Università di Pisa

Esame di SCIENZA DELLE COSTRUZIONI I

Corso di Laurea in Ingegneria Civile, Ambientale e Edile

(docente: Prof. Ing. Stefano Bennati)

Sintesi della soluzione della prova scritta del 23 aprile 2016

<u>Problema 1</u>. Nella travatura reticolare rappresentata in figura 1, i correnti e i montanti sono *rigidi*, mentre le diagonali sono *estensibili*. Nei nodi *B*, *D* ed *H* agiscono i carichi concentrati d'intensità *P*, con i versi indicati in figura. Inoltre, i correnti sono soggetti a variazioni termiche costanti nello spessore, come indicato.

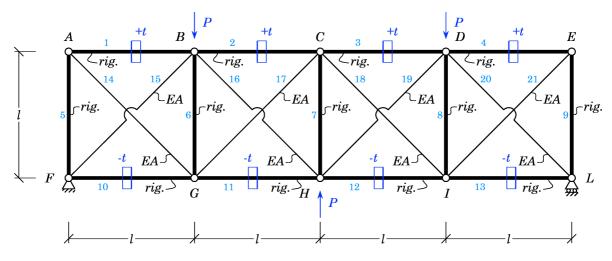


Figura 1

Il sistema è quattro volte staticamente non determinato, tuttavia considerazioni di simmetria consentono di risolverlo mediante il metodo delle forze ricorrendo a due sole incognite iperstatiche. Nella risoluzione mediante il metodo delle forze si sceglie come incognita iperstatica X_1 il valore dello sforzo normale dell'asta AG (e dell'asta EI) e come incognita iperstatica X_2 il valore dello sforzo normale dell'asta CG (e dell'asta CI). Il sistema può allora essere decomposto nella somma seguente:

$$\mathbf{F}^{(e)} = \mathbf{F}^{(0)} + X_1 \mathbf{F}^{(1)} + X_2 \mathbf{F}^{(2)},$$

con: $w_G - w_A = l\sqrt{2}X_1/k_0$, $w_C - w_G = l\sqrt{2}X_2/k_0$, $w_I - w_C = w_G - w_A$ e $w_E - w_I = w_G - w_A$, avendo assunto gli spostamenti w positivi da A a G per AG, da G a C per AG, da G and G and G and G per AG, da AG per AG

Le equazioni cardinali della statica sono sufficienti per determinare facilmente le reazioni vincolari esterne per il sistema $\mathbf{F}^{(0)}$: $Y_F = Y_L = P/2$ (positive verso l'alto) e $X_F = 0$. Le reazioni vincolari esterne dei sistemi $\mathbf{F}^{(1)}$ e $\mathbf{F}^{(2)}$ sono invece nulle.

Le sollecitazioni di sforzo normale nelle varie aste e nei sistemi $\mathbf{F}^{(0)}$, $\mathbf{F}^{(1)}$ e $\mathbf{F}^{(2)}$ sono raccolte nella tabella seguente.

	$N_1 = N_4$	$N_2 = N_3$	$N_5 = N_9$	$N_6 = N_8$	N_7	$N_{10} = N_{13}$	$N_{11} = N_{12}$	$N_{15} = N_{20}$	$N_{16} = N_{19}$
$\mathbf{F}^{(0)}$	0	0	0	0	0	$\frac{P}{2}$	$\frac{P}{2}$	$-\frac{\sqrt{2}}{2}P$	$-\frac{\sqrt{2}}{2}P$
$\mathbf{F}^{(1)}$	$-\frac{\sqrt{2}}{2}$	0	0	$-\frac{\sqrt{2}}{2}$	0	$-\frac{\sqrt{2}}{2}$	0	1	0
$\mathbf{F}^{(2)}$	0	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\sqrt{2}$	0	$-\frac{\sqrt{2}}{2}$	0	1

Il sistema costituito dalle equazioni di elasticità di Müller-Breslau è il seguente:

$$\begin{cases} \eta_1 = \eta_{10} + \eta_{11} X_1 + \eta_{12} X_2 \\ \eta_2 = \eta_{20} + \eta_{21} X_1 + \eta_{22} X_2 \end{cases}, \quad \text{con} \quad \eta_1 = -2\sqrt{2} l \frac{X_1}{EA}, \text{ e} \quad \eta_2 = -2\sqrt{2} l \frac{X_2}{EA},$$

mentre gli altri coefficienti, calcolati attraverso opportune applicazioni del teorema dei lavori virtuali, sono:

$$\eta_{10} = -2 \frac{Pl}{EA};$$
 $\eta_{11} = 2\sqrt{2} \frac{l}{EA};$
 $\eta_{12} = 0;$

$$\eta_{20} = -2 \frac{Pl}{EA};$$
 $\eta_{21} = \eta_{12};$
 $\eta_{22} = 2\sqrt{2} \frac{l}{EA}.$

Il valore delle incognite iperstatiche dunque è:

$$X_1 = X_2 = \frac{\sqrt{2}}{4}P.$$

 $\underline{Problema}$ 2. Nel sistema rappresentato nella figura 2, le travi AB, BC, CD e AD sono rigide, mentre le altre sono solo estensibili. Le travi AD e BC sono soggette a variazioni termiche costanti nello spessore, come indicato in figura.

Risolvendo il problema con il metodo degli spostamenti, scegliamo come parametro la rotazione θ della trave rigida AB.

Gli sforzi N_{AC} e N_{BD} posso essere determinati in funzione degli spostamenti orizzontali (gli unici compatibili con la struttura) dei nodi B, C e D come:

$$N_{AC} = EA \frac{\theta + \alpha t}{2};$$
 $N_{BD} = -EA \frac{\theta + \alpha t}{2}.$

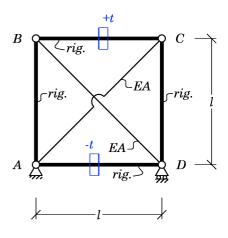


Figura 2

Il valore della rotazione θ può quindi essere determinato, ad esempio, imponendo l'equilibrio in direzione orizzontale della trave BC, ottenendo:

$$\theta = -\alpha t$$
.

La struttura considerata risulta dunque non sollecitata.

29 aprile 2016.