Fisica nucleare e beni culturali Acceleratori di particelle al servizio degli storici e degli archeologi

INFNIL

Laboratorio di Tecniche Nucleari per i Beni Culturali - Firenze

http://labec.fi.infn.it

La facility del Tandetron al LABEC

Datazioni

Il metodo del ¹⁴C è un grande contributo della fisica nucleare all'archeologia (e alla storia dell'arte)

Il principio su cui si basa il metodo è legato al decadimento radioattivo del ¹⁴C

Tipicamente nucleari sono anche le tecniche di misura della concentrazione residua di ¹⁴C, sia quella tradizionale che sfrutta il conteggio dei decadimenti β dell'isotopo, sia quella più moderna della spettrometria di massa con acceleratori (AMS)

Gli isotopi del carbonio $^{12}C \approx 98.9\%$ $^{13}C \approx 1.1\%$

L'isotopo 14 è radioattivo

produzione del ¹⁴C in atmosfera:

protoni cosmici su O, N nella <u>troposfera</u> \rightarrow reazioni (p,n) \rightarrow termalizzazione neutroni \rightarrow ¹⁴N(n,p)¹⁴C [$\sigma_{th} \approx 1$ barn]

rate di produzione <u>medio</u> di ¹⁴C: 2.2 cm⁻² s⁻¹ massimo tra i 15 e i 18 Km <u>trascurabile a livello della superficie terrestre</u>

La concentrazione di ¹⁴C (circa 10⁻¹² del totale di atomi di carbonio) resta pressoché <u>costante,</u> per effetto di un <u>equilibrio dinamico</u>

fra continua "produzione" da parte dei raggi cosmici e continua"scomparsa" per decadimento radioattivo

Principio della datazione col ^{14}C

Datazioni ¹⁴C – la ricalibrazione

• la concentrazione di partenza in passato <u>non è</u> sempre stata quella convenzionalmente assunta $R_{0 conv}$, dalla quale si deduce un valore altrettanto convenzionale t_{conv} per l'età (età convenzionale di radiocarbonio):

$$t_{conv} = \tau \ln \frac{R_{0\,conv}}{R(t)}$$

• con migliaia di misure effettuate su campioni di età misurata indipendentemente si è costruita una curva di *ricalibrazione* (età convenzionale vs. data vera) fino a quasi 50000 anni fa

Calibrated date (calBC)

Ricalibrazione dalla *radiocarbon age* all'età vera

Ricalibrazione dalla *radiocarbon age* all'età vera – ultimi 2000 anni

Altro esempio (un caso "fortunato")

Atmospheric data from Reimer et al (2004);OxCal v3.10 Bronk Ramsey (2005); cub r:5 sd:12 prob usp[chron]

la "Stradivarius gap"

Misura della concentrazione di ^{14}C

 $|dN/dt| = \lambda N$

metodo radiometrico

misure delicate e difficili perché decadimento β puro

necessarie grandi quantità di campione(10÷100 g) e tempi di misura lunghi (ore o anche giorni) *Misura della concentrazione di* ${}^{14}C$ *da misure di attività* β ($|dN/dt| = \lambda N$)

 $\tau = 8266 \pm 58$ anni $\rightarrow \lambda = 1/\tau = (1.38 \pm 0.01) \cdot 10^{-8} h^{-1}$

1 mg di reperto organico "contemporaneo": → 0.4 mg di carbonio → $(0.4 \cdot 10^{-3}/12) 6 \cdot 10^{23} = 2 \ 10^{19}$ atomi di C → 2.4 10⁷ isotopi di ¹⁴C

conteggio β : $|dN/dt| = \lambda N \rightarrow$ soltanto 0.33 decadimenti/ora!

→ occorrono quantità cospicue di materiale, tempi lunghi di conteggio e tecniche molto delicate ed efficienti

Misura della concentrazione di ^{14}C

 $|dN/dt| = \lambda N$

metodo radiometrico

misure delicate e difficili perché decadimento β *puro*

necessarie grandi quantità di campione(10÷100 g) e tempi di misura lunghi (ore o anche giorni) spettrometria di massa

la spettroscopia di massa "standard" non è sufficientemente sensibile per discriminare le masse 14 dovute al ¹⁴C da quelle degli isobari interferenti (¹⁴N e molecole ¹²CH₂ e ¹³CH)

Misura della concentrazione di ¹⁴C con AMS

Lo stripping al terminale elimina le interferenze di ¹³CH e ¹²CH₂

negativi elimina l'interferenza del ¹⁴N L'analisi finale degli ioni ad alta energia consente di eliminare eventuali interferenze residue

Misura del ¹⁴C con AMS

Sensibilità a concentrazioni fino a 10-15

→ sono databili reperti risalenti fino a oltre 50000 anni fa

massa del campione da "sacrificare" per la datazione dell'ordine dei mg

Misura AMS della concentrazione di ¹⁴C

1 mg di reperto organico "contemporaneo": → 0.4 mg di carbonio → 2.4 10⁷ isotopi di ¹⁴C

AMS (efficienza ≈1%):
> 10⁵ conteggi (tempo di misura: 20-30 minuti)
(da confrontarsi con 0.33 decad./ora del conteggio β!!)

con 10⁵ conteggi \rightarrow ($\delta^{14}C$)/14C < 0.3% \rightarrow $\delta t \approx 25a$

 \rightarrow sono sufficienti quantità esigue di materiale

Il campione trattato viene bruciato (CO_2) e poi ridotto a grafite $(CO_2 + 2H_2 \rightarrow 2H_2O + C)$

test nucleari in atmosfera

(prima del trattato di non proliferazione del 1968)

→ enorme aumento dei flussi di neutroni in atmosfera, e quindi anche del rate di produzione di $^{14}C \rightarrow influenza$ sensibile, temporaneamente, anche sulla concentrazione globale $[^{14}C]$ (fino al +100 %). Successivamente, il tasso di ¹⁴C in atmosfera è diminuito, a causa della progressiva "diluizione" nell'enorme serbatoio delle acque terrestri, riavvicinandosi ai valori pre-esplosioni nucleari.

Effetto esplosioni nucleari

Curva locale di bomb peak

