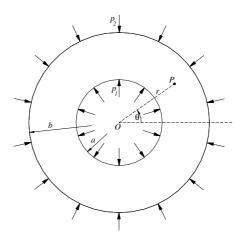
Università degli studi di Pisa

Insegnamento di SCIENZA DELLE COSTRUZIONI II

Corso di Laurea in Ingegneria Aerospaziale (docente: Prof. Stefano Bennati) Problemi proposti: anno accademico 2004-2005

<u>Problema proposto TENS. n. 3. – (28 aprile '05).</u> Un elemento piano, a forma di corona circolare, con raggio interno r = a e raggio esterno r = b, è soggetto alla pressione p_1 agente sul bordo interno e alla pressione p_2 agente su quello esterno.



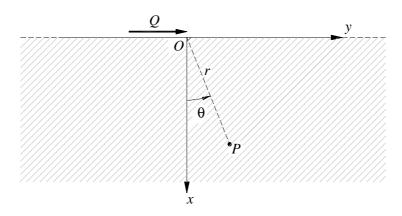
1. Determinare, se possibile, un campo di sforzo equilibrato nella forma

$$\sigma_r = \frac{1}{r^2} A + 2C, \quad \sigma_\theta = -\frac{1}{r^2} A + 2C, \quad \tau_{r\theta} = 0,$$

dove A e C sono costanti da terminare.

- 2. Disegnare il cerchio di Mohr per i punti posti sulla circonferenza r = (a+b)/2.
- 3. Studiare il caso nel quale $p_2=0$ e il disco cavo è soggetto alla sola pressione interna p_1 ; disegnare, in questo caso, i grafici di $\sigma_r(r)$ e di $\sigma_\theta(r)$ per b=2a.
- 4. Studiare il caso nel quale $p_1 = 0$ e il disco cavo è soggetto alla sola pressione esterna p_2 .
- 5. Facendo riferimento al caso precedente esaminare il caso nel quale $a \to 0$, concentrando l'attenzione sulla tensioni circonferenziale e radiale presenti sul bordo del foro.

<u>Problema proposto TENS. n. 4. – (28 aprile '05).</u> Un carico concentrato tangenziale, di intensità Q, è applicato ad un punto 0 della superficie libera di un semipiano.



1. Mostrare che è possibile determinare un campo di sforzo equilibrato della forma

$$\sigma_r = -\frac{1}{r}A\sin\theta, \ \ \sigma_\theta = \tau_{r\theta} = 0,$$

dove A è una costante da determinare.

- 2. Successivamente, determinare l'andamento di $\sigma_x(y)$ e di $\sigma_{xy}(y)$ nei punti della retta di equazione $x=x_0$.
- 3. Decomporre lo stato di tensione nella quota idrostatica e deviatorica nei punti della retta $x = x_0$.

Quesiti proposti TENS.5 - (28 aprile '05).

- 1. Assegnato uno stato di tensione nel riferimento principale, determinare l'espressione della tensione tangenziale agente sulla giacitura la cui normale $\mathbf{n} \equiv \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ forma angoli uguali con le tre direzioni principali (tensione tangenziale ottaedrale).
- 2. Assegnato in un punto O uno stato di tensione nel riferimento principale, determinare nel piano dei cerchi di Mohr il luogo dei punti (σ, τ) corrispondenti agli stati di tensione agenti su una qualunque giacitura passante per O.
- 3. Determinare le espressioni delle equazioni indefinite di equilibrio in coordinate cilindriche (r, θ, z) .