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Abstract 
 

The results of a series of 48 laboratory tests to investigate the reliability of two 
methods for determining the tensile axial force in metallic rods are presented. The 
first method, called “mixed method”, consists of a simple numerical identification 
procedure, based on the experimental measurement of the vertical displacement 
caused by a concentrated load, and the fundamental vibration frequency. In the 
second method, called “static method”, measurements of nine vertical displacements 
are required: the midspan section and the two quarter span sections displacements 
of the rod caused by a concentrated load acting in the same sections. The rod is 
modelled as a tie-beam with two equal elastic rotational springs at both ends; thus, 
the hypothesis of symmetrical scheme of constraints is considered. The variables of 
the tests were: the rod slenderness, the end-restraint conditions and the intensity of 
the tensile axial force. Experimental tests results were used to predict the axial force 
in the rods by numerical identification procedures. Generally, the static method was 
more reliable than the mixed method especially in predicting the rigidity of the elastic 
springs of the tie-model. Particularly, the mixed method produced high errors (more 
than 20 %) for the lower tensioning level and for the rods with nearly fixed ends.                            
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1.    Introduction 

In architectural tradition the use of metallic rods at the base of masonry arches and vaults is a 
commonly structural solution capable of reducing the horizontal reactions on the bearings. A correct 
approach to restoration designs as well as to monitoring and structural strengthening of ancient 
buildings require the accurate determination of the tensile forces acting in these rods. Unfortunately, 
the actual force in a metallic rod (denoted as N) depends on many factors, as the compatibility 
conditions with the structural system, the characteristics of the materials, the building and 
reconstruction interventions, the natural degrading effects, and the thermal excursions. Generally, the 
geometrical and mechanical characteristics of the rods can be easily assessed, whereas the level of 
constraints in the masonry is very difficult to identify. As it is well known, the two hypotheses of either 
hinged or fixed rod extremities to the masonry lead to very different values of N when the calculation is 
based on the fundamental vibration frequency (more than 100%).  

Within this context, the evaluation of N based on simple analytical theories is not feasible and 
experimental methods are to be used. So far, different methods have already been proposed to this 
aim [1, 2, 3, 4, 5 and 6]. All these methods consist in analytical or numerical identification procedures 
based on simple structural models of the rod, in which two or more static and dynamic experimental 
measures are required. In most cases the goodness of a method has been associated to the simplicity 



of the experimental set-up rather than to the accuracy of results. Moreover, reliability analyses with 
direct comparison of results furnished by different methods have not yet been published.       

In the present paper a study on the accuracy of two of such methods is presented. The first 
method, called “mixed method”, is the one firstly developed by Blasi and Sorace [4] and here 
considered with some modifications; the second method, called “static method”, was firstly proposed 
by Beconcini [5]. In these methods, the same two parameters model is used, in which the tie-rod is 
modelled as a beam endowed with flexural stiffness and identical end restraint conditions (hypothesis 
of symmetric scheme). The boundary conditions are then represented by two equal elastic rotational 
springs with rigidity denoted as K. Thus K, along with the tensile axial force N, represent the 
unknowns of the parametric identification procedures. 

In the mixed method two experimental data are required: the midspan section vertical 
displacement when a concentrated load is applied and the fundamental vibration frequency in free 
oscillation regime. In the static method nine measures are required: the midspan section and the two 
quarter sections vertical displacements when a concentrated load is applied at the middle and at the 
two quarter sections of the rod. Applying such procedures, the parameters estimate is carried out 
using numerical solution techniques. 

In the first part of the paper the two methods are briefly resumed and a series of 48 laboratory 
tests performed varying the rod slenderness, the end-restraint conditions and the level of the tensile 
axial force is presented. In the second part a critical discussion about results of the experiments is 
given, together with some relevant considerations on the practical application of the two methods in 
monumental buildings.   
 
2.    Model of the rod and axial force evaluation methods 

The tie-rod is modelled as a prismatic tie-beam with reference span l, flexural rigidity EJ and 
cross-sectional area A, constrained at its ends by two equal elastic rotational springs, having rigidity K 
(Fig. 1a). From a structural viewpoint, the assumption of symmetrical restraint conditions at the two 
ends is acceptable in relation to the initial placement of the rod and it is essential for the application of 
the mixed method [4]. In reference [5] a more refined model was used in the static method, with 
asymmetric end restraint conditions. In this study the hypothesis of symmetrical restraint conditions of 
the rods was accurately verified during the laboratory tests, thus the assumption of a model with two 
unknowns (N and K) was justified and more appropriate for comparison purposes.                                                           

The experimental equipment necessary to carry out the tests is represented in Fig. 1b. For the 
mixed method it consists of an accelerometer and a fleximeter placed in the rod mid section, together 
with a data acquisition system to record the signals registered by the accelerometer. For the static 
method the instrumentation consists in two additional fleximeters placed at the two quarter rod  
sections, whereas the accelerometer and the acquisition system are unnecessary.  
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Fig. 1: (a) Model of the tie-rod; (b) Instrumentation needed for testing 
 
 



2.1 Analytical relationships of the mixed method 
The solving equations of the mixed method were obtained by combining some analytical 

expressions valid in the static and dynamic fields of tie-beams. A first relationship furnishes the 
midspan section vertical displacement v when a concentrated load Q is statically applied to the beam 
subjected to the axial force N: 
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Equation (1) was derived in rigorous manner from the theory of elastic beams subjected to a 

tensile axial force and to a transversal concentrated load. It must be observed that in the original 
version of this method the following simpler and approximate equation was used [4]: 
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where Ncrk is the first Euler critical load of the beam with the appropriate rotational springs at the ends 
and vtrk is the middle section vertical displacement due to the load Q of the same beam (without N). 
Further, in the paper [4], the Authors approximate Ncrk by the well-known Newmark formula:      
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being C(K) the amplification coefficient depending on the rigidity K by means of the dimensionless 
parameter L. A second group of relationships relates the unknowns of the problem to the fundamental 
vibration frequency f of the rod. If f1k denotes the same frequency without N, the following equations 
hold: 
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where Ncrk has already been defined. The frequency f1k is obtained by the second of Eqns. (4), where 
g is the gravity acceleration, Γ the specific weight of the material and (αl) is the characteristic 
parameter of the equation yielding the eigenvalues of the free oscillation problem of the beam 
elastically constrained at its ends, without axial load: 

(5) 
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In the original version of the method [4], in order to obtain a closed form solution, the Authors 

derived an approximate mathematical expression for the (αl) - L relationship in the range 0.015 ≤ L ≤ 
1; outside of this interval the same Authors consider the tie-beam with clamped (αl = 4.73) or hinged 
extremities (αl = π). To investigate the influence of the different analytical formulations the mixed 
method has been applied in four different versions:     
 
M1) using the “exact” equations both for static and dynamic fields (Eqns. (1) and (5)); M2) using the 
“exact” equations for dynamic field and the approximate equation (2) in the static field (evaluating the 
critical load Ncrk with the rigorous theory of stability); M3) the same as M2 in which the critical load Ncrk 
is evaluate by the approximate Newmark formula (3); M4) using the original method [4] in which the 
approximate equations are used in the static and dynamic fields.     

 
In the M1 version the two equations (1) and (5) relate the unknowns, N and K, to the measured 

values v and f, completing the formulation of the mathematical procedure. A standard solver for non 
linear systems has been used, in order to eliminate any analytical approximation. Similarly, the same 
solver has been used for M2 and M3. Thus, in addition to the differences due to the analytical 
formulation, two main kinds of errors affect the solutions given by this method: the modelling errors 
and the experimental inaccuracies. 

 
 



2.2 Analytical relationships of the static method 
The solving equations of the static method are the same used by the Author of the reference [5]. 

They represent the nine mathematical expressions of the midspan section and the quarter sections 
vertical displacements when a concentrated load Q is applied in the same sections of the tie-beam 
(Equation (1) is the first of these formulas). Given a tie-beam with prefixed values of N and K, we 
denote as viex (i=1,2,...,9) the nine experimental measures of the displacements and as vith (i=1,2,...,9) 
the mutual theoretical values. The identification procedure consists in determining the unknowns N 
and K corresponding to the minimum error in the sense of the least square approach. Thus, the 
following function error has been used:          
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       As for the mixed method a standard algorithmic solver has been used to determine the unknowns 
of the numerical problem, thus obtaining the best estimate of the axial force N and elastic rigidity K.    
 
3.    Experimental tests 

Overall, 48 tests where conducted on four rods made of circular steel bars (grade Fe 360) with 16 
and 20 mm diameters. Two rods had a 16 mm diameter and were long 1800 and 2600 mm whereas  
the other two rods, of a 20 mm diameter, were long 2250 and 3250 mm, thus obtaining rods 
slenderness equal to 450 and 650. The rods were connected at their ends to rigid double bolted 
supports. For each end, two steel plates (100 mm long and 30 mm thick) clamped the rods end (Fig. 
2a). The tensioning level was varied by adjusting the bolts at one extremity, whereas the bolts at the 
other end were initially tightened. In these experiments three nominal level of the normal stresses 
equal to 40, 80 and 120 N/mm2 were applied to the rods, to reproduce the average range of working 
stresses acting in tie-rods of monumental buildings. Finally, four levels of constraint were simulated, 
corresponding to the two limit situations of fixed and hinged rods ends, as well as two intermediate 
clamping hypotheses. The hinged extremities were obtained by semi-cylindrical steel work pieces 
(Fig. 2b). The two intermediate levels of constraints were made by interposing a cylindrical layer of 
soft material between the end steel plates and the rod; a rubber layer 15 mm thick and a wood layer 8 
mm thick were placed around the ends’ rod. 

Tensioning was measured using three pairs of strain gauges placed at the midspan section, and 
in proximity to the end sections. Five fleximeters were placed along the rods to measure the vertical 
displacements at the midspan, the two quarter and the two end sections (Fig. 2c). Static 
measurements were carried our for each tensioning level with a load Q = 99.11 N. 

The experimental variables of the 48 tests are resumed in Table 1. It must be observed that the 
rods with hinged extremities had a reference span 216 mm longer than other rods. The testing 
program was conducted according to the following steps. The rod was tensioned at the desired level 
acting on the bolts, then the impulsive load was applied to record the free vibration history, finally the 
static load Q was applied in the three different positions to measure the vertical displacements. During 
each experiment, strain gauges revealed that the tensioning level was approximately constant.    

              

(a)      (b) 

            (c) 
Fig 2: (a) Clamped extremity of a rod; (b) Hinged extremity; (c) Instrumentation for laboratory tests 

 
 



Tab. 1: General outline of laboratory tests 
Rod l = 1800 mm (*), φ = 16 mm Rod l = 2250 mm (*), φ = 20 mm 

Test Constraint 
 

Tensioning 
level (N/mm2) 

Test Constraint 
 

Tensioning 
level (N/mm2) 

T1 Fixed 40 T25 Fixed 40 
T2 Fixed 80 T26 Fixed 80 
T3 Fixed 120 T27 Fixed 120 
T4 Wood layer 40 T28 Wood layer 40 
T5 Wood layer 80 T29 Wood layer 80 
T6 Wood layer 120 T30 Wood layer 120 
T7 Rubber layer 40 T31 Rubber layer 40 
T8 Rubber layer 80 T32 Rubber layer 80 
T9 Rubber layer 120 T33 Rubber layer 120 

T10 Hinged 40 T34 Hinged 40 
T11 Hinged 80 T35 Hinged 80 
T12 Hinged 120 T36 Hinged 120 

Rod l = 2600 mm (*), φ = 16 mm Rod l = 3250 mm (*), φ = 20 mm 
Test Constraint 

 
Tensioning 

level (N/mm2) 
Test Constraint 

 
Tensioning 

level (N/mm2) 
T13 Fixed 40 T37 Fixed 40 
T14 Fixed 80 T38 Fixed 80 
T15 Fixed 120 T39 Fixed 120 
T16 Wood layer 40 T40 Wood layer 40 
T17 Wood layer 80 T41 Wood layer 80 
T18 Wood layer 120 T42 Wood layer 120 
T19 Rubber layer 40 T43 Rubber layer 40 
T20 Rubber layer 80 T44 Rubber layer 80 
T21 Rubber layer 120 T45 Rubber layer 120 
T22 Hinged 40 T46 Hinged 40 
T23 Hinged 80 T47 Hinged 80 
T24 Hinged 120 T48 Hinged 120 

(*) Reference span of the rods with hinged ends were 216 mm longer 
 

4.    Discussion of results 
Main results obtained from the 48 tests are reported in Table 2. NEX denotes the experimentally 

determined axial load, NST and NMI are the numerically identified axial loads with the static and the 
mixed method, ∆ST and ∆MI represent the mutual errors in the axial force evaluation. The 
dimensionless parameter L representing the constraint-level is also given for the two methods (LST 
and LMI). 

Consider first the axial force NST predicted by the static method. In most of tests (thirty-three on 
the whole) the NST values are higher than the experimental ones, i.e. the method leads to 
overestimate the tensioning level of the rods. A maximum positive error of 13.9 % was obtained in the 
test T19, a minimum error of –9.4 % was calculated for the test T3. Considering the whole set of 
experiments an average absolute error of 4.3 % in predicting the axial force was registered. The errors 
were higher than 10% in a limited number of tests (six cases, all corresponding to rods tensioned at 
the lower level of stress, Fig. 3a). These general results well agree with those presented in the 
reference [5] when applying the same method to laboratory tests. When the method is applied to 
actual cases, the error committed in the estimation of N gets lower; this is presumably due to scale 
effects. In reference [5] a maximum error of 10 % in the evaluation of NST was determined. The slightly 
higher errors here obtained are well explained if we consider that in the research [5] an asymmetric 
tie-model was used with two different elastic stiffnesses at the rod ends. Under this hypothesis, given 
the redundant number of measurements employed by the method, a better numerical identification of 
the prototype is possible and the results improve. Nevertheless, in our experiments, nearly symmetric 
conditions were realised, thus making small differences in results. 

A good characteristic of the static method that emerged from examination of results (which is not 
presented here) was the low influence in determining NST of the two end sections vertical 
displacements. Although these displacements are unknown when applying the method in monumental 
buildings they were exactly measured in the laboratory tests. Calculation of NST with and without 
taking into account the end displacements has showed that these effects produce negligible errors in 
the identification procedure of the model. 

 



 
Tab. 2: Experimental results of laboratory tests 

Test NEX (N) NST (N) NMI (N) LST LMI ∆ST (%) ∆MI (%) 

Rod l = 1800 mm, φ = 16 mm 
T1 7717 8532 11997 0.012 0.146 10.6 55.5 
T2 15606 16644 20533 0.020 0.202 6.7 31.6 
T3 22826 20683 23043 0.002 0.051 −9.4 0.9 
T4 8084 8876 9559 0.112 0.168 9.8 18.2 
T5 14309 14440 14037 0.104 0.080 0.9 −1.9 
T6 23582 23881 25422 0.103 0.256 1.3 7.8 
T7 8344 9304 10461 0.299 ∞ 11.5 25.4 
T8 16730 17364 17766 0.344 ∞ 3.8 6.2 
T9 23734 24057 23398 0.780 ∞ 1.4 −1.4 

T10 8798 8417 8148 ∞ ∞ −4.3 −7.4 
T11 15520 15645 15569 ∞ 0.387  0.8 0.3 
T12 23885 23922 25078 ∞ ∞  0.2 5.0 

Rod l = 2600 mm, φ = 16 mm 
T13 9355 10467 12886 0.008 0.226 11.9 37.7 
T14 17838 17724 20542 0.003 0.171 −0.6 15.2 
T15 25343 25927 29012 0.014 0.390 2.3 14.5 
T16 8378 9097 10170 0.060 0.212 8.6 21.4 
T17 16050 17025 17531 0.127 0.224 6.1 9.2 
T18 24075 24825 25348 0.100 0.164 3.1 5.3 
T19 8295 9446 9995 0.305 1.242 13.9 20.5 
T20 15884 16462 16968 0.232 ∞ 3.6 6.8 
T21 23285 24905 24443 1.899 0.334 7.0 5.0 
T22 8607 9747 9701 ∞ ∞ 13.2 12.7 
T23 16279 17328 17687 ∞ 2.477 6.4 8.7 
T24 23617 24537 25200 ∞ ∞ 3.9 6.7 

Rod l = 2250 mm, φ = 20 mm 
T25 13735 14615 13761 0.038 0.025 6.4 0.2 
T26 24152 24092 24806 0.022 0.032 −0.3 2.7 
T27 36461 35172 37975 0.014 0.044 −3.5 4.2 
T28 12043 12029 12011 0.056 0.060 −0.1 −0.3 
T29 23688 23781 24486 0.064 0.082 0.4 3.4 
T30 34570 33667 34511 0.057 0.071 −2.6 −0.2 
T31 12342 13068 11984 0.272 0.171 5.9 −2.9 
T32 22726 23864 22668 0.551 0.273 5.0 −0.3 
T33 37290 36233 35351 0.349 0.223 −2.8 −5.2 
T34 12408 12503 13215 ∞ ∞ 0.8 6.5 
T35 25048 25153 19819 ∞ 0.035 0.4 −20.9 
T36 36361 36423 35731 ∞ 0.207 0.2 −1.7 

Rod l = 3250 mm, φ = 20 mm 
T37 12763 13695 15971 0.019 0.118 7.3 25.1 
T38 24323 24473 26073 0.016 0.054 0.6 7.2 
T39 34714 34452 36038 0.015 0.044 −0.8 3.8 
T40 12229 12205 12265 0.032 0.035 −0.2 0.3 
T41 23054 22195 23365 0.030 0.069 −3.7 1.4 
T42 36953 36518 36861 0.071 0.082 −1.2 −0.2 
T43 12095 13374 13366 0.171 0.177 10.6 10.5 
T44 24390 24759 23475 0.261 0.092 1.5 −3.8 
T45 34881 32977 32760 0.126 0.104 −5.5 −6.1 
T46 13030 13233 13272 ∞ ∞ 1.6 1.9 
T47 25092 24450 24632 ∞ 0.336 −2.6 −1.8 
T48 36886 35699 36256 ∞ 0.283 −3.2 −1.7 
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Fig. 3: (a) Error of the static method; (b) and (c) Errors of the mixed method; (d) Comparisons of errors 
of the two methods ∆ST and ∆MI 

 
The constraint-level values of L lower than 0.015 can be technically referred to the limit situation 

of fixed terminal sections, whereas when L is higher than 1.0 the terminal sections can be considered 
as hinged. These conventional limits are reported in Fig. 4 (denoted with F and H) together with the 
LST values, plotted in ascending order. The figure shows that the static method was excellent in 
predicting the constraint-level, because the LST values are consistent with the previous limits for all 
tests with few exceptions. This is an important observation because it shows that the numerical 
identification based on this method produces results consistent with the effective end conditions of the 
rods.                                                                                   

Axial forces NMI predicted by the mixed method M1 are generally less accurate than NST. In eight 
tests the absolute error was higher than 20 %, showing that this method is very sensitive to the 
modelling and experimental inaccuracies. The higher errors were obtained in the cases of fixed end 
extremities and when applying the lower stress level (Figs. 3b and 3c). 
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Fig. 4: Dimensionless parameter LST identified with the static method 

 
Overall, an average error of 9.1 % was calculated. Effects of the analytical approximations in 

calculating the displacement v and the frequency f are shown in Fig. 3b (methods M2, M3 and M4). It 
is evident that these approximate procedures lead to underestimate the axial force when compared 
with the rigorous implementation M1. Using the M4 scheme an average difference of 10.0 % to M1 
was calculated for NMI. In the research [4] the Authors obtained a maximum error of 6.6 % applying 
the M4 scheme. This remarkable difference is probably due to the wider range of situations and to the 
high number of tests considered in our study. Further, this method demonstrated high numerical 
sensibility when calculating the unknowns depending on the eventual vertical movements of the end 
supports.                                                          

On the other hand, in most of intermediate restraint conditions the method predicts the axial force 
acceptably. Finally, values of LMI (Tab. 2) clearly show that the method is unreliable in predicting the 
effective end restraint conditions of the rods. Determination of LMI equal to infinity correspond to the 
situation in which no numerical solution was obtained by this method; in these cases the best 
approximation of the NEX load was determined in the hypothesis of hinged extremities using the 
dynamic equation and the measured value of the frequency f.                     
 
5.    Conclusions 

The 48 experimental laboratory tests conducted varying the constraint-level, the tensioning level 
and the slenderness of the rods have showed that the static method, based on nine experimental 
measures, is very accurate in predicting the tensile axial force N and the elastic rigidity K. 
Nevertheless, the mixed method, that is simpler and it is based on two measures, furnished 
acceptable predictions of N in the greater part of the tested rods, corresponding to the intermediate 
constraint-levels. Average errors of 4.3 and 9.1 % were calculated in predicting N with the two 
methods, respectively. The results indicate that for tie-rods in which the end restraint conditions are in 
proximity of the fixed ends situation the static method is applicable with acceptable errors whereas the 
mixed method, in some cases, leads to substantially overestimate the load N. The same trend was 
observed for the rods tensioned at the lower stress. On such basis, the application of the two methods 
should be decided based on a first rough evaluation of the two unknowns, performed after a 
preliminary survey and eventually based on measuring the frequency f.                                                                    
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