

Introduction to Computer Networks

Acknowledgements

These Slides have been adapted from the originals made available by J. Kurose and K. Ross All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

Introduction

1-1

Introduction

Goals

- □ get "feel" and terminology
- □ more depth, detail *later* in course
- approach:
 - use Internet as example

Introduction

Roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - ☐ circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Introduction

1-3

Roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

 ${\bf Introduction}$

1-4

Internet of Things

"The next logical step in the technological revolution connecting people anytime, anywhere is to connect inanimate objects. This is the vision underlying the **Internet of things: anytime, anywhere, by anyone and anything**"

(ITU, Nov. 2005)

More than 26 billions devices will be wirelessly connected to the Internet of Things by 2020

- computers and communication devices
- cars, robots, machine tools
- persons, animals, and plants
- garments, food, drugs, etc.

Introduction

1-7

What's the Internet: "nuts and bolts" view

- ☐ *Internet*: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, Ethernet
- □ Internet standards
 - IETF: Internet Engineering Task Force
 - * RFC: Request for comments
 - Other Standard Bodies (e.g. IEEE)

 ${\bf Introduction}$

1-8

What's the Internet: a service view

- communication infrastructure enables distributed applications:
 - Web, email, VoIP, P2P file sharing, Internet radio, Internet TV, ecommerce, games, ...
 - Application Programming Interface (API)
- communication services provided to apps:
 - reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery

Introduction

1-9

What's a protocol?

human protocols:

- "what's the time?"
- □ "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

Roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - □ end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Access networks and physical media

- Q: How to connect end systems to edge router?
- residential access nets
- □ institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Introduction

Physical Media

- □ Twisted Pairs
- □ Coaxial Cable
- □ Fiber Optics
- □ Radio Links
 - Terrestrial microwave
 - * WLAN (e.g., WiFi)
 - Wide-Area (e.g., Cellular)
 - Satellite

Introduction

Physical Media

- □ Bit
 - propagates between transmitter/rcvr pairs
- □ Physical link
 - what lies between transmitter & receiver
- ☐ Guided media:
 - signals propagate in solid media: copper, fiber, coax
- Unguided media:
 - * signals propagate freely, e.g., radio

Introduction 1-17

Physical Media: twisted pairs

- □ Two insulated copper wires
 - UTP: Unshielded Twisted Pairs
 - · Category 3: traditional phone wires, 10 Mbps Ethernet
 - · Category 5: 100Mbps Ethernet
 - * ScTP: Screened Twisted Pairs
 - * STP: Shielded Twisted Pairs

Introduction

Physical Media: coaxial cable

- two concentric copper conductors
- bidirectional
- □ baseband:
 - single channel on cable
 - legacy Ethernet
- □ broadband:
 - multiple channels on cable
 - Hybrid Fiber Cable (HFC)

,

Physical Media: fiber optics

- □ glass fiber carrying light pulses
 - each pulse a bit
- □ high-speed operation:
 - high-speed point-to-point transmission (e.g., 10's-100's Gps)
- □ low error rate
 - repeaters spaced far apart;
 - immune to electromagnetic noise

Introduction

Physical Media: radio

- □ signal carried in electromagnetic spectrum
- □ no physical "wire"
- bidirectional
- propagation environment effects:
 - * reflection
 - · obstruction by objects
 - * interference

Introduction 1-21

Physical Media: radio link types

- □ Terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., Wifi)
 - 11Mbps, 54 Mbps, 108 Mbps, ... 600 Mbps, ...
- □ wide-area (e.g., cellular)
 - * 3G cellular: ~ Mbps
- □ satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - · geosynchronous versus low altitude

Introduction

Access Networks

- □ Dial-up Modem
- □ Digital Subscriber Line (DSL)
- □ Cable Modem
- □ Fiber-To-The-Home (FTTH)
- □ Ethernet
- WiFi
- □ Wide-Area Wireless Access
- WiMax

Introduction

23

Dial-up Modem

- Uses existing telephony infrastructure
 - * Home is connected to central office
- up to 56Kbps direct access to router (often less)
- * Can't surf and phone at same time: not "always on"

Digital Subscriber Line (DSL)

- * Also uses existing telephone infrastructure
- up to 1.8-2.5 Mbps upstream
- up to 12-24 Mbps downstream
- dedicated physical line to telephone central office

Residential access: cable modems

- □ Does not use telephone infrastructure
 - Instead uses cable TV infrastructure
- □ HFC: hybrid fiber coax
 - asymmetric: up to 42.8 Mbps downstream, up to 30.7 Mbps upstream
- network of cable and fiber attaches homes to ISP router
 - homes share access to router
 - unlike DSL, which has dedicated access

Access Networks Residential Access Dial-up Modem Digital Subscriber Line (DSL) Cable Modem, Fiber-To-The-Home (FTTH) Ethernet WiFi · Cellular □ Univerity/Corporate Campuses Ethernet WiFi ■ Mobile Access WiFi hotspot Cellular Introduction 34

Roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - □ circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Network Core: Circuit Switching

network resources (e.g., bandwidth) divided into "pieces"

- pieces allocated to calls
- □ resource piece *idle* if not used by owning call (no sharing)
- dividing link bandwidth into "pieces"
 - frequency division
 - time division

Network Core: Packet Switching

each end-end data stream divided into *packets*

- □ user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed

Bandwidth division into "pieces" Dedicated allocation Resource reservation

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - Node receives complete packet before forwarding

Introduction 1-41

Packet Switching: Statistical Multiplexing

100 Mb/s
Ethernet statistical multiplexing

1.5 Mb/s
queue of packets
waiting for output
link

Sequence of A & B packets does not have fixed pattern,
bandwidth shared on demand → statistical multiplexing

Introduction 1-42

Packet switching versus circuit switching

Is packet switching the winner?

- great for bursty data
 - resource sharing
 - simpler, no call setup
- excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem

Packet-switching: store-and-forward

- Transmission delay
 - The sender takes L/R seconds to transmit (push out) packet of L bits on to link at R bps
- store and forward:
 - · entire packet must arrive at router before it can be transmitted on next link
 - Store-and-forward delay (3L/R)
 - · assuming zero propagation delay
 - Possible Queuing Delay (Output Buffer)
 - Possible Packet Loss

Introduction

"Real" Internet routes

Traceroute/tracert: from an host at UniTS to www.unipi.it

```
Microsoft Windows 2000 [Versione 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\>tracert www.unipi.it

Rilevazione instradamento verso www.unipi.it [131.114.190.24]
su un massimo di 30 punti di passaggio:

1 <10 ms <10 ms <10 ms <10 ms <10.05.150.13
3 <10 ms <10 ms <10 ms <10.05.150.13
3 <10 ms <10 ms <10 ms <10 ms <10.05.150.13
4 31 ms 31 ms 47 ms rc-units2.ts.garr.net [193.206.132.29]
5 31 ms 62 ms 47 ms mi-ts-2.garr.net [193.206.134.53]
6 47 ms 47 ms bo-mi-2.garr.net [193.206.134.53]
7 125 ms 125 ms 125 ms pi-bo-1.garr.net [193.206.134.82]
8 * 204 ms 281 ms unipi-rc.pi.garr.net [193.206.134.82]
9 219 ms 312 ms 250 ms eth03-gw.unipi.it [131.114.188.61]
10 219 ms 187 ms 204 ms 131.114.186.1

Rilevazione completata.

C:\>
```


Roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

End-to-End Delay

- □ N-1 Routers between sender and destination
 - Each packet has to be transmitted N times

$$d_{\text{e2e}} = N(d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}})$$

Roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Introduction 1-65

Protocol "Layers"

Networks are complex!

- □ many "pieces":
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software

Question:

Is there any hope of organizing structure of network?

Or at least our discussion of networks?

Organization of postal service

Officer A Officer B

Secretary A Secretary B

Logistics Services A Logistics services B

Courier Office Courier Office

Message routing Message routing

Message travel

□ a series of steps

Introduction 1-6

Organization of postal service

Layers: each layer implements a service

- via its own internal-layer actions
- * Following a specific protocol
- * relying on services provided by layer below

Why layering?

Dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - * layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?

Introduction 1-69

Internet protocol stack

HTTP, FTP, SMTP

transport: process-process data transfer

* TCP, UDP

□ network: routing of datagrams from source to destination

IP, routing protocols

□ link: data transfer between neighboring network elements

PPP, Ethernet

physical: bits "on the wire"

application

transport

network

link

physical

Introduction

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions
- □ session: synchronization, checkpointing, recovery of data exchange
- ☐ Internet stack "missing" these layers!
 - * these services, if needed, must be implemented in application
 - needed?

application presentation session transport network link

physical

Introduction

1-71

Roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Introduction 1-73

Network Security

- □ The field of network security is about:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks
- □ Internet not originally designed with (much) security in mind
 - original vision: "a group of mutually trusting users attached to a transparent network"
 - Security considerations in all layers!

Bad guys can put malware into hosts via Internet

- □ Malware can get in host from a virus, worm, or trojan horse.
- □ Spyware malware can record keystrokes, web sites visited, upload info to collection site.
- □ Infected host can be enrolled in a botnet, used for spam and DDoS attacks.
- □ Malware is often self-replicating: from an infected host, seeks entry into other hosts

Introduction 1-75

Bad guys can put malware into hosts via Internet

Trojan horse

- Hidden part of some otherwise useful software
- Today often on a Web page (Active-X, plugin)

■ Virus

- infection by receiving object (e.g., e-mail attachment), actively executing
- self-replicating: propagate itself to other hosts, users

■ Worm:

- infection by passively receiving object that gets itself executed
- self- replicating: propagates to other hosts, users

Sapphire Worm: aggregate scans/sec in first 5 minutes of outbreak (CAIDA, UWisc data)

Bad guys can attack servers and network infrastructure

- □ Denial of service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic
- 1. select target
- 2. break into hosts around the network (see botnet)
- 3. send packets toward target from compromised hosts

The bad guys can sniff packets

Packet sniffing:

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

 Wireshark software used for end-of-chapter labs is a (free) packet-sniffer

DICON THE PROPERTY OF THE PROP

Roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
 - end systems, access networks, links
- 1.3 Network core
 - circuit switching, packet switching, network structure
- 1.4 Delay, loss and throughput in packet-switched networks
- 1.5 Protocol layers, service models
- 1.6 Networks under attack: security
- 1.7 History

Introduction 1-81

Internet History

1961-1972: Early packet-switching principles

- □ 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- □ 1964: Baran packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- ARPAnet public demonstration
- NCP (Network Control Protocol) first host-host protocol
- first e-mail program
- ARPAnet has 15 nodes

THE ARPA NETWORK

Internet History

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- □ 1976: Ethernet at Xerox PARC
- □ late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- □ 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

Introduction

1-83

Internet History

1980-1990: new protocols, a proliferation of networks

- □ 1983: deployment of TCP/IP
- □ 1982: smtp e-mail protocol defined
- □ 1983: DNS defined for name-to-IP-address translation
- □ 1985: ftp protocol defined
- 1986: first Italian node connected to the Internet (Pisa)

- 1988: TCP congestion control
- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

Internet History

- □ First Italian node connected to the Internet
 - * 30 Aprile 1986
 - Nodo CNUCE, Pisa

Internet History

1990, 2000's: commercialization, the Web, new apps

- □ Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- □ early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - * HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web

Late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

Introduction

-86

Internet History

2009:

- □ ~1 billion hosts
- Voice, Video over IP
- □ P2P applications: BitTorrent (file sharing) Skype (VoIP), PPLive (video)
- Cloud Computing applications: YouTube, gaming, ...
- wireless, mobility

Introduction 1-87

Summary

- Internet overview
- □ what's a protocol?
- network edge, core, access network

Covered a "ton" of material!

- packet-switching versus circuit-switching
- Internet structure
- performance: loss, delay, throughput
- □ layering, service models
- security
- history

You now have:

- context, overview, "feel" of networking
- □ more depth, detail to follow!