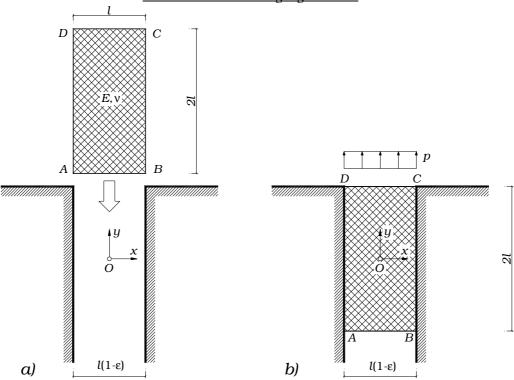

Università degli studi di Pisa Esame di SCIENZA DELLE COSTRUZIONI II

Corsi di Laurea in Ingegneria Aerospaziale e in Ingegneria Nucleare (docente: Prof. Stefano Bennati)

Prova scritta del 29 giugno 2007

Quesiti.

- 1. Mostrare come è possibile passare dalle equazioni di Lamé alle loro inverse, nelle quali compaiono le costanti elastiche tecniche *E*, *G* e v.
- 2. Enunciare correttamente il postulato di de Saint Venant.
- 3. Scrivere (senza risolvere) il sistema di due equazioni di equilibrio che permette di determinare il carico critico della struttura mostrata in figura.



Università degli studi di Pisa

Esame di SCIENZA DELLE COSTRUZIONI II

Corsi di Laurea in Ingegneria Aerospaziale e in Ingegneria Nucleare (docente: Prof. Stefano Bennati)

Prova scritta del 29 giugno 2007

<u>Problema 1.</u> Il rettangolo elastico ABCD è contenuto fra due pareti rigide e scabre (con coefficiente di attrito uguale a f). Il rettangolo è stato inserito nella cavità che è larga $l(1-\varepsilon)$ in modo da evitare l'insorgere di azioni di attrito lungo i lati AD e BC. Successivamente, sul lato DC viene applicato il carico di intensità p mostrato in figura, con lo scopo di estrarre il rettangolo dalla cavità nella quale è contenuto.

- Determinare, il campo di sforzo (supposto piano) presente nel rettangolo prima dell'applicazione del carico *p* nell'ipotesi che tale campo sia costante.
- Quando viene applicato il carico p, al campo di tensione precedente se ne somma un secondo. Determinare per quali valori delle costanti \overline{p},a,b,c,d , il campo di sforzo seguente,

$$\sigma_x = \overline{p} + a \left(\frac{l^2}{4} - x^2 \right) y$$
, $\sigma_y = b \left(-\frac{1}{3} y^3 + \frac{2}{3} l^3 \right) + c l^2 y$, $\sigma_{xy} = d(l^2 - y^2) x$,

fornisce una versione staticamente ammissibile del campo di sforzo finale.

- Qualcuno tra i campi di sforzo staticamente ammissibili trovati al punto precedente può essere quello effettivo?
- Determinare, facendo riferimento al campo di sforzo precedente, il valore di *p* oltre il quale il campo di sforzo precedente non è più staticamente ammissibile.
- Il valore di *p* di cui al punto precedente corrisponde a quello capace di estrarre il rettangolo elastico? [facoltativo]

[Avvertenze : <u>consegnare tutti i fogli della minuta.</u> .	Scrivere su ogni	foglio protocollo	nome e cognome,	numero di
matricola e data della prova]	,	, ,	C	

Studente	(matr ·	

Correzione in aula: lunedì 2 luglio, ore 9.30 (appuntamento all'esterno del DIS)