
1

1

Direct Connection Networks

Acknowledgements
These Slides have been adapted from the originals made available by J. Kurose and K. Ross
All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

Direct Connection Networks 2

Overview
Some terminology:
❒ hosts and routers are nodes

❒ communication channels that
connect adjacent nodes along
communication path are links

❍ wired/wireless links

❍ Point-to-point/shared links

In this part of the course we will
look at how data are transferred
between adjacent nodes

2

Direct Connection Networks 3

Goals
❒ Introducing direct connection networks

❒ understanding principles behind Data Link layer
services:

❍ reliable data transfer
• error detection, correction

• Acknowledgement, timeout, and re-transmission

❍ flow control

❍ sharing a broadcast channel
• multiple access

• link layer addressing

❒ instantiation and implementation of various link
layer technologies

Direct Connection Networks 4

Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet

3

Introduction

Encoding
Bits are coded through an electric/electro-
magnetic/light signal and send over the physical
link

0 1 0 0 1 0 1 0 0 Physical Layer

Physical Link

Direct Connection Networks 5

Real-life Problems

❒ The transmission channel is not ideal
❍ Signal attenuation

❍ Noise
• Interferences, fading, …

❒ The received data sequence may be different
from the transmitted one

Direct Connection Networks 6010010100

Physical Layer

011010110

4

Direct Connection Networks 7

Data Link Layer

❒ Reliable delivery between adjacent nodes

Sending
host

Receiving
host

Direct Connection Networks 8

Data-Link Layer Services
❒ Framing

❍ encapsulate datagram into frame, adding header, trailer

0 1 0 0 1 0 1 0 0 Physical

Data Link

PAYLOADHEADER TRAILER

5

Direct Connection Networks 9

Data-Link Layer Services

❒ Error detection:
❍ receiver detects presence of errors

❒ Error correction:
❍ receiver identifies and corrects bit error(s)

❒ Reliable Data Transfer
❍ Through acknowledgements and retransmissions

❒ Flow control:
❍ pacing between adjacent sending and receiving nodes

❒ Half-duplex and full-duplex
❍ with half duplex, nodes at both ends of link can transmit,

but not at same time

Where is the link layer implemented?

DataLink Layer 10

Network
Adapter

Host BusController

Physical
Trans./Rec.

CPU Memory

Host
Application

Transport

Network

Data Link

Data Link

Physical

6

Direct Connection Networks 11

Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet

Direct Connection Networks 12

Error Detection
R= Redundancy bits
D= Data protected by error checking, may include header fields

• Error detection not 100% reliable!
• protocol may miss some errors, but rarely
• larger R field yields better detection

otherwise
D D

R R’

7

Direct Connection Networks 13

Parity Checking

Single Bit Parity:
Detect single bit errors

Direct Connection Networks 14

Checksum

Sender:
❒ treat segment contents

as sequence of 16-bit
integers

❒ checksum: addition (1’s
complement sum) of
segment contents

❒ sender puts checksum
value into packet
checksum field

Receiver:

❒ compute checksum of
received segment

❒ check if computed checksum
equals checksum field value:

❍ NO - error detected

❍ YES - no error detected.
But maybe errors
nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted
packet (note: used at transport layer only)

8

Direct Connection Networks 15

Cyclic Redundancy Check (CRC)
❒ widely used in practice (Ethernet, 802.11 WiFi, …)

❒ view data bits, D, as a binary number

❒ choose r+1 bit pattern G (Generator)

❒ goal: choose r CRC bits, R, such that
❍ <D,R> exactly divisible by G (using modulo-2 arithmetic)

❍ receiver knows G, divides <D,R> by G.

❍ If non-zero remainder: error detected!

❒ can detect all burst errors less than r+1 bits

Direct Connection Networks 16

CRC – How to derive R?

Want R such that:

D.2r XOR R = nG

equivalently:
D.2r = nG XOR R

equivalently:
if we divide D.2r by G,
the remainder is equal
to R

R = remainder[]
D.2r

G

Example

9

Forward Error Correction (FEC)

Direct Connection Networks 17

otherwise
D D

EDC Error Detection and Correction (redundancy bits)
D Data protected by error checking, may include header fields

Two-Dimensional Bit Parity

❒ Detects and correct single bit values

Direct Connection Networks 18

0 0

10

Direct Connection Networks 19

Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet

Principle of Reliable Data Transfer
❒ Important in Data Link, Transport, and Application layers

❒ Top-10 list of important networking topics!

What we would like to get

characteristics of unreliable
channel will determine complexity
of reliable data transfer protocol
(rdt)

Sending
host

Receiving
host

Direct Connection Networks 20

11

Direct Connection Networks 21

Reliable data transfer: overview

send
side

receive
side

rdt_send(): called from above,
(e.g., by network). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

Direct Connection Networks 22

Reliable data transfer: getting started

❒ incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

❒ consider only unidirectional data transfer
❍ but control info will flow on both directions!

❒ use finite state machines (FSM) to specify
sender, receiver

12

Reliable Data Transfer: FSM

Direct Connection Networks 23

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Direct Connection Networks 24

Rdt1.0: reliable transfer over a reliable channel

❒ underlying channel perfectly reliable
❍ no bit errors

❍ no loss of packets

❒ separate FSMs for sender, receiver:
❍ sender sends data into underlying channel

❍ receiver read data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for
call from
below

rdt_rcv(packet)

sender receiver

13

Direct Connection Networks 25

Rdt2.0: channel with bit errors
❒ Underlying channel may flip bits in packet

❍ Error detection to detect bit errors
• CRC (Data Link layer)

• Checksum (Transport layer)

❒ How to recover from errors?
❍ acknowledgements (ACKs)

• receiver explicitly tells sender that pkt received OK

❍ negative acknowledgements (NAKs)
• receiver explicitly tells sender that pkt had errors

• sender retransmits pkt on receipt of NAK

❒ Automatic Repeat reQuest (ARQ) protocol
❍ error detection (receiver side)

❍ receiver feedback
• control msgs (ACK,NAK) sent from receiver to sender

❍ retransmission (sender side)

Direct Connection Networks 26

rdt2.0: FSM specification

Wait for
call from
above

sndpkt = make_pkt(data, crc)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below
sender

receiver

rdt_send(data)

Λ

Sender sends one packet,
then waits for receiver
response

stop and wait

14

Direct Connection Networks 27

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

❒ sender doesn’t know what
happened at receiver!

❒ Error correction on
ACKs/NAKs

❍ Makes the channel error-free

❍ Does not work on lossy channels

where packets may get lost

❒ Re-transmission
❍ sender retransmits current

packet if ACK/NAK garbled

❍ Possible Duplicates

Handling duplicates:
❒ sender adds sequence

number to each packet

❒ receiver discards (doesn’t
deliver up) duplicate packets

❒ For a Stop-and-Wait
protocol a 1-bit sequence
number is enough

Direct Connection Networks 28

rdt2.1: Handling of garbled ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, crc)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) || isNAK(rcvpkt))

sndpkt = make_pkt(1, data, crc)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) || isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

Λ
Λ

Sender

15

Direct Connection Networks 29

rdt2.1: Handling of garbled ACK/NAKs

Wait for
0 from
below

sndpkt = make_pkt(NAK, crc)
udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& not corrupt(rcvpkt)
&& has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, crc)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, crc)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, crc)
udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& not corrupt(rcvpkt)
&& has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt))

sndpkt = make_pkt(ACK, crc)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, crc)
udt_send(sndpkt)

Receiver

Direct Connection Networks 30

rdt2.1: discussion

Sender:

❒ seq # added to pkt

❒ two seq. #’s (0,1) will
suffice. Why?

❒ must check if received
ACK/NAK corrupted

❒ twice as many states
❍ state must “remember”

whether “current” pkt
has 0 or 1 seq. #

Receiver:

❒ must check if received
packet is duplicate

❍ state indicates whether
0 or 1 is expected pkt
seq #

❒ note: receiver can not
know if its last
ACK/NAK received OK
at sender

16

Direct Connection Networks 31

rdt2.2: a NAK-free protocol

❒ Same functionality as rdt2.1, using ACKs only

❒ Instead of NAK, receiver sends ACK for the last

packet received OK

❍ receiver must explicitly include the seq # of the packet

being ACKed

❒ duplicate ACK at sender results in same action as

NAK: retransmit the current packet

Dat Link 32

rdt2.2: sender, receiver FSMs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, crc)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) || isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0

sender FSM
fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, 1, crc)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) || has_seq1(rcvpkt))

udt_send(sndpkt) receiver FSM
fragment

Λ

17

Direct Connection Networks 33

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data or
ACKs)

❍ Error detection, seq. #,
ACKs, retransmissions will
be of help, but not enough

New Problem:
How to detect a packet
loss?

Approach:
sender waits
“reasonable” amount of
time (time-out) for ACK

❒ retransmits if no ACK
received in this time

❒ receiver must specify seq #
of pkt being ACKed

❒ requires countdown timer

rdt3.0: channels with errors and loss

How long to wait?

❒ If the time-out is too long
❍ The data transfer process is made slower

❒ If the time-out is too short
❍ if pkt (or ACK) just delayed (not lost), retransmission will

produce duplicates at the receiver
• but use of seq. #’s already handles this

❒ The time-out should be tailored to the Round Trip
Time (RTT)

Direct Connection Networks 34

18

Direct Connection Networks 35

rdt3.0 sender

sndpkt = make_pkt(0, data, crc)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) || isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, crc)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) || isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0 from

above

Wait
for

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ

rdt3.0 receiver

❒ Left to students as a homework

❒ Define the receiver FSM
❍ Like the sender FSM shown in the previous slide

Direct Connection Networks 36

19

Direct Connection Networks 37

rdt3.0 in action

Direct Connection Networks 38

rdt3.0 in action

20

Direct Connection Networks 39

Performance of rdt3.0

❒ rdt3.0 works, but performance stinks

❒ ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

❍ U sender: utilization – fraction of time sender busy sending

U
sender

=
.008

30.008
= 0.00027

microsec

L / R

RTT + L / R
=

❍ 1KB pkt every 30 msec -> 267 Kbps throughput over 1 Gbps link
❍ network protocol limits use of physical resources!

dsmicrosecon8
bps10

bits8000
9

===
R

L
dtrans

Direct Connection Networks 40

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec

L / R

RTT + L / R
=

21

Direct Connection Networks 41

Pipelining

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts

Direct Connection Networks 42

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon

3 * L / R

RTT + L / R
=

Increase utilization
by a factor of 3!

22

Pipelining: Additional Mechanisms

❒ Range of sequence numbers must be increased

❒ Buffering at sender and/or receiver
❍ The sender must buffer all packets not yet acknowledged

❍ The receiver may buffer out-of-order packets

❒ The range of seq numbers and buffer size depend
on how the protocol manages lost, corrupted, and
delayed packets

❒ Error recovery strategies
❍ Go-back-N

❍ Selective Repeat

Direct Connection Networks 43

Direct Connection Networks 44

Pipelining Protocols

Go-back-N
❒ sender: up to N unACKed

pkts in pipeline

❒ receiver: only sends
cumulative ACKs

❍ doesn’t ACK pkt if there’s
a gap

❒ sender: has timer for
oldest unACKed pkt

❍ if timer expires:
retransmit all unACKed
packets

Selective Repeat
❒ sender: up to N unACKed

packets in pipeline

❒ receiver: ACKs individual
pkts

❒ sender: maintains timer
for each unACKed pkt

❍ if timer expires: retransmit
only unACKed packets

23

Direct Connection Networks 45

Go-Back-N
Sender:
❒ k-bit seq # in pkt header

❒ “window” of up to N, consecutive unACKed pkts allowed

❒ ACK(n): ACKs all pkts up to, including seq # n (“cumulative ACK”)
❍ may receive duplicate ACKs (see receiver)

❒ timer for the oldest packet only (send base)

❒ timeout: retransmit pkt sendbase and all higher seq # pkts in
window

Direct Connection Networks 46

GBN: sender extended FSM

Wait
start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum, data, crc)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum) start_timer
nextseqnum++

}
else refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum) stop_timer
else re-start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=0
nextseqnum=0

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

Events:
• Data from above
• ACK from receiver
• Timeout

timeout

24

Direct Connection Networks 47

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #

❍ may generate duplicate ACKs
❍ need only remember expectedseqnum

❒ out-of-order pkt:
❍ discard (don’t buffer) -> no receiver buffering!

❍ Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum, ACK, crc)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=0
sndpkt =
make_pkt(expectedseqnum, ACK, crc)

Λ

Direct Connection Networks 48

GBN in action

25

Limits of Go-back-N

❒ Packets are acked on a cumulative base

❒ Upon experiencing a time-out the sender
retransmits all packets since the last received
in order
❍ Un-necessary re-transmissions

• Consume bandwidth

• Consume energy

❍ The receiver does not need to buffer out-of-order
packets

❒ Complexity is shifted at the sender side
❍ The receiver only needs to know expectedseqnum

DataLink Layer 49

Direct Connection Networks 50

Selective Repeat (SR)

❒ receiver
❍ individually acknowledges all correctly received pkts

❍ buffers pkts, as needed, for eventual in-order delivery
to upper layer

❒ sender
❍ only resends pkts for which ACK not received

❍ sender timer for each unACKed pkt

26

Direct Connection Networks 51

SR: sender, receiver windows

Direct Connection Networks 52

Selective Repeat

data from above :
❒ if next available seq # in

window, send pkt

timeout(n):
❒ resend pkt n, restart timer(n)

ACK(n) in [sendbase,sendbase+N]:

❒ mark pkt n as received

❒ if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

❒ send ACK(n)

❒ If out-of-order: buffer pkt n

❒ If in-order: deliver pkt n

also deliver buffered, in-
order pkts,

advance rcv_base to next
not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

❒ ACK(n)

otherwise:
❒ ignore

receiver

27

Direct Connection Networks 53

Selective Repeat in action

Direct Connection Networks 54

SR: dilemma

Example:
❒ seq #’s: 0, 1, 2, 3

❒ window size=3

❒ receiver sees no
difference in two
scenarios!

❒ incorrectly passes
duplicate data as new
in (a)

28

Window Sizing

❒ Question

❒ What relationship between window size and
sequence number space?

❒ The window size must be less than or equal
to half of the sequence number space

Direct Connection Networks 55

Window Sizing

❒ Performance
❍ The window size should allow the sender to fill

the pipe

❒ Flow Control
❍ The window size should also avoid buffer overflow

at the receiver

❍ In a Point-to-Point link the window size can be
defined based on

• Round Trip Time (RTT)

• Receiver Buffer Size

Direct Connection Networks 56

29

Reliable Data Transfer: Summary

❒ Error detection (e.g., CRC)

❒ Acnowledgements (ACKs)

❒ Negative Acnowledgements (NAKs)

❒ Retransmission

❒ Sequence Number

❒ Retransmission Timer (Timeout)

❒ Pipelining (window)

Direct Connection Networks 57

Direct Connection Networks 58

Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet

30

Direct Connection Networks 59

Point to Point Data-Link Protocols

❒ one sender, one receiver, one link

❍ e.g., dialup link, ISDN line, ADSL, …

❒ Popular point-to-point DLC protocols:

❍ SLIP (Serial Link IP)

❍ PPP (Point-to-Point Protocol)

❍ HDLC: High level Data Link Control
• Data Link used to be considered “high layer” in

protocol stack!

SLIP
❒Ideato nel 1984 (RFC 1055)

❍Per interconnettere SUN ws a Internet tramite rete
telefonica

❒Nessuna gestione degli errori
❍I livelli superiori devono farsene carico

❒Supporta solo IP

❒Assegnazione statica di indirizzi IP
❍Data la limitatezza degli indirizzi IP è un grosso limite

❒Nessuna autenticazione
❍Va bene per linee dedicate ma non per collegamenti telefonici

❒Molte versioni (spesso incompatibili)
❍Non è uno standard Internet approvato

31

Direct Connection Networks 61

Point to Point Protocol (PPP) [RFC 1547]

❒ packet framing: encapsulation of network-layer
datagram in Data Link frame

❍ carry network layer data of any network layer
protocol (not just IP) at same time

❍ ability to demultiplex upwards

❒ bit transparency: must carry any bit pattern in the
data field

❒ error detection (no correction)

❒ connection liveness: detect and signal link failure
to network layer

❒ network layer address negotiation: endpoint can
learn/configure each other’s network address

Direct Connection Networks 62

PPP non-requirements

❒ No error correction/recovery

❒ No flow control

❒ Possible out of order delivery

❒ No support for point-to-multi-point communication
❍ Other DL protocols supports this feature (e.g., HDLC)

Error recovery, flow control, data re-ordering
all relegated to higher layers (e.g., TCP)!

32

Direct Connection Networks 63

PPP Data Frame

❒ Flag: delimiter (framing)

❒ Address: does nothing (only one option)

❒ Control: does nothing; in the future possible
multiple control fields

❒ Protocol: upper layer protocol to which frame
delivered (eg, PPP-LCP, IP, IPCP, etc)

Direct Connection Networks 64

PPP Data Frame

❒ info: upper-layer data being carried

❒ check: cyclic redundancy check for error
detection

33

Direct Connection Networks 65

Byte Stuffing
❒ “data transparency” requirement: data field must

be allowed to include flag pattern <01111110>

❍ Q: is received <01111110> data or flag?

❒ Sender:
❍ adds (“stuffs”) extra < 01111101> byte after each

<01111110> data byte
• < 01111101> byte = escape byte

❒ Receiver:
❍ Whenever receives 01111101 01111110 discards the

escape byte

Direct Connection Networks 66

Byte Stuffing/Unstuffing

flag byte
pattern
in data
to send

flag byte pattern plus
stuffed byte in
transmitted data

34

Byte Stuffing/Unstuffing (More)

❒ Sender (byte stuffing)
❍ 01111110 � 01111101 01111110

❍ 01111101 � 01111101 01111101

❒ Receiver (byte unstuffing)
❍ 01111101 01111110 � 01111110

❍ 01111101 01111101 � 01111101

Direct Connection Networks 68

PPP Data Control Protocol
Before exchanging network-layer data, Data Link peers

must

❒ configure PPP link (max. frame length, authentication)
❍ Through Link Control Protocol (LCP)

❒ learn/configure network layer information

❍ for IP: carry IP Control Protocol (IPCP) msgs
(protocol field: 8021) to configure/learn IP
address

35

Esempio: Attivazione di una connessione PPP
via modem

1. Il PC chiama il router del provider via modem

2. Il modem del provider risponde
• Si stabilisce un collegamento fisico tra PC e router del provider

3. Negoziazione dei parametri di link (protocollo LCP)
• Utilizzo dei campi Address e Control, Lunghezza max frame,

Protocollo di autenticazione,

4. Negoziazione parametri di rete
• Compressione pacchetti IP?, …

• Viene effettutata tramite una serie di pacchetti IPCP (inviati
mediante frame PPP)

5. Viene assegnato un indirizzo IP al PC

6. Il PC è ora collegato a Internet

Esempio: Chiusura di una connessione PPP

1. Protocollo IPCP

• Rilascio dell’indirizzo IP

• Rilascio della connessione di livello rete

2. Protocollo LCP

• Rilascio della connessione di livello Direct

Connection Networks

3. Viene rilasciato il collegamento telefonico

36

Direct Connection Networks 71

Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet

Limits of Point-to-Point Links

Doesn’t scale!!

N: Number of Nodes

Required number of links

()
2

1−NN

37

Direct Connection Networks 73

Multiple Access Links and Protocols
Two types of “links”:
❒ point-to-point links

❍ PPP protocol

❍ HDLC protocol

❒ broadcast (shared wire or medium)
❍ old-fashioned Ethernet

❍ upstream HFC

❍ 802.11 wireless LAN

shared wire (e.g.,
cabled Ethernet)

shared RF
(e.g., 802.11 WiFi)

shared RF
(satellite)

humans at a
cocktail party

(shared air, acoustical)

Direct Connection Networks 74

Multiple Access protocols

❒ single shared broadcast channel

❒ two or more simultaneous transmissions by nodes:
interference

❍ collision if node receives two or more signals at the same time

Multiple Access Protocol
❒ distributed algorithm that determines how nodes

share channel, i.e., determine when node can transmit

❒ communication about channel sharing must use channel
itself!

❍ no out-of-band channel for coordination

38

Direct Connection Networks 75

Ideal Multiple Access Protocol

Broadcast channel of rate R bps

1. Fully Utilization
❍ when one node wants to transmit, it should send at rate R

2. Fairness
❍ when M nodes want to transmit, each should send at average

rate R/M

3. Fully decentralization
❍ no special node to coordinate transmissions

❍ no synchronization of clocks, slot assignment, …

4. Simplicity

Direct Connection Networks 76

MAC Protocols: a taxonomy

Three broad classes:

❒ Channel Partitioning
❍ divide channel into smaller “pieces” (time slots,

frequency, code)

❍ allocate piece to node for exclusive use

❒ Random Access
❍ channel not divided, allow collisions

❍ “recover” from collisions

❒ “Taking turns”
❍ nodes take turns, but nodes with more to send can take

longer turns

39

Direct Connection Networks 77

Channel Partitioning MAC protocols: TDMA

TDMA: Time Division Multiple Access
❒ access to channel in "rounds"

❒ each station gets fixed length slot (length = pkt
trans time) in each round

❒ unused slots go idle

❒ example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6
idle

1 3 4 1 3 4

6-slot
frame

Direct Connection Networks 78

Channel Partitioning MAC protocols: FDMA

FDMA: Frequency Division Multiple Access
❒ channel spectrum divided into frequency bands

❒ each station assigned fixed frequency band

❒ unused transmission time in frequency bands go idle

❒ example: 6-station LAN, 1,3,4 have pkt, frequency
bands 2,5,6 idle

fr
eq

ue
nc

y
b

an
d
s

FDM cable

40

Direct Connection Networks 79

Channel Partitioning MAC protocols: CDMA

CDMA: Code Division multiple access
❒ Each pair of nodes assigned with different code

❍ Unique code used to encode transmitted data

❒ Simultaneous transmissions

❒ Each receiver can correctly decode
❍ In spite of interferences from other nodes

❒ Mainly used in military applications and cellular
telephony

Direct Connection Networks 80

Random Access Protocols

❒ When node has packet to send
❍ transmit at full channel data rate R.

❍ no a priori coordination among nodes

❒ two or more transmitting nodes ➜ “collision”,

❒ random access MAC protocol specifies:
❍ how to avoid/detect collisions

❍ how to recover from collisions (e.g., via delayed
retransmissions)

❒ Examples of random access MAC protocols:
❍ slotted ALOHA

❍ ALOHA

❍ CSMA, CSMA/CD, CSMA/CA

41

Direct Connection Networks 81

Slotted ALOHA

Assumptions:
❒ all frames same size
❒ time divided into equal

size slots (time to
transmit 1 frame)

❒ nodes start to transmit
only at slot beginning

❒ nodes are synchronized
❒ if 2 or more nodes

transmit in the same
slot, all nodes detect
collision

Operation:
❒ when node obtains fresh

data, transmits in next
slot
❍ if no collision: node can

send new frame in next
slot

❍ if collision: node
retransmits frame in
each subsequent slot
with probability p until
success

Direct Connection Networks 82

Slotted ALOHA

Pros

❒ single active node can
continuously transmit
at full rate of channel

❒ highly decentralized:
only nodes need to be
in sync

❒ simple

Cons
❒ collisions, wasting slots
❒ idle slots
❒ nodes may be able to

detect collision in less
than time to transmit
packet

❒ clock synchronization

42

Direct Connection Networks 83

Slotted Aloha efficiency

❒ suppose: N nodes with
many frames to send,
each transmits in slot
with probability p

❒ prob that given node
has success in a slot =
p(1-p)N-1

❒ prob that any node has
a success = Np(1-p)N-1

❒ max efficiency: find
p* that maximizes
Np(1-p)N-1

❒ for many nodes, take
limit of Np*(1-p*)N-1

as N goes to infinity,
gives:

Max efficiency = 1/e = .37

Efficiency : long-run
fraction of successful slots
(many nodes, all with many
frames to send)

At best: channel
used for useful
transmissions 37%
of time!

!

Direct Connection Networks 84

Pure (unslotted) ALOHA

❒ unslotted Aloha: simpler, no synchronization

❒ when frame first arrives transmit immediately
❍ After a collision transmit with probability p

❒ collision probability increases:
❍ frame sent at t0 collides with other frames sent in [t0-1,t0+1]

43

Direct Connection Networks 85

Pure Aloha efficiency

P(success by given node) = P(node transmits) .

P(no other node transmits in [t0-1,t0] .

P(no other node transmits in [t0, t0+1]

= p . (1-p)N-1 . (1-p)N-1

= p . (1-p)2(N-1)

… choosing optimum p and then letting n -> infty ...

= 1/(2e) = .18

even worse than slotted Aloha!

Direct Connection Networks 86

CSMA (Carrier Sense Multiple Access)

CSMA: listen before transmit:

If channel sensed idle: transmit entire frame

❒ If channel sensed busy, defer transmission

❒ human analogy: don’t interrupt others!

44

Direct Connection Networks 87

CSMA collisions

collisions can still occur:
propagation delay means
two nodes may not hear
each other’s transmission

collision:
entire packet transmission
time wasted

spatial layout of nodes

note:
role of distance & propagation
delay in determining collision
probability

Direct Connection Networks 88

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA
❍ collisions detected within short time

❍ colliding transmissions aborted, reducing channel
wastage

❒ collision detection:
❍ easy in wired LANs: measure signal strengths,

compare transmitted, received signals

❍ difficult in wireless LANs: received signal strength
overwhelmed by local transmission strength

❒ human analogy: the polite conversationalist

45

Direct Connection Networks 89

CSMA/CD collision detection

Direct Connection Networks 90

“Taking Turns” MAC protocols

channel partitioning MAC protocols:

❍ share channel efficiently and fairly at high load

❍ inefficient at low load: delay in channel access,
1/N bandwidth allocated even if only 1 active
node!

Random access MAC protocols

❍ efficient at low load: single node can fully
utilize channel

❍ high load: collision overhead

“taking turns” protocols

look for best of both worlds!

46

Direct Connection Networks 91

“Taking Turns” MAC protocols

Polling:

❒ master node
“invites” slave nodes
to transmit in turn

❒ typically used with
“dumb” slave devices

❒ concerns:
❍ polling overhead

❍ latency

❍ single point of
failure (master)

master

slaves

poll

data

data

Direct Connection Networks 92

“Taking Turns” MAC protocols
Token passing:

❒ control token passed
from one node to next
sequentially.

❒ token message

❒ concerns:
❍ token overhead

❍ latency

❍ single point of failure
(token)

T

data

(nothing
to send)

T

47

Direct Connection Networks 93

Summary of MAC protocols

❒ channel partitioning, by time, frequency or code
❍ Time Division, Frequency Division, CDMA

❒ random access (dynamic),
❍ ALOHA, S-ALOHA, CSMA, CSMA/CD

❍ carrier sensing: easy in some technologies (wire), hard in
others (wireless)

❍ CSMA/CD used in Ethernet

❍ CSMA/CA used in 802.11

❒ taking turns
❍ polling from central site, token passing

❍ Bluetooth, FDDI, IBM Token Ring

Direct Connection Networks 94

Addressing

❒ Hardware Address
❍ Also called Physical address, link-layer address, or

MAC address:

❍ function: get frame from one interface to another
physically-connected interface (same network)

❒ IEEE Addressing Scheme (LAN)
❍ 48 bit link-layer address

• burned in NIC ROM, also sometimes software settable

48

Direct Connection Networks 95

Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet

Local Area Networks (LANs)

❒ Broadcast Medium
❍ Medium Access Control Protocol

❍ MAC addressing

❒ Limited Coverage Area
❍ Building, Campus

❒ High Bit Rate
❍ 10 Mbps – 10 Gbps

Direct Connection Networks 96

49

Local Area Networks (LANs)

❒ Broadcast Medium
❍ Medium Access Control (MAC) Protocol for channel access

❍ MAC addressing

Direct Connection Networks 97

Direct Connection Networks 98

MAC Addresses
Each adapter on LAN has unique MAC address

Broadcast address =
FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN
(wired or
wireless)

50

Direct Connection Networks 99

MAC Address (more)

❒ MAC address allocation administered by IEEE

❒ manufacturer buys portion of MAC address space
(to assure uniqueness)

❒ MAC flat address ➜ portability
❍ can move LAN card from one LAN to another

❒ IP hierarchical address NOT portable
❍ address depends on IP subnet to which node is attached

❒ analogy:

(a) MAC address: like Social Security Number

(b) IP address: like postal address

Direct Connection Networks 100

Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet

51

Direct Connection Networks 101

Ethernet

“dominant” wired LAN technology:

❒ cheap $20 for NIC

❒ first widely used LAN technology

❒ simpler, cheaper than token LANs and ATM

❒ kept up with speed race: 10 Mbps – 10 Gbps

Metcalfe’s Ethernet
sketch

Direct Connection Networks 102

Topologies
❒ bus topology

❍ Based on a bus
❍ all nodes in same collision domain (can collide with each other)

❒ star topology
❍ Based on a central hub
❍ all nodes in same collision domain (just as in the bus topology)

hub

bus: coaxial cable star

52

Packet Switched Networks 103

Hubs
… physical-layer (“dumb”) repeaters:

❍ bits coming in one link go out all other links at same
rate

❍ all nodes connected to hub can collide with one
another

❍ no frame buffering

❍ no CSMA/CD at hub: host NICs detect collisions

twisted pair

hub

Direct Connection Networks 104

Switched Star topology
❒ bus topology popular through mid 90s

❍ all nodes in same collision domain (can collide with each
other)

❒ today: star topology prevails
❍ active switch in center
❍ each “spoke” runs a (separate) Ethernet protocol (nodes

do not collide with each other)

hub

bus: coaxial cable star

switch

53

Direct Connection Networks 105

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other
network layer protocol packet) in Ethernet frame

Preamble (8 bytes):

❒ 7 bytes with pattern 10101010 followed by one
byte with pattern 10101011

❒ used to synchronize receiver, sender clock rates

Direct Connection Networks 106

Manchester encoding

❒ used in 10BaseT

❒ each bit has a transition

❒ allows clocks in sending and receiving nodes to
synchronize to each other

❍ no need for a centralized, global clock among nodes!

❒ Hey, this is physical-layer stuff!

54

Direct Connection Networks 107

Ethernet Frame Structure (more)

❒ Addresses: 6 bytes
❍ if adapter receives frame with matching destination

address, or with broadcast address (eg ARP packet), it
passes data in frame to network layer protocol

❍ otherwise, adapter discards frame

❒ Type: indicates higher layer protocol (mostly IP
but others possible, e.g., Novell IPX, AppleTalk)

❒ CRC: checked at receiver, if error is detected,
frame is dropped

Direct Connection Networks 108

Ethernet: Service Type

❒ connectionless: No handshaking between sending and
receiving NICs

❒ unreliable: receiving NIC doesn’t send acks or nacks
to sending NIC

❍ stream of datagrams passed to network layer can have gaps
(missing datagrams)

❍ gaps will be filled if app is using TCP

❍ otherwise, app will see gaps

❒ Ethernet’s MAC protocol: unslotted CSMA/CD

55

Direct Connection Networks 109

Ethernet CSMA/CD algorithm

1. NIC receives data from
network layer, creates
frame

2. If NIC senses channel idle
for 96 bits, starts frame
transmission

If NIC senses channel
busy, waits until channel
idle for 96 bits, then
transmits

3. If NIC transmits entire
frame without detecting
another transmission, NIC
is done with frame !

4. If NIC detects another
transmission while
transmitting, aborts and
sends 48-bit jam signal

5. After aborting, NIC
enters exponential
backoff: after the n-th
collision, NIC chooses K at
random from {0,1,2,…,2m-1},

m=min(n,10)

NIC waits K·512 bit times,
returns to Step 2

Direct Connection Networks 110

Ethernet’s CSMA/CD (more)

Jam Signal: make sure all
other transmitters are
aware of collision; 48 bits

Bit time: .1 microsec for 10
Mbps Ethernet ;
for K=1023, wait time is
about 50 msec

Exponential Backoff:

❒ Goal: adapt retransmission
attempts to estimated
current load

❍ heavy load: random wait
will be longer

❒ first collision: choose K from
{0,1}; delay is K· 512 bit
transmission times

❒ after second collision: choose
K from {0,1,2,3}…

❒ after ten collisions, choose K
from {0,1,2,3,4,…,1023}

56

Direct Connection Networks 111

CSMA/CD efficiency

❒ Tprop = max prop delay between 2 nodes in LAN

❒ ttrans = time to transmit max-size frame

❒ efficiency goes to 1
❍ as tprop goes to 0

❍ as ttrans goes to infinity

❒ better performance than ALOHA: and simple,
cheap, decentralized!

transprop /tt
efficiency

51

1

+
=

Direct Connection Networks 112

802.3 Ethernet Standards: Link & Physical Layers

❒ many different Ethernet standards
❍ common MAC protocol and frame format
❍ different speeds: 10 Mbps, 100 Mbps, 1Gbps,

10G bps
❍ different physical layer media: fiber, cable

application
transport
network

link
physical

MAC protocol
and frame format

100BASE-TX

100BASE-T4

100BASE-FX100BASE-T2

100BASE-SX 100BASE-BX

fiber physical layercopper (twister
pair) physical layer

57

Direct Connection Networks 113

Summary
❒ Direct connection networks

❒ principles behind Data Link layer services:
❍ error detection, correction

❍ reliable data transfer

❍ sharing a broadcast channel: multiple access

❍ link layer addressing

❒ instantiation and implementation of various link
layer technologies

❍ PPP

❍ Ethernet

