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Overview
Some terminology:
❒ hosts and routers are nodes

❒ communication channels that 
connect adjacent nodes along 
communication path are links

❍ wired/wireless links

❍ Point-to-point/shared links

In this part of the course we will 
look at how data are transferred
between adjacent nodes 
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Goals
❒ Introducing direct connection networks 

❒ understanding principles behind Data Link layer 
services:

❍ reliable data transfer
• error detection, correction

• Acknowledgement, timeout, and re-transmission 

❍ flow control

❍ sharing a broadcast channel
• multiple access

• link layer addressing

❒ instantiation and implementation of various link 
layer technologies
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Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet
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Introduction

Encoding
Bits are coded through an electric/electro-
magnetic/light signal and send over the physical 
link

0 1 0 0 1 0 1 0 0 Physical Layer

Physical Link
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Real-life Problems

❒ The transmission channel is not ideal
❍ Signal attenuation

❍ Noise
• Interferences, fading, …

❒ The received data sequence may be different 
from the transmitted one

Direct Connection Networks 6010010100

Physical Layer

011010110
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Data Link Layer

❒ Reliable delivery between adjacent nodes

Sending 
host

Receiving
host
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Data-Link Layer Services
❒ Framing

❍ encapsulate datagram into frame, adding header, trailer

0 1 0 0 1 0 1 0 0 Physical

Data Link

PAYLOADHEADER TRAILER
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Data-Link Layer Services

❒ Error detection:
❍ receiver detects presence of errors

❒ Error correction:
❍ receiver identifies and corrects bit error(s)

❒ Reliable Data Transfer
❍ Through acknowledgements and retransmissions

❒ Flow control:
❍ pacing between adjacent sending and receiving nodes

❒ Half-duplex and full-duplex
❍ with half duplex, nodes at both ends of link can transmit, 

but not at same time

Where is the link layer implemented?

DataLink Layer 10

Network 
Adapter

Host BusController

Physical 
Trans./Rec.

CPU Memory

Host
Application

Transport

Network

Data Link

Data Link

Physical
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Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet
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Error Detection
R= Redundancy bits
D= Data protected by error checking, may include header fields 

• Error detection not 100% reliable!
• protocol may miss some errors, but rarely
• larger R field yields better detection

otherwise
D D

R R’
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Parity Checking

Single Bit Parity:
Detect single bit errors
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Checksum

Sender:
❒ treat segment contents 

as sequence of 16-bit 
integers

❒ checksum: addition (1’s 
complement sum) of 
segment contents

❒ sender puts checksum 
value into packet 
checksum field

Receiver:

❒ compute checksum of 
received segment

❒ check if computed checksum 
equals checksum field value:

❍ NO - error detected

❍ YES - no error detected. 
But maybe errors 
nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted 
packet (note: used at transport layer only)
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Cyclic Redundancy Check (CRC)
❒ widely used in practice (Ethernet, 802.11 WiFi, …)

❒ view data bits, D, as a binary number

❒ choose r+1 bit pattern G (Generator) 

❒ goal: choose r CRC bits, R, such that
❍ <D,R> exactly divisible by G (using modulo-2 arithmetic) 

❍ receiver knows G, divides <D,R> by G.  

❍ If non-zero remainder: error detected!

❒ can detect all burst errors less than r+1 bits
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CRC – How to derive R? 

Want R such that:

D.2r XOR R = nG

equivalently:
D.2r = nG XOR R 

equivalently:
if we divide D.2r by G, 
the remainder is equal 
to R

R = remainder[           ]
D.2r

G

Example
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Forward Error Correction (FEC)
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otherwise
D D

EDC Error Detection and Correction (redundancy bits)
D Data protected by error checking, may include header fields 

Two-Dimensional Bit Parity

❒ Detects and correct single bit values

Direct Connection Networks 18

0 0
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Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet

Principle of Reliable Data Transfer
❒ Important in Data Link, Transport, and Application layers

❒ Top-10 list of important networking topics!

What we would like to get

characteristics of unreliable 
channel will determine complexity 
of reliable data transfer protocol 
(rdt)

Sending 
host

Receiving
host

Direct Connection Networks 20
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Reliable data transfer: overview

send
side

receive
side

rdt_send(): called from above, 
(e.g., by network). Passed data to 

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called when packet 

arrives on rcv-side of channel

deliver_data(): called by 

rdt to deliver data to upper
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Reliable data transfer: getting started

❒ incrementally develop sender, receiver sides of 
reliable data transfer protocol (rdt)

❒ consider only unidirectional data transfer
❍ but control info will flow on both directions!

❒ use finite state machines (FSM)  to specify 
sender, receiver
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Reliable Data Transfer: FSM
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state
1

state
2

event causing state transition
actions taken on state transition

state: when in this 
“state” next state 

uniquely determined 
by next event

event
actions

Direct Connection Networks 24

Rdt1.0: reliable transfer over a reliable channel

❒ underlying channel perfectly reliable
❍ no bit errors

❍ no loss of packets

❒ separate FSMs for sender, receiver:
❍ sender sends data into underlying channel

❍ receiver read data from underlying channel

Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for 
call from 
below

rdt_rcv(packet)

sender receiver
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Rdt2.0: channel with bit errors
❒ Underlying channel may flip bits in packet

❍ Error detection to detect bit errors
• CRC (Data Link layer)

• Checksum (Transport layer)

❒ How to recover from errors?
❍ acknowledgements (ACKs)

• receiver explicitly tells sender that pkt received OK

❍ negative acknowledgements (NAKs)
• receiver explicitly tells sender that pkt had errors

• sender retransmits pkt on receipt of NAK

❒ Automatic Repeat reQuest (ARQ) protocol
❍ error detection (receiver side)

❍ receiver feedback
• control msgs (ACK,NAK) sent from receiver to sender

❍ retransmission (sender side)
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rdt2.0: FSM specification

Wait for 
call from 
above

sndpkt = make_pkt(data, crc)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

Wait for 
ACK or 

NAK

Wait for 
call from 

below
sender

receiver

rdt_send(data)

Λ

Sender sends one packet, 
then waits for receiver 
response

stop and wait
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rdt2.0 has a fatal flaw!

What happens if 
ACK/NAK corrupted?

❒ sender doesn’t know what 
happened at receiver!

❒ Error correction on 
ACKs/NAKs

❍ Makes the channel error-free

❍ Does not work on lossy channels

where packets may get lost

❒ Re-transmission
❍ sender retransmits current 

packet if ACK/NAK garbled

❍ Possible Duplicates

Handling duplicates: 
❒ sender adds sequence 

number to each packet

❒ receiver discards (doesn’t 
deliver up) duplicate packets

❒ For a Stop-and-Wait 
protocol a 1-bit sequence 
number is enough
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rdt2.1: Handling of garbled ACK/NAKs

Wait for 
call 0 from 

above 

sndpkt = make_pkt(0, data, crc)
udt_send(sndpkt)

rdt_send(data)

Wait for 
ACK or 
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
(corrupt(rcvpkt) || isNAK(rcvpkt))

sndpkt = make_pkt(1, data, crc)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)  && notcorrupt(rcvpkt) 
&&  isACK(rcvpkt) 

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
(corrupt(rcvpkt) || isNAK(rcvpkt))

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt) 

Wait for
call 1 from 

above

Wait for 
ACK or 
NAK 1

Λ
Λ

Sender
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rdt2.1: Handling of garbled ACK/NAKs

Wait for 
0 from 
below

sndpkt = make_pkt(NAK, crc)
udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& not corrupt(rcvpkt) 
&& has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) 

&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, crc)
udt_send(sndpkt)

Wait for 
1 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, crc)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, crc)
udt_send(sndpkt)

rdt_rcv(rcvpkt) 
&& not corrupt(rcvpkt) 
&& has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt))

sndpkt = make_pkt(ACK, crc)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, crc)
udt_send(sndpkt)

Receiver
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rdt2.1: discussion

Sender:

❒ seq # added to pkt

❒ two seq. #’s (0,1) will 
suffice.  Why?

❒ must check if received 
ACK/NAK corrupted 

❒ twice as many states
❍ state must “remember” 

whether “current” pkt 
has 0 or 1 seq. #

Receiver:

❒ must check if received 
packet is duplicate

❍ state indicates whether 
0 or 1 is expected pkt 
seq #

❒ note: receiver can not
know if its last 
ACK/NAK received OK 
at sender
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rdt2.2: a NAK-free protocol

❒ Same functionality as rdt2.1, using ACKs only

❒ Instead of NAK, receiver sends ACK for the last 

packet received OK

❍ receiver must explicitly include the seq # of the packet 

being ACKed 

❒ duplicate ACK at sender results in same action as 

NAK: retransmit the current packet

Dat Link 32

rdt2.2: sender, receiver FSMs

Wait for 
call 0 from 

above

sndpkt = make_pkt(0, data, crc)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) || isACK(rcvpkt,1))

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0)

Wait for 
ACK

0

sender FSM
fragment

Wait for 
0 from 
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, 1, crc)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && 
(corrupt(rcvpkt) || has_seq1(rcvpkt))

udt_send(sndpkt) receiver FSM
fragment

Λ
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rdt3.0: channels with errors and loss

New assumption:
underlying channel can 
also lose packets (data or 
ACKs)

❍ Error detection, seq. #, 
ACKs, retransmissions will 
be of help, but not enough

New Problem:
How to detect a packet 
loss?

Approach:
sender waits 
“reasonable” amount of 
time (time-out) for ACK 

❒ retransmits if no ACK 
received in this time

❒ receiver must specify seq # 
of pkt being ACKed

❒ requires countdown timer

rdt3.0: channels with errors and loss

How long to wait?

❒ If the time-out is too long
❍ The data transfer process is made slower

❒ If the time-out is too short
❍ if pkt (or ACK) just delayed (not lost), retransmission will 

produce duplicates at the receiver
• but use of seq. #’s already handles this

❒ The time-out should be tailored to the Round Trip 
Time (RTT)

Direct Connection Networks 34
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rdt3.0 sender

sndpkt = make_pkt(0, data, crc)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait 
for 

ACK0

rdt_rcv(rcvpkt) &&  
(corrupt(rcvpkt) || isACK(rcvpkt,1))

Wait for 
call 1 from 

above

sndpkt = make_pkt(1, data, crc)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,0) 

rdt_rcv(rcvpkt) &&  
( corrupt(rcvpkt) || isACK(rcvpkt,0))

rdt_rcv(rcvpkt)   
&& notcorrupt(rcvpkt) 
&& isACK(rcvpkt,1) 

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for 
call 0 from 

above

Wait 
for 

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ

rdt3.0 receiver

❒ Left to students as a homework

❒ Define the receiver FSM
❍ Like the sender FSM shown in the previous slide

Direct Connection Networks 36
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rdt3.0 in action

Direct Connection Networks 38

rdt3.0 in action
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Performance of rdt3.0

❒ rdt3.0 works, but performance stinks

❒ ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

❍ U sender: utilization – fraction of time sender busy sending

 

U 
sender 

= 
.008 

30.008 
= 0.00027 

microsec

L / R 

RTT + L / R 
= 

❍ 1KB pkt every 30 msec -> 267 Kbps throughput over 1 Gbps link
❍ network protocol limits use of physical resources!

dsmicrosecon8
bps10

bits8000
9

===
R

L
dtrans
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

 

U 
sender 

= 
.008 

30.008 
= 0.00027 

microsec

L / R 

RTT + L / R 
= 
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Pipelining

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts

Direct Connection Networks 42

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

 

U 
sender 

= 
.024 

30.008 
= 0.0008 

microsecon

3 * L / R 

RTT + L / R 
= 

Increase utilization
by a factor of 3!
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Pipelining: Additional Mechanisms

❒ Range of sequence numbers must be increased

❒ Buffering at sender and/or receiver
❍ The sender must buffer all packets not yet acknowledged

❍ The receiver may buffer out-of-order packets

❒ The range of seq numbers and buffer size depend 
on how the protocol manages lost, corrupted, and 
delayed packets

❒ Error recovery strategies
❍ Go-back-N

❍ Selective Repeat

Direct Connection Networks 43
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Pipelining Protocols

Go-back-N
❒ sender: up to N unACKed 

pkts in pipeline

❒ receiver: only sends 
cumulative ACKs

❍ doesn’t ACK pkt if there’s 
a gap

❒ sender: has timer for 
oldest unACKed pkt

❍ if timer expires: 
retransmit all unACKed 
packets

Selective Repeat
❒ sender: up to N unACKed

packets in pipeline

❒ receiver: ACKs individual 
pkts

❒ sender: maintains timer 
for each unACKed pkt

❍ if timer expires: retransmit 
only unACKed packets
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Go-Back-N
Sender:
❒ k-bit seq # in pkt header

❒ “window” of up to N, consecutive unACKed pkts allowed

❒ ACK(n): ACKs all pkts up to, including seq # n (“cumulative ACK”)
❍ may receive duplicate ACKs (see receiver)

❒ timer for the oldest packet only (send base)

❒ timeout: retransmit pkt sendbase and all higher seq # pkts in 
window

Direct Connection Networks 46

GBN: sender extended FSM

Wait
start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum, data, crc)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum) start_timer
nextseqnum++

}
else refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum) stop_timer
else re-start_timer

rdt_rcv(rcvpkt) && 
notcorrupt(rcvpkt) 

base=0
nextseqnum=0

rdt_rcv(rcvpkt) 
&& corrupt(rcvpkt)

Λ

Events:
• Data from above
• ACK from receiver
• Timeout

timeout
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GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #

❍ may generate duplicate ACKs
❍ need only remember expectedseqnum

❒ out-of-order pkt: 
❍ discard (don’t buffer) -> no receiver buffering!

❍ Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum) 

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum, ACK, crc)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=0
sndpkt =    
make_pkt(expectedseqnum, ACK, crc)

Λ
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GBN in action
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Limits of Go-back-N

❒ Packets are acked on a cumulative base

❒ Upon experiencing a time-out the sender 
retransmits all packets since the last received 
in order
❍ Un-necessary re-transmissions

• Consume bandwidth

• Consume energy

❍ The receiver does not need to buffer out-of-order 
packets

❒ Complexity is shifted at the sender side
❍ The receiver only needs to know expectedseqnum

DataLink Layer 49
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Selective Repeat (SR)

❒ receiver
❍ individually acknowledges all correctly received pkts

❍ buffers pkts, as needed, for eventual in-order delivery 
to upper layer

❒ sender 
❍ only resends pkts for which ACK not received

❍ sender timer for each unACKed pkt
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SR: sender, receiver windows

Direct Connection Networks 52

Selective Repeat

data from above :
❒ if next available seq # in 

window, send pkt

timeout(n):
❒ resend pkt n, restart timer(n)

ACK(n) in [sendbase,sendbase+N]:

❒ mark pkt n as received

❒ if n smallest unACKed pkt, 
advance window base to 
next unACKed seq # 

sender
pkt n in [rcvbase, rcvbase+N-1]

❒ send ACK(n)

❒ If out-of-order: buffer pkt n

❒ If in-order: deliver pkt n

also deliver buffered, in-
order pkts, 

advance rcv_base to next 
not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

❒ ACK(n)

otherwise:
❒ ignore 

receiver
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Selective Repeat in action

Direct Connection Networks 54

SR: dilemma

Example: 
❒ seq #’s: 0, 1, 2, 3

❒ window size=3

❒ receiver sees no 
difference in two 
scenarios!

❒ incorrectly passes 
duplicate data as new 
in (a)



28

Window Sizing

❒ Question

❒ What relationship between window size and 
sequence number space?

❒ The window size must be less than or equal 
to half of the sequence number space

Direct Connection Networks 55

Window Sizing

❒ Performance
❍ The window size should allow the sender to fill 

the pipe

❒ Flow Control 
❍ The window size should also avoid buffer overflow 

at the receiver

❍ In a Point-to-Point link the window size can be 
defined based on

• Round Trip Time (RTT)

• Receiver Buffer Size

Direct Connection Networks 56
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Reliable Data Transfer: Summary

❒ Error detection (e.g., CRC)

❒ Acnowledgements (ACKs)

❒ Negative Acnowledgements (NAKs)

❒ Retransmission

❒ Sequence Number

❒ Retransmission Timer (Timeout)

❒ Pipelining (window) 

Direct Connection Networks 57
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Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet
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Point to Point Data-Link Protocols

❒ one sender, one receiver, one link

❍ e.g., dialup link, ISDN line, ADSL, …

❒ Popular point-to-point DLC protocols:

❍ SLIP (Serial Link IP)

❍ PPP (Point-to-Point Protocol)

❍ HDLC: High level Data Link Control
• Data Link used to be considered “high layer” in 

protocol stack!

SLIP
❒Ideato nel 1984 (RFC 1055)

❍Per interconnettere SUN ws a Internet tramite rete 
telefonica

❒Nessuna gestione degli errori
❍I livelli superiori devono farsene carico

❒Supporta solo IP

❒Assegnazione statica di indirizzi IP
❍Data la limitatezza degli indirizzi IP è un grosso limite

❒Nessuna autenticazione
❍Va bene per linee dedicate ma non per collegamenti telefonici

❒Molte versioni (spesso incompatibili)
❍Non è uno standard Internet approvato
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Point to Point Protocol (PPP) [RFC 1547]

❒ packet framing: encapsulation of network-layer 
datagram in Data Link frame 

❍ carry network layer data of any network layer 
protocol (not just IP) at same time

❍ ability to demultiplex upwards

❒ bit transparency: must carry any bit pattern in the 
data field

❒ error detection (no correction)

❒ connection liveness: detect and signal link failure 
to network layer

❒ network layer address negotiation: endpoint can 
learn/configure each other’s network address

Direct Connection Networks 62

PPP non-requirements

❒ No error correction/recovery

❒ No flow control

❒ Possible out of order delivery

❒ No support for point-to-multi-point communication 
❍ Other DL protocols supports this feature (e.g., HDLC) 

Error recovery, flow control, data re-ordering 
all relegated to higher layers (e.g., TCP)!
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PPP Data Frame

❒ Flag: delimiter (framing)

❒ Address: does nothing (only one option)

❒ Control: does nothing; in the future possible 
multiple control fields

❒ Protocol: upper layer protocol to which frame 
delivered (eg, PPP-LCP, IP, IPCP, etc) 

Direct Connection Networks 64

PPP Data Frame

❒ info: upper-layer data being carried

❒ check: cyclic redundancy check for error 
detection
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Byte Stuffing
❒ “data transparency” requirement: data field must 

be allowed to include flag pattern  <01111110>

❍ Q: is received <01111110> data or flag?

❒ Sender:
❍ adds (“stuffs”) extra < 01111101> byte after each 

<01111110> data  byte
• < 01111101> byte = escape byte

❒ Receiver:
❍ Whenever receives 01111101 01111110 discards the 

escape byte

Direct Connection Networks 66

Byte Stuffing/Unstuffing

flag byte
pattern
in data
to send

flag byte pattern plus
stuffed byte in 
transmitted  data
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Byte Stuffing/Unstuffing (More)

❒ Sender (byte stuffing)
❍ 01111110  � 01111101 01111110

❍ 01111101  � 01111101 01111101

❒ Receiver (byte unstuffing)
❍ 01111101 01111110 � 01111110

❍ 01111101 01111101 � 01111101
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PPP Data Control Protocol
Before exchanging network-layer data, Data Link peers 

must

❒ configure PPP link (max. frame length, authentication)
❍ Through Link Control Protocol (LCP)

❒ learn/configure network layer information

❍ for IP: carry IP Control Protocol (IPCP) msgs 
(protocol field: 8021) to configure/learn IP 
address
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Esempio: Attivazione di una connessione PPP
via modem

1. Il PC chiama il router del provider via modem

2. Il modem del provider risponde 
• Si stabilisce un collegamento fisico tra PC e router del provider

3. Negoziazione dei parametri di link (protocollo LCP)
• Utilizzo dei campi Address e Control, Lunghezza max frame, 

Protocollo di autenticazione, 

4. Negoziazione parametri di rete
• Compressione pacchetti IP?, …

• Viene effettutata tramite una serie di pacchetti IPCP (inviati 
mediante frame PPP)

5. Viene assegnato un indirizzo IP al PC

6. Il PC è ora collegato a Internet 

Esempio: Chiusura di una connessione PPP

1. Protocollo IPCP

• Rilascio dell’indirizzo IP

• Rilascio della connessione di livello rete

2. Protocollo LCP

• Rilascio della connessione di livello Direct 

Connection Networks

3. Viene rilasciato il collegamento telefonico
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Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet

Limits of Point-to-Point Links

Doesn’t scale!!

N: Number of Nodes

Required number of links

( )
2

1−NN
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Multiple Access Links and Protocols
Two types of “links”:
❒ point-to-point links

❍ PPP protocol

❍ HDLC protocol

❒ broadcast (shared wire or medium)
❍ old-fashioned Ethernet

❍ upstream HFC

❍ 802.11 wireless LAN

shared wire (e.g., 
cabled Ethernet)

shared RF
(e.g., 802.11 WiFi)

shared RF
(satellite) 

humans at a
cocktail party 

(shared air, acoustical)
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Multiple Access protocols

❒ single shared broadcast channel 

❒ two or more simultaneous transmissions by nodes: 
interference 

❍ collision if node receives two or more signals at the same time

Multiple Access Protocol
❒ distributed algorithm that determines how nodes 

share channel, i.e., determine when node can transmit

❒ communication about channel sharing must use channel 
itself! 

❍ no out-of-band channel for coordination
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Ideal Multiple Access Protocol

Broadcast channel of rate R bps

1. Fully Utilization
❍ when one node wants to transmit, it should send at rate R

2. Fairness
❍ when M nodes want to transmit, each should send at average 

rate R/M

3. Fully decentralization
❍ no special node to coordinate transmissions

❍ no synchronization of clocks, slot assignment, …

4. Simplicity
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MAC Protocols: a taxonomy

Three broad classes:

❒ Channel Partitioning
❍ divide channel into smaller “pieces” (time slots, 

frequency, code)

❍ allocate piece to node for exclusive use

❒ Random Access
❍ channel not divided, allow collisions

❍ “recover” from collisions

❒ “Taking turns”
❍ nodes take turns, but nodes with more to send can take 

longer turns
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Channel Partitioning MAC protocols: TDMA

TDMA: Time Division Multiple Access
❒ access to channel in "rounds" 

❒ each station gets fixed length slot (length = pkt 
trans time) in each round 

❒ unused slots go idle 

❒ example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 
idle 

1 3 4 1 3 4

6-slot
frame
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Channel Partitioning MAC protocols: FDMA

FDMA: Frequency Division Multiple Access
❒ channel spectrum divided into frequency bands

❒ each station assigned fixed frequency band

❒ unused transmission time in frequency bands go idle 

❒ example: 6-station LAN, 1,3,4 have pkt, frequency 
bands 2,5,6 idle 

fr
eq

ue
nc

y 
b

an
d
s

FDM cable
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Channel Partitioning MAC protocols: CDMA

CDMA: Code Division multiple access
❒ Each pair of nodes assigned with different code

❍ Unique code used to encode transmitted data 

❒ Simultaneous transmissions 

❒ Each receiver can correctly decode
❍ In spite of interferences from other nodes

❒ Mainly used in military applications and cellular 
telephony
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Random Access Protocols

❒ When node has packet to send
❍ transmit at full channel data rate R.

❍ no a priori coordination among nodes

❒ two or more transmitting nodes ➜ “collision”,

❒ random access MAC protocol specifies: 
❍ how to avoid/detect collisions

❍ how to recover from collisions (e.g., via delayed 
retransmissions)

❒ Examples of random access MAC protocols:
❍ slotted ALOHA

❍ ALOHA

❍ CSMA, CSMA/CD, CSMA/CA



41

Direct Connection Networks 81

Slotted ALOHA

Assumptions:
❒ all frames same size
❒ time divided into equal 

size slots (time to 
transmit 1 frame)

❒ nodes start to transmit 
only at slot beginning 

❒ nodes are synchronized
❒ if 2 or more nodes 

transmit in the same 
slot, all nodes detect 
collision

Operation:
❒ when node obtains fresh 

data, transmits in next 
slot
❍ if no collision: node can 

send new frame in next 
slot

❍ if collision: node 
retransmits frame in 
each subsequent slot 
with probability p until 
success
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Slotted ALOHA

Pros

❒ single active node can 
continuously transmit 
at full rate of channel

❒ highly decentralized: 
only nodes need to be 
in sync

❒ simple

Cons
❒ collisions, wasting slots
❒ idle slots
❒ nodes may be able to 

detect collision in less 
than time to transmit 
packet

❒ clock synchronization
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Slotted Aloha efficiency

❒ suppose: N nodes with 
many frames to send, 
each transmits in slot 
with probability p

❒ prob that given node 
has success in a slot = 
p(1-p)N-1

❒ prob that any node has 
a success = Np(1-p)N-1

❒ max efficiency: find 
p* that maximizes 
Np(1-p)N-1

❒ for many nodes, take 
limit of Np*(1-p*)N-1 

as N goes to infinity, 
gives:

Max efficiency = 1/e = .37

Efficiency : long-run 
fraction of successful slots 
(many nodes, all with many 
frames to send)

At best: channel
used for useful 
transmissions 37%
of time!

!

Direct Connection Networks 84

Pure (unslotted) ALOHA

❒ unslotted Aloha: simpler, no synchronization

❒ when frame first arrives transmit immediately
❍ After a collision transmit with probability p 

❒ collision probability increases:
❍ frame sent at t0 collides with other frames sent in [t0-1,t0+1]
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Pure Aloha efficiency

P(success by given node) = P(node transmits) .

P(no other node transmits in [t0-1,t0] .

P(no other node transmits in [t0, t0+1] 

= p . (1-p)N-1 . (1-p)N-1

= p . (1-p)2(N-1)

… choosing optimum p and then letting n -> infty ...

= 1/(2e) = .18 

even worse than slotted Aloha!
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CSMA (Carrier Sense Multiple Access)

CSMA: listen before transmit:

If channel sensed idle: transmit entire frame

❒ If channel sensed busy, defer transmission 

❒ human analogy: don’t interrupt others!
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CSMA collisions

collisions can still occur:
propagation delay means 
two nodes may not hear
each other’s transmission

collision:
entire packet transmission 
time wasted

spatial layout of nodes 

note:
role of distance & propagation 
delay in determining collision 
probability
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CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA
❍ collisions detected within short time

❍ colliding transmissions aborted, reducing channel 
wastage 

❒ collision detection:
❍ easy in wired LANs: measure signal strengths, 

compare transmitted, received signals

❍ difficult in wireless LANs: received signal strength 
overwhelmed by local transmission strength 

❒ human analogy: the polite conversationalist 
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CSMA/CD collision detection

Direct Connection Networks 90

“Taking Turns” MAC protocols

channel partitioning MAC protocols:

❍ share channel efficiently and fairly at high load

❍ inefficient at low load: delay in channel access, 
1/N bandwidth allocated even if only 1 active 
node! 

Random access MAC protocols

❍ efficient at low load: single node can fully 
utilize channel

❍ high load: collision overhead

“taking turns” protocols

look for best of both worlds!
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“Taking Turns” MAC protocols

Polling:

❒ master node 
“invites” slave nodes 
to transmit in turn

❒ typically used with 
“dumb” slave devices

❒ concerns:
❍ polling overhead 

❍ latency

❍ single point of 
failure (master)

master

slaves

poll

data

data

Direct Connection Networks 92

“Taking Turns” MAC protocols
Token passing:

❒ control token passed 
from one node to next 
sequentially.

❒ token message

❒ concerns:
❍ token overhead 

❍ latency

❍ single point of failure 
(token)

T

data

(nothing
to send)

T
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Summary of MAC protocols

❒ channel partitioning, by time, frequency or code
❍ Time Division, Frequency Division, CDMA

❒ random access (dynamic), 
❍ ALOHA, S-ALOHA, CSMA, CSMA/CD

❍ carrier sensing: easy in some technologies (wire), hard in 
others (wireless)

❍ CSMA/CD used in Ethernet

❍ CSMA/CA used in 802.11

❒ taking turns
❍ polling from central site, token passing

❍ Bluetooth, FDDI, IBM Token Ring 
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Addressing

❒ Hardware Address
❍ Also called Physical address, link-layer address, or 

MAC address:

❍ function: get frame from one interface to another 
physically-connected interface (same network)

❒ IEEE Addressing Scheme (LAN)
❍ 48 bit link-layer address

• burned in NIC ROM, also sometimes software settable
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Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet

Local Area Networks (LANs)

❒ Broadcast Medium
❍ Medium Access Control Protocol

❍ MAC addressing

❒ Limited Coverage Area
❍ Building, Campus

❒ High Bit Rate
❍ 10 Mbps – 10 Gbps

Direct Connection Networks 96
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Local Area Networks (LANs)

❒ Broadcast Medium
❍ Medium Access Control (MAC) Protocol for channel access

❍ MAC addressing

Direct Connection Networks 97
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MAC Addresses
Each adapter on LAN has unique MAC address

Broadcast address =
FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN
(wired or
wireless)
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MAC Address (more)

❒ MAC address allocation administered by IEEE

❒ manufacturer buys portion of MAC address space 
(to assure uniqueness)

❒ MAC flat address  ➜ portability 
❍ can move LAN card from one LAN to another

❒ IP hierarchical address NOT portable
❍ address depends on IP subnet to which node is attached

❒ analogy:

(a) MAC address: like Social Security Number

(b) IP address: like postal address
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Direct Connection Networks

❒ Introduction

❒ Error detection and correction

❒ Reliable Data Transfer

❒ PPP

❒ Multiple access protocols

❒ Local Area Networks (LAN)

❒ Ethernet
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Ethernet

“dominant” wired LAN technology: 

❒ cheap $20 for NIC

❒ first widely used LAN technology

❒ simpler, cheaper than token LANs and ATM

❒ kept up with speed race: 10 Mbps – 10 Gbps

Metcalfe’s Ethernet
sketch
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Topologies
❒ bus topology 

❍ Based on a bus
❍ all nodes in same collision domain (can collide with each other)

❒ star topology
❍ Based on a central hub
❍ all nodes in same collision domain (just as in the bus topology)

hub

bus: coaxial cable star
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Hubs
… physical-layer (“dumb”) repeaters:

❍ bits coming in one link go out all other links at same 
rate

❍ all nodes connected to hub can collide with one 
another

❍ no frame buffering

❍ no CSMA/CD at hub: host NICs detect collisions

twisted pair

hub
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Switched Star topology
❒ bus topology popular through mid 90s

❍ all nodes in same collision domain (can collide with each 
other)

❒ today: star topology prevails
❍ active switch in center
❍ each “spoke” runs a (separate) Ethernet protocol (nodes 

do not collide with each other)

hub

bus: coaxial cable star

switch
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Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other 
network layer protocol packet) in Ethernet frame

Preamble (8 bytes):

❒ 7 bytes with pattern 10101010 followed by one 
byte with pattern 10101011

❒ used to synchronize receiver, sender clock rates
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Manchester encoding

❒ used in 10BaseT

❒ each bit has a transition

❒ allows clocks in sending and receiving nodes to 
synchronize to each other

❍ no need for a centralized, global clock among nodes!

❒ Hey, this is physical-layer stuff!
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Ethernet Frame Structure (more)

❒ Addresses: 6 bytes
❍ if adapter receives frame with matching destination 

address, or with broadcast address (eg ARP packet), it 
passes data in frame to network layer protocol

❍ otherwise, adapter discards frame

❒ Type: indicates higher layer protocol (mostly IP 
but others possible, e.g., Novell IPX, AppleTalk)

❒ CRC: checked at receiver, if error is detected, 
frame is dropped

Direct Connection Networks 108

Ethernet: Service Type

❒ connectionless: No handshaking between sending and 
receiving NICs 

❒ unreliable: receiving NIC doesn’t send acks or nacks 
to sending NIC

❍ stream of datagrams passed to network layer can have gaps 
(missing datagrams)

❍ gaps will be filled if app is using TCP

❍ otherwise, app will see gaps

❒ Ethernet’s MAC protocol: unslotted CSMA/CD
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Ethernet CSMA/CD algorithm

1. NIC receives data from 
network layer, creates 
frame

2. If NIC senses channel idle 
for 96 bits, starts frame 
transmission 

If NIC senses channel 
busy, waits until channel 
idle for 96 bits, then 
transmits

3. If NIC transmits entire 
frame without detecting 
another transmission, NIC 
is done with frame !

4. If NIC detects another 
transmission while 
transmitting,  aborts and 
sends 48-bit jam signal

5. After aborting, NIC 
enters exponential 
backoff: after the n-th
collision, NIC chooses K at 
random from {0,1,2,…,2m-1},

m=min(n,10) 

NIC waits K·512 bit times, 
returns to Step 2
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Ethernet’s CSMA/CD (more)

Jam Signal: make sure all 
other transmitters are 
aware of collision; 48 bits

Bit time: .1 microsec for 10 
Mbps Ethernet ;
for K=1023, wait time is 
about 50 msec

Exponential Backoff:

❒ Goal: adapt retransmission 
attempts to estimated 
current load

❍ heavy load: random wait 
will be longer

❒ first collision: choose K from 
{0,1}; delay is K· 512 bit 
transmission times

❒ after second collision: choose 
K from {0,1,2,3}…

❒ after ten collisions, choose K 
from {0,1,2,3,4,…,1023}
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CSMA/CD efficiency

❒ Tprop = max prop delay between 2 nodes in LAN

❒ ttrans = time to transmit max-size frame

❒ efficiency goes to 1 
❍ as tprop goes to 0

❍ as ttrans goes to infinity

❒ better performance than ALOHA: and simple, 
cheap, decentralized!

transprop /tt
efficiency
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802.3 Ethernet Standards: Link & Physical Layers

❒ many different Ethernet standards
❍ common MAC protocol and frame format
❍ different speeds: 10 Mbps, 100 Mbps, 1Gbps, 

10G bps
❍ different physical layer media: fiber, cable

application
transport
network

link
physical

MAC protocol
and frame format

100BASE-TX

100BASE-T4

100BASE-FX100BASE-T2

100BASE-SX 100BASE-BX

fiber physical layercopper (twister
pair) physical layer
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Summary
❒ Direct connection networks

❒ principles behind Data Link layer services:
❍ error detection, correction

❍ reliable data transfer

❍ sharing a broadcast channel: multiple access

❍ link layer addressing

❒ instantiation and implementation of various link 
layer technologies

❍ PPP

❍ Ethernet


