arbitrary length - \circ address format: a.b.c.d/x, where x is # bits in subnet portion of address 200.23.16.0/23 Internetworking ### Reserved IP Addresses | Network
Number | Host
Number | Description | Notes | |-------------------|----------------|------------------------------------|--| | all 0s | all 0s | "this node" | Used at startup | | x | All 0s | Network
Address | Identify network x | | x | all1s | Broadcast
Address | datagram sent to all nodes of network x | | all 1s | all1s | Restricted
Broadcast
Address | datagram sent
to all nodes of
the local
network | | 127 | | Loopback
Address | Used when developing applications | - Q: How does *network* get subnet part of IP addr? - <u>A:</u> gets allocated portion of its provider ISP's address space | 11001000 | 00010111 | <u>0001</u> 0000 | 00000000 | 200.23.16.0/20 | |----------|----------------------------------|---|--|--| | 11001000 | 00010111 | 00010000 | 00000000 | 200.23.16.0/23 | | 11001000 | 00010111 | 00010010 | 00000000 | 200.23.18.0/23 | | 11001000 | 00010111 | 00010100 | 00000000 | 200.23.20.0/23 | | | | | | •••• | | 11001000 | 00010111 | <u>0001111</u> 0 | 00000000 | 200.23.30.0/23 | | | 11001000
11001000
11001000 | 11001000 00010111
11001000 00010111
11001000 00010111
 | 11001000 00010111 00010000
11001000 00010111 00010010
11001000 00010111 00010100
 | <u>11001000 00010111 0001001</u> 0 00000000
<u>11001000 00010111 0001010</u> 0 00000000 | ### IP addressing: the last word... - Q: How does an ISP get block of addresses? - A: ICANN: Internet Corporation for Assigned Names and Numbers - o allocates addresses - o manages DNS - o assigns domain names, resolves disputes Internetworking 43 ### IP addresses: how to get one? - Q: How does a host get IP address? - Permanent Address - o hard-coded by system admin in a file - Windows: control-panel->network->configuration->tcp/ip->properties - UNIX: /etc/rc.config - Temporary Address - DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server - o "plug-and-play" Internetworking ### DHCP: Dynamic Host Configuration Protocol <u>Goal:</u> allow host to <u>dynamically</u> obtain its IP address from network server when it joins network Allows reuse of addresses (only hold address while connected "on") Support for mobile users who want to join network (more shortly) ### DHCP overview: - o host broadcasts "DHCP discover" msg - O DHCP server responds with "DHCP offer" msg - o host requests IP address: "DHCP request" msg - O DHCP server sends address: "DHCP ack" msg Internetworking ### DHCP: more than IP address DHCP can return more than just allocated IP address on subnet: - o address of first-hop router for client - o name and IP address of DNS sever - network mask (indicating network versus host portion of address) Internetworking ### **NAT: Network Address Translation** - Motivation: local network uses just one IP address as far as outside world is concerned: - range of addresses not needed from ISP: just one IP address for all devices - can change addresses of devices in local network without notifying outside world - can change ISP without changing addresses of devices in local network - devices inside local net not explicitly addressable, visible by outside world (a security plus). Internetworking ### **NAT: Network Address Translation** ### Implementation: NAT router must: - outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #) - . . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr. - remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair - incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table Internetworking ### NAT: Network Address Translation - □ 16-bit port-number field: - 60,000 simultaneous connections with a single LAN-side address! - □ NAT is controversial: - o routers should only process up to layer 3 - o violates end-to-end argument - NAT possibility must be taken into account by app designers, eg, P2P applications - address shortage should instead be solved by IPv6 Internetworking 55 ### NAT traversal problem client wants to connect to server with address 10.0.0.1 Client ? 10.0.0.1 o server address 10.0.0.1 local to LAN (client can't use it as destination addr) only one externally visible NATted address: 138.76.29.7 138.76.29.7 solution 1: router statically configure NAT to forward incoming connection requests at given port to server o e.g., (123.76.29.7, port 5001) always forwarded to 10.0.0.1 port 80 Internetworking 56 - Internetworking - Introduction - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - Datagram Forwarding - Address Resolution - ICMP - o IPv6 - Routing algorithms - Link state, Distance Vector, Hierarchical routing - Routing in the Internet - O RIP - OSPF - BGP 59 ### Forwarding at intermediate router | SubnetNumber | Next Hop | <u>Interface</u> | |------------------|-----------|------------------| | 128.96.34.0/25 | Router R1 | interface O | | 128.96.34.128/25 | Router R3 | interface 1 | | 128.96.33.0/24 | Router R3 | interface 1 | | | | | Internetworking ### Forwarding at intermediate router | SubnetNumber | SubnetMask | NextHop | <u>Interface</u> | |---------------|-----------------|-----------|------------------| | 128.96.34.0 | 255.255.255.128 | Router R1 | interface O | | 128.96.34.128 | 255.255.255.128 | Router R3 | interface 1 | | 128.96.33.0 | 255.255.255.0 | Router R3 | interface 1 | | | | | | ``` DHost=Destination IP Address For each entry [i] in Table { DNet=(SubnetMask[i] & Dhost) If(DNet==SubnetNumber[i]) then deliver datagram to NextHop[i] through Interface[i] } ``` Internetworking 61 ### Forwarding at sending host - ☐ The host knows - Subnet Mask (MySubnetMask) - Default router SubnetNum=MySubnetMask & Dest_IP_Addr If(SubnetNum ==MySubnetNum) then deliver datagram to Dest_IP_Addr directly else forward datagram to default router Internetworking ### ARP: Address Resolution Protocol Each IP node (host, How to determine MAC address of B router) has ARP table knowing B's IP address? ☐ ARP table: IP/MAC address 137.196.7.78 mappings for nodes 1A-2F-BB-76-09-AD < IP address; MAC address; TTL> 137 196 7 23 137.196.7.14 TTL (Time To Live): time after LAN which address mapping will be forgotten (typically 20 min) 71-65-F7-2B-08-53 58-23-D7-FA-20-B0 0C-C 11-6F-E3-98 137.196.7.88 Internetworking 65 ### ARP protocol: Same LAN/Network - □ A wants to send datagram to B, and B's MAC address not in A's ARP table. - A broadcasts ARP query packet, containing B's IP address - dest MAC address = FF-FF-FF-FF - all machines on LAN receive ARP query - B receives ARP packet - □ B replies to A with its (B's)MAC address - frame sent to A's MAC address (unicast) - A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) - soft state: information that times out (goes away) unless refreshed ### ARP is "plug-and-play" nodes create their ARP tables without intervention from net administrator Internetworking ### ICMP: Internet Control Message Protocol [RFC 792] - used by hosts & routers to communicate network-level information - error reporting: unreachable host, network, port, protocol - echo request/reply (used by ping) - network-layer "above" IP: - ICMP msgs carried in IP datagrams - □ ICMP message - type - code - header + first 8 bytes of IP datagram causing error | Type | Code | description | |------|------|---------------------------| | 0 | 0 | echo reply (ping) | | 3 | 0 | dest. network unreachable | | 3 | 1 | dest host unreachable | | 3 | 2 | dest protocol unreachable | | 3 | 3 | dest port unreachable | | 3 | 6 | dest network unknown | | 3 | 7 | dest host unknown | | 4 | 0 | source quench (congestion | | | | control - not used) | | 8 | 0 | echo request (ping) | | 9 | 0 | route advertisement | | 10 | 0 | router discovery | | 11 | 0 | TTL expired | | 12 | 0 | bad IP header | Internetworking 71 # Traceroute/Tracert: to www.unipi.it Three delay measurements from source to www.unipi.it Microsoft Windows 2000 [Versiore 5.00.2195] (C) Copyright 1985-1999 Microsoft Corp. C:\takentarrow tracert www.unipi.it Rilevazione instradamento verso www.unipi.it [131.114.190.24] su un massimo di 30 punti di passaggio: 1 <10 ms <10 ms <10 ms | 10 ms | 140.105.150.13 3 <10 ms <10 ms <10 ms | 140.105.150.13 3 <10 ms <10 ms <10 ms | 140.105.150.13 4 31 ms 31 ms | 47 ms re-units2 ts. garr. net [193.206.134.82] 5 31 ms | 62 ms | 47 ms mi-ts-2.garr. net [193.206.134.53] 6 | 47 ms | 47 ms | 47 ms bo-mi-2.garr. net [193.206.134.82] 7 | 125 ms | 125 ms | 125 ms | pi-bo-1.garr.net [193.206.134.82] 8 | ** 204 ms | 281 ms | unipi-re.pi.garr.net [193.206.134.82] 9 | 219 ms | 312 ms | 250 ms | ethilos-gay.unipi.it [131.114.188.61] 10 | 219 ms | 187 ms | 206 ms | 131.114.186.1 Rilevazione completata. C:\takentarrow 1-72 ### Traceroute and ICMP - Source sends series of UDP segments to dest - o First has TTL =1 - Second has TTL=2, - 0 - Unlikely port number - □ When n-th datagram arrives to n-th router: - Router discards datagram - And sends to source an ICMP message (type 11, code 0) - Message includes name of router& IP address - When ICMP message arrives, source calculates RTT - Traceroute does this 3 times #### Stopping criterion - UDP segment eventually arrives at destination host - Destination returns ICMP "host unreachable" packet (type 3, code 3) - When source gets this ICMP, stops. Internetworking 73 ## Internetworking - □ Introduction - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - Datagram forwarding - Address Resolution - ICMP - o IPv6 - Routing algorithms - o Link state, Distance Vector, Hierarchical routing - Routing in the Internet - O RIP - OSPF - BGP 13 A 3 Internetworking ### IPv6 [RFC 2460] - ☐ Initial motivation: 32-bit address space soon to be completely allocated. - Additional motivation: - header format helps speed processing/forwarding - header changes to facilitate QoS #### IPv6 datagram format: - o fixed-length 40 byte header - no fragmentation allowed Internetworking 75 ## IPv6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same "flow." (concept of flow" not well defined). Next header: identify upper layer protocol for data Internetworking ## Other Changes from IPv4 - □ *Fragmentation*: removed to speed up the forwarding process at routers - □ *Checksum*: removed entirely to reduce processing time at each hop - Options: allowed, but outside of header, indicated by "Next Header" field - ☐ ICMPv6: new version of ICMP - o additional message types, e.g. "Packet Too Big" - multicast group management functions Internetworking 77 ### Transition From IPv4 To IPv6 - □ Not all routers can be upgraded simultaneous - o no "flag days" - O How will the network operate with mixed IPv4 and IPv6 routers? - □ Solutions - Dual-stack: routers implement both IPv4 and IPv6 - Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers Internetworking # Internetworking - Introduction - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - Datagram forwarding - Address resolution (ARP) - ICMP - o IPv6 #### Routing algorithms - Link state, Distance Vector, Hierarchical routing - Routing in the Internet - o RIP - OSPF - BGP Internetworking 81 # **Forwarding Table** | SubnetNumber | SubnetMask | NextHop | <u>Interface</u> | |---------------|-----------------|-----------|------------------| | 128.96.34.0 | 255.255.255.128 | Router R1 | interface O | | 128.96.34.128 | 255.255.255.128 | Router R3 | interface 1 | | 128.96.33.0 | 255.255.255.0 | Router R3 | interface 1 | | | | | | How is the Forwarding Table generated? Internetworking # Routing - □ Source Router - Default router of the source host - Destination Router - Default router of the destination host - ☐ Goal - Find a "good" path from the source router to the destination router Internetworking 83 # **Graph abstraction** Graph: G = (N,E) $N = set of routers = \{ u, v, w, x, y, z \}$ $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$ Remark: Graph abstraction is useful in other network contexts Example: P2P, where N is set of peers and E is set of TCP connections Internetworking ## Graph abstraction: costs - c(x,x') = cost of link(x,x') - e.g., c(w,z) = 5 - cost could always be 1, or inversely related to bandwidth, or inversely related to congestion Cost of path $$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$ Question: What's the least-cost path between u and z? Routing algorithm: algorithm that finds least-cost path Internetworking 85 ### Routing Algorithm classification # Global or decentralized? Global: - all routers have complete topology, link cost info - "link state" algorithms #### Decentralized: - router knows physicallyconnected neighbors, link costs to neighbors - iterative process of computation, exchange of info with neighbors - "distance vector" algorithms # Static or dynamic? routes change slowly over time #### Dynamic: - routes change more quickly - periodic update - in response to link cost changes Internetworking ### Internetworking - □ Introduction - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - ICMP - o IPv6 #### Routing algorithms - o Link state, Distance Vector, Hierarchical routing - Routing in the Internet - O RIP - OSPF - BGP Internetworking 87 ### A Link-State Routing Algorithm #### Dijkstra's algorithm - net topology, link costs known to all nodes - accomplished via "link state broadcast" - o all nodes have same info - computes least cost paths from one node ('source") to all other nodes - gives forwarding table for that node - iterative: after k iterations, know least cost path to k dest.'s #### Notation: - □ C(x,y): link cost from node x to y; = ∞ if not direct neighbors - D(v): current value of cost of path from source to dest. v - p(v): predecessor node along path from source to v - N': set of nodes whose least cost path definitively known Internetworking ## Dijsktra's Algorithm ``` 1 Initialization: N' = \{u\} for all nodes v in the graph 4 if v adjacent to u 5 then D(v) = c(u,v) 6 else D(v) = ∞ 7 8 Loop 9 find w not in N' such that D(w) is a minimum 10 add w to N' 11 update D(v) for all v adjacent to w and not in N': D(v) = \min(D(v), D(w) + c(w,v)) 13 /* new cost to v is either old cost to v or known shortest path cost to w plus cost from w to v */ 15 until all nodes in N' ``` Internetworking 89 # Dijkstra's algorithm: example | Si | tep | N' | D(v),p(v) | D(w),p(w) | D(x),p(x) | D(y),p(y) | D(z),p(z) | |----|-----|--------------------|-----------|-----------|-----------|-----------|-----------| | | 0 | u | 2,u | 5,u | 1,u | ∞ | ∞ | | | 1 | ux ← | 2,u | 4,x | | 2,x | ∞ | | | 2 | uxy <mark>←</mark> | 2,u | 3,y | _ | | 4,y | | | 3 | uxyv 🗸 | | 3,y | | | 4,y | | | 4 | uxyvw ← | | | | | 4,y | | | 5 | uxyvwz 🕶 | | | | | - | Internetworking Resulting shortest-path tree from u: #### Resulting forwarding table in u: | destination | link | |-------------|-------| | v | (u,v) | | × | (u,x) | | У | (u,x) | | w | (u,x) | | z | (u,x) | Internetworking 91 ## Dijkstra's algorithm, discussion Algorithm complexity: n nodes - ach iteration: need to check all nodes, w, not in N - \square n(n+1)/2 comparisons: $O(n^2)$ - □ more efficient implementations possible: O(nlogn) Oscillations possible: □ e.g., link cost = amount of carried traffic ## Internetworking - □ Introduction - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - ICMP - o IPv6 #### Routing algorithms - Link state, Distance Vector, Hierarchical routing - Routing in the Internet - O RIP - OSPF - BGP Internetworking 93 ## **Distance Vector Algorithm** - Distributed - Each node receives information from neighboring nodes - o performs calculation - Distributes the results of calculations to its neighboring nodes - Iterative - The algorithm is self-terminating - Asynchronous - Nodes do not need to operate synchronously Internetworking ## **Distance Vector Algorithm** ### Bellman-Ford Equation (dynamic programming) Define $d_x(y) := cost of least-cost path from x to y$ Then $$d_x(y) = \min_{v} \{c(x,v) + d_v(y)\}$$ where min is taken over all neighbors v of x Internetworking ٥E ## Bellman-Ford example Clearly, $$d_v(z) = 5$$, $d_x(z) = 3$, $d_w(z) = 3$ B-F equation says: $$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$ $$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$ Node that achieves minimum is next hop in shortest path → forwarding table Internetworking ## **Distance Vector Algorithm** - $\Box D_x(y)$ = estimate of least cost from x to y - \square Node x knows cost to each neighbor v: c(x,v) - □ Node x maintains distance vector - $D_x = [D_x(y): y \in N]$ - □ Node x also maintains its neighbors' distance vectors - For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$ Internetworking 97 ## Distance vector algorithm (4) #### Basic idea: - From time-to-time, each node sends its own distance vector estimate to neighbors - Asynchronous - When a node x receives a new DV estimate from a neighbor, it updates its own DV using B-F equation: $D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$ Under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$ Internetworking ### Distance Vector: link cost changes #### Link cost changes: - node detects local link cost change - updates routing info, recalculates distance vector - □ if DV changes, notify neighbors "good news travels fast" At time t_0 , y detects the link-cost change, updates its DV, and informs its neighbors. At time t_1 , z receives the update from y and updates its table. It computes a new least cost to x and sends its neighbors its DV At time t_2 , y receives z's update and updates its distance table. y's least costs do not change and hence y does *not* send any message to z. ### Distance Vector: link cost changes #### Link cost changes: - good news travels fast - bad news travels slow -"count to infinity" problem! - 44 iterations before algorithm stabilizes: see text #### Poisoned reverse: - If Z routes through Y to get to X: - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z) - will this completely solve count to infinity problem? Internetworking 103 ### Comparison of LS and DV algorithms #### Message complexity - LS: with n nodes, E links, O(nE) msgs sent - <u>DV</u>: exchange between neighbors only - convergence time varies #### Speed of Convergence - □ <u>LS:</u> O(n²) algorithm - o may have oscillations - □ <u>DV</u>: convergence time varies - o may be routing loops - o count-to-infinity problem # Robustness: what happens if router malfunctions? #### LS: - node can advertise incorrect link cost - each node computes only its own table #### DV: - DV node can advertise incorrect path cost - each node's table used by others - error propagate thru network ## Internetworking - □ Introduction - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - ICMP - o IPv6 #### Routing algorithms - Link state, Distance Vector, Hierarchical routing - Routing in the Internet - O RIP - OSPF - BGP Internetworking 105 ### **Hierarchical Routing** Our routing study thus far - idealization - all routers identical - network "flat" - ... not true in practice #### scale: with 200 million destinations: - can't store all dest's in routing tables! - routing table exchange would swamp links! #### administrative autonomy - □ internet = network of networks - each network admin may want to control routing in its own network # **Hierarchical Routing** - aggregate routers into regions, "autonomous systems" (AS) - routers in same AS run same routing protocol - o "intra-AS" routing protocol - o routers in different AS can run different intra-AS routing protocol #### Gateway router Direct link to router in another AS ### Example 1: Setting forwarding table in router 1d - suppose AS1 learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway 1c) but not via AS2. - □ inter-AS protocol propagates reachability info to all internal routers. - router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c. - \circ installs forwarding table entry (x,I) ### Example 2: Choosing among multiple ASes 111 - now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 (1c) and from AS2 (1b) - to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest \times . - Hot-potato routing - The router chooses the gateway router having the least-cost path from itself ### Intra-AS Routing - □ also known as Interior Gateway Protocols (IGP) - □ most common Intra-AS routing protocols: - RIP: Routing Information Protocol - OSPF: Open Shortest Path First - IGRP: Interior Gateway Routing Protocol (Cisco proprietary) - EIGRP: Extended Interior Gateway Routing Protocol (Cisco proprietary) Internetworking 115 ## Internetworking - □ Introduction - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - ICMP - o IPv6 - Routing algorithms - o Link state, Distance Vector, Hierarchical routing - Routing in the Internet - o RIP - OSPF - BGP ## RIP (Routing Information Protocol) [RFC 1058, 2453] - distance vector algorithm - included in BSD-UNIX Distribution in 1982 - □ distance metric: # of hops (max = 15 hops) #### From router A to subnets: | Destination | Hops | |-------------|------| | u | 1 | | V | 2 | | W | 2 | | × | 3 | | У | 3 | | z | 2 | | | | Internetworking ### RIP advertisements - □ <u>distance vectors</u>: exchanged among neighbors every 30 sec via RIP Response Message (also called advertisement) - □ each advertisement: list of up to 25 destination subnets within AS ### RIP: Link Failure and Recovery If no advertisement heard after 180 sec --> neighbor/link declared dead - o routes via neighbor invalidated - new advertisements sent to neighbors - o neighbors in turn send out new advertisements (if tables changed) - o link failure info propagates to entire net - o poisoned reverse used to prevent ping-pong loops (infinite distance = 16 hops) Internetworking 121 ### RIP Table processing - RIP routing tables managed by application-level process called routed (daemon) - advertisements sent in UDP packets port 520 ## Internetworking - □ Introduction - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - ICMP - o IPv6 - Routing algorithms - o Link state, Distance Vector, Hierarchical routing - Routing in the Internet - o RIP - OSPF - BGP Internetworking 123 ## **OSPF** (Open Shortest Path First) [RFC 2328] - □ "open": publicly available - uses Link State algorithm - LS packet dissemination - o topology map at each node - o route computation using Dijkstra's algorithm - advertisements disseminated to entire AS (via flooding) - o carried in OSPF messages directly over IP (rather than TCP - O At least every 30 minutes and whenever a change in the link state occurs ### OSPF "advanced" features (not in RIP) - security: OSPF messages can be authenticated (to prevent malicious intrusion) - O No Authentication (default), Simple, MD5 - multiple same-cost paths allowed (only one path in RIP) - □ For each link, multiple cost metrics for different TOS - e.g., satellite link cost set "low" for best effort; high for real time) - integrated uni- and multicast support: - Multicast OSPF (MOSPF) uses same topology data base as OSPF - hierarchical OSPF in large domains. Internetworking 1 ### **Hierarchical OSPF** - □ two-level hierarchy: local area, backbone. - Link-state advertisements only in area - o each nodes has detailed area topology; only know direction (shortest path) to nets in other areas. - □ <u>area border routers:</u> "summarize" distances to nets in own area, advertise to other Area Border routers. - □ backbone routers: run OSPF routing limited to backbone. - boundary routers: connect to other AS's. Internetworking 127 ## Internetworking - What's inside a router - □ IP: Internet Protocol - Datagram format - IPv4 addressing - ICMP - o IPv6 Routing algorithms - o Link state, Distance Vector, Hierarchical routing - Routing in the Internet - o RIP - OSPF - o BGP ## Internet inter-AS routing: BGP4 [RFC 4271] - □ BGP (Border Gateway Protocol): the de facto standard - □ BGP provides each AS a means to: - 1. Obtain subnet reachability information from neighboring ASs. - 2. Propagate reachability information to all ASinternal routers. - 3. Determine "good" routes to subnets based on reachability information and policy. - allows subnet to advertise its existence to rest of Internet: "I am here" Internetworking 129 ### **BGP** basics - pairs of routers (BGP peers) exchange routing info over TCP connections: BGP sessions - BGP sessions need not correspond to physical links. - when AS2 advertises a prefix to AS1: - O AS2 promises it will forward datagrams towards that prefix. - AS2 can aggregate prefixes in its advertisement ## Distributing reachability info - using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1. - 1c can then use iBGP do distribute new prefix info to all routers in AS1 - 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session - when router learns of new prefix, it creates entry for prefix in its forwarding table. ### Path attributes & BGP routes 131 - advertised prefix includes BGP attributes. - o prefix + attributes = "route" - □ two important attributes: - AS-PATH: contains ASs through which prefix advertisement has passed: e.g, AS3, AS1 - NEXT-HOP: the router interface that begins the AS path (e.g., router 3a) - \bullet Internal routers determine the least-cost path to Next-Hop (through intra-AS routing) to configure their FT - when gateway router receives route advertisement, uses import policy to accept/decline. ### **BGP** route selection - $\ \square$ router may learn about more than 1 route to some prefix. Router must select route. - elimination rules: - 1. local preference value attribute: policy decision - 2. shortest AS-PATH - 3. closest NEXT-HOP router: hot potato routing - 4. additional criteria Internetworking 133 # **BGP** routing policy legend: provider network customer network: □ A,B,C are provider networks X,W,Y are customer (of provider networks) stub ASs □ X is dual-homed: attached to two networks O X does not want to route from B via X to C o .. so X will not advertise to B a route to C Internetworking 134 ## Why different Intra- and Inter-AS routing? #### Policy: - Inter-AS: admin wants control over how its traffic routed, who routes through its net. - □ Intra-AS: single admin, so no policy decisions needed #### Scale: hierarchical routing saves table size, reduced update traffic #### Performance: - □ Intra-AS: can focus on performance - □ Inter-AS: policy may dominate over performance