Università di Pisa

Insegnamento di SCIENZA DELLE COSTRUZIONI II

Corso di Laurea in Ingegneria Aerospaziale (docente: Prof. Ing. Stefano Bennati) Soluzione della prova scritta del 31 gennaio 2006

Problema 1

1) Tensioni normali: $\sigma_z^{(1)}=E_1\epsilon,\,\sigma_z^{(2)}=2E_1\epsilon,\,\sigma_z^{(3)}=3E_1\epsilon,$ dove

$$\epsilon = \frac{N}{23E_1bh} \left(\frac{9h - 4e}{2} + \frac{2(3e - h)}{h} y \right).$$

2) e = h/3.

Problema 2

Domanda 1

• Condizioni al contorno $(s_1$ va da A a B, s_2 da C a B):

in A
$$v_1(0) = 0, v_1^{"}(0) = 0,$$
 in B
$$v_1(l) + v_2(l) = 0, \alpha v_1^{"}(l) + v_2^{"}(l) = 0,$$
 in C
$$v_2(0) = 0, \alpha v_1^{"}(l) + v_2^{"}(l) = 0,$$
 in C
$$v_2(0) = 0, v_2^{"}(0) = 0,$$

dove
$$\alpha = \frac{EJ_1}{EJ_2}, \frac{\beta}{l} = \frac{k_0}{EJ_2}.$$

• Sistema algebrico: scritti v_1 e v_2 nella forma $v=A+Bs+C\cos(\lambda s)+D\sin(\lambda s)$, si ottiene il sistema

$$\begin{cases} D_1 \sin(\lambda_1 l) + D_2 \sin(\lambda_2 l) = 0, \\ D_1 (\alpha l \lambda_1^2 \sin(\lambda_1 l) + \beta \lambda_1 \cos(\lambda_1 l)) - D_2 \beta \lambda_2 \cos(\lambda_2 l) = 0. \end{cases}$$

Tutti gli altri coefficienti sono nulli.

Domanda 2

• Condizioni al contorno (s va da C a B):

in B
$$v(l) + v^{'}(l)l = 0$$
, $EJv^{''}(l) + Pv_{2}(l) = 0$, in C $v(0) = 0$, $v^{''}(0) = 0$,

• Sistema algebrico: A = 0, B = 0, C = 0, $D(\sin(\lambda l) + \lambda l \cos(\lambda l)) = 0$.