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STRESS CONCENTRATION 
 
 

- Cracks always initiate at points of stress concentration. 
 
- A crack, once initiated, becomes an intense stress 
concentrator itself. 
 
- Two fundamental cases of plane elasticity: 
 
INFINITE PLATE CONTAINING A CIRCULAR HOLE 
(Kirsh, G, (1898), V.D.I., 42, 797-807) 
 

 

 
 
 
→ Stress Concentration 

 
INFINITE PLATE CONTAINING AN ELLIPTICAL HOLE 
(Kolosoff, G.V., On an application of complex function theory to a plane 
problem of the mathematical theory of elasticity, Yuriev, 1909;  
Inglis, C.E., (1913), Stresses in a plate due to the presence of cracks and 
sharp corners,Transactions of the Royal Institute of Naval Architectes, 60, 
219-241) 

 

 
 
 
→ Stress Concentration 
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- In the limit of (minor axis) / (major axis) → 0 : 
 
INFINITE PLATE CONTAINING A CRACK 
 
(Wieghardt, K., (1907), Z. Mathematik und Physik, 55, 60-103; translated by 
Rossmanith (1995), On splitting and cracking of elastic bodies, Fatigue Fract. 
Engrg. Mater. Struct., 18, 1371-1405) 
Muskhelishvili, N.I., Some basic problems of the mathematical theory of 
elasticity, in Russian 1933 (in English 1953, Noorhoff-Groningen).  
Westergaard, Bearing Pressures and cracks, (1937), J. Applied Mechanics, 
6, A49-53. 
Williams, M.L. (1952), Stress singularities resulting from various boundary 
conditions in angular corners of plates in extension, J. Applied Mech., 19, 
526-528. 
Williams, M.L. (1957), On the stress distribution at the base of a stationary 
crack, J. Applied Mech., 24, 109-114.) 
 
 

→ Stress Intensification 
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INFINITE PLATE CONTAINING A CIRCULAR HOLE 
 
(Kirsh, G, (1898), V.D.I., 42, 797-807) 
 
 
- Consider infinite plate containing a circular hole of radius R  
and subject to a remote tensile stress σx = σ. 
 
 

 
 
 
- Consider portion of plate within concentric circle of radius 
R' >> R so that stress field is not perturbed by hole  
(Saint- Venant’s Principle) 
 
 
- Stress field at r = R' (Mohr's circle): 
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- Decompose problem into: 
 

  
Problem (1) 

02 == θσσσ rr   ,/  
Problem (2) 
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sin cos −== rr ,  

 
 
- Solution problem (1):  
  
thick cylindrical tube under tension (Lamè): 
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- For R' → ∞ 
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- Solution problem (2): 
 
Assume Airy stress function: 
 

θcos2)(rf=Φ  
 
Impose compatibility, ∇4Φ = 0, 
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Substitute stress function and get the ordinary differential 
equation to determine f(r): 
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General solution: 
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Boundary conditions: 
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Recall: 
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Substitute into general solution to get constants: 
 

For R' → ∞ :        24 RD ,RC ,B  ,A
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- Solution problems (1) + (2): 
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For r = R: 
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Maximum stress:  σσθ 3=    for θ = π/2, 3π/2 
 
Minimum stress:  σσθ −=    for θ = 0, π 
 
Note: 
 
- stress concentration factor = 3, independent of R 
 
- compression for −π/6 ≤ θ ≤ π/6 and −5π/6 ≤ θ ≤ 7π/6 
 
- circumferential stress for θ = π/2: 
 











++= 4

4

2

2

r
R

r
R 32

2
σσθ   

 
⇒ hole has a localized character 

for r = 4R:   ).( 0401+= σσθ  
 

⇒ solution applicable to finite plates with width > 4R. 
 
- stress field satisfies plane-strain and generalized plane 

stress.    
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- INFINITE PLATE WITH CIRCULAR HOLE SUBJECT TO 
BIAXIAL STRESS 

 
 
Apply superposition principle to get stresses at r = R: 
 
 
1) Biaxial tension:  
 
 
                                Uniform stress:       σσθ 2=     
 
 
 
 
2) Tension/compression (pure shear): 
 
 
 
                              Maximum stress:    σσσσθ 43 =+=    
                                                                 for θ = π/2, 3π/2 
 
                              Minimum stress:    σσσσθ 43 −=−−=     
                                                                for θ = 0, π 
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INFINITE PLATE CONTAINING AN ELLIPTICAL HOLE 
 
(Kolosoff, G.V., On an application of complex function theory to a plane 
problem of the mathematical theory of elasticity, Yuriev, 1909;  
Inglis, C.E., (1913), Stresses in a plate due to the presence of cracks and 
sharp corners,Transactions of the Royal Institute of Naval Architectes, 60, 
219-241) 
 
Hp: elliptical hole with:   a = major axis, b = minor axis. 

 

 
 

- Solution: 
Kolosof (complex function theory); 
Inglis (Conformal Mapping, elliptical coordinates) 
(see Carpinteri, Meccanica dei materiali e della frattura, 1992, Pitagora,  
for details). 
 
- For β = π/2 (tensile stress perpendicular to major axis): 
 
 
 
 
 
 
 
a = major axis, b = minor axis 
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Maximum circumferential stress: 
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- Other cases: 
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Pure shear parallel to 
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- For a = b, solution for a circular hole (Kirsh); 
 
- For b/a → 0 and tensile stress perpendicular to major 

axis: 
stress intensification; 

 
- For b/a → 0 and tensile stress perpendicular to minor axis: 
uniform stress equal to applied load,  
 

no stress concentration 
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STRESS INTENSIFICATION 
 

 
 
Plate with a crack: stress intensification  at the crack tip  
 
 
- What is the critical load in the cracked plate? 
 
- What is the "fine structure" of the stress field at the crack 
tip? 
 
- What is the power of the singularity? 
 
(e.g., 2D problem of a point load acting on a semi-infinite plane (Kelvin): 
stresses = O(r −1), displacements = O(log r)) 
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Traditional design approach:  
(2 parameters: σapplied, σu) 
 
 

σapplied < σu 
 
σu = yield or tensile strength 
 
⇒ (a):   σapplied < σu / 3   → safe 
⇒ (b):   σapplied < σu / (1+a/b)  → safe 
⇒ (c):   σapplied ≠ 0    → unsafe for any σy 
 

??? 
 
 
Fracture Mechanics approaches in design:  
(3 parameters: σapplied, GIC (or KIC), a) 
 
 
- Energy Approach: 
 
 

the crack propagates when the energy available  
for crack growth 

overcomes the material resistance (fracture toughness) 
 
 
- Stress Intensity Factor Approach: 
 

the crack propagates when a local measure  
of the singular stress field  

reaches a critical value (fracture toughness) 
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- Energy Approach: 
(Griffith, A.A., The phenomena of rupture and flow in solids, Philosofical 
Transactions, Series A, vol. 221, 1921, 163-198; 
Griffith, A.A., The theory of rupture, First Int. Congress of Applied 
Mechanics, Delft, 1924, 55-63;) 
 
 
- Stress Intensity Factor Approach: 
(Wieghardt, K., (1907), Z. Mathematik und Physik, 55, 60-103; translated by 
Rossmanith (1995), On splitting and cracking of elastic bodies, Fatigue Fract. 
Engrg. Mater. Struct., 18, 1371-1405) 
Muskhelishvili, N.I., Some basic problems of the mathematical theory of 
elasticity, in Russian 1933 (in English 1953, Noorhoff-Groningen).  
Westergaard, Bearing Pressures and cracks, (1937), J. Applied Mechanics, 
6, A49-53. 
Williams, M.L. (1952), Stress singularities resulting from various boundary 
conditions in angular corners of plates in extension, J. Applied Mech., 19, 
526-528. 
Williams, M.L. (1957), On the stress distribution at the base of a stationary 
crack, J. Applied Mech., 24, 109-114.) 
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CRACK TIP SINGULARITY  IN AN INFINITE PLATE 
CONTAINING A CRACK  

WESTERGAARD METHOD 
 

(Westergaard, Bearing Pressures and cracks, (1937), J. Applied Mechanics, 
6, A49-53.) 
(see Carpinteri, Meccanica dei materiali e della frattura, for details) 

 
 

 
 

Hp:  
homogeneous, isotropic, linearly elastic body 

 plane stress 
 crack length = 2a 
 biaxial load:   
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with k = real constant, k- ∞≤≤∞  
 
 
Problem: define stress field at crack tip 
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Stress field ahead of the crack tip in an infinite cracked 
plate (symmetry about x axis) 
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Note: 
 
- General expression for the stress components: 
 

)(θ
π

σ ijij I
I f
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- inverse square root singularity in all stress components: 
 
- power of the singularity and fIij(θ) depending on crack face 
boundary conditions and unaffected by remote boundary 
conditions  
 
- stress field univocally defined by KI (now still unknown): 
 
→ KI is a measure of the singular stress field 
→ single parameter description of crack tip conditions 
 
- KI units: [F] [L] -3/2 
 
- Singularity dominated zone 
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Recall  πIKag(a) =  then: 
  
 

aKI πσ=  
 
 
KI = Stress Intensity Factor (SIF) in an infinite cracked plate 
subject to biaxial loading (symmetry about x axis): 
 
 
Note: 
 
- σx(∞) does not affect KI. 
 
- KI and stress field at the crack tip depend on crack length a 
 
-  σx = σ(k-1) for θ = π, along crack faces: 
 
σx = -σ    uniaxial load (k = 0) 
 
σx = 0     biaxial load, (k = 1 or σx(∞)=σy(∞)=σ) 



 intensification 14

EFFECT OF FINITE SIZE: 
MODE I PROBLEMS IN FINITE BODIES 

 

 
 
- Stresses at the crack tip: 
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π
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I f
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- Stress Intensity Factor in finite body: 
 

F aKI πσ=  
 
F dimensionless function, typically a polynomial expression, 
depending on geometry and loading conditions. 
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Examples: 
 
 
- Cracked strip in tension: 
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- Three point bending beam: 
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CRACK OPENING DISPLACEMENT 
 

              
 
 
- From plane stress elasticity: 
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- substituting the stresses in the singularity dominated 
region: 
 

dy )ByImZ-(ReZ
E

-dy )ByImZ(ReZ
E
1dy εu '

II
'
IIyy ∫∫∫ +−+==

ν

 
 
- It is easy to check that the following uy  satisfies previous 
equation: 

 

By
E

1yReZ
E

1ZIm
E
2u IIy

νν +
−

+
−=  

 
 



 intensification 17

- using the complex potential: 
 

CBξ2ξ
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- and polar coordinates: 
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Note: 
 
- COD depends on KI/E and increases on increasing KI/E 
 
- COD is parabolic along the crack, COD ≈ r1/2 

  
- COD has a vertical tangent in r = 0 
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ELEMENTARY MODES OF LOADING 
APPLIED TO A CRACK 

 
 

 
 
 

Mode I: Opening  
symmetric loading about crack plane 
 
 
Mode II: In-plane shear or in-plane sliding 
anti-symmetric (or skew-symmetric) loading about x axis 
 
 
Mode III: Tearing or out of plane shear 
anti-symmetric (or antiplane) loading about x-z plane 
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INFINITE CRACKED PLATE IN MODE II 
 

(Westergaard, Bearing Pressures and cracks, (1937), J. Applied Mechanics, 
6, A49-53.) 

 
 
- Airy stress function:  IIII ZyRe−=Φ  

- ……… 
 

- Stresses at crack tip: 
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- Stress Intensity Factor: 
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STRESS FIELD AHEAD OF THE CRACK TIP 
 

Mode I: 
( )
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Mode II: 
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CRACK TIP DISPLACEMENT FIELDS 
 
 
Mode I: 
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Mode II: 
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Mode III: 
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where: 
 
κ = 3−4ν    (plane strain) 
κ = (3−ν)/(1+ν)  (plane stress) 
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SIF EVALUATION 
 
 

- Close form solutions: 
 

complex function theory (conformal mapping, boundary 
collocation method, Laurent series expansion,… 
 
integral transforms (Fourier, Mellin, Hanckel transforms) 
 
eigenfunction expansion  

 
 
limited to very simple cases 
 
 
- Computational solutions (FEM, BEM, FDM, …) 
 
 
- Experimental solutions (photoelasticity, moire 
interferometry,…) 
 
 
- Fracture handbooks  
 
Tada, Paris and Irwin, (1985), The stress analysis of cracks 
handbook, Paris Prod., Inc., St. Luis (II edition). 
 
Murakami (1987), Stress Intensity Factor handbook, Pergamon 
Press, NY. 
 
Rooke and Cartwright, (1976), Compendium of Stress Intensity 
Factors, Her Majesty’s Stationary Office, London. 
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Tada, Paris and Irwin, (1985), The stress analysis of cracks 
handbook 
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STRESS INTENSITY FACTOR 
SUPERPOSITION PRINCIPLE 

 
- For linear elastic materials individual components of 
stress, strain and displacement are additive. 
 
- Similarly, stress intensity factors are additive: 
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where: 
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K ,K K ,  (i = A, B, C, ….) are mode I, mode II and mode 
III stress intensity factors for the ith applied load. 
 
Example: 
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SUPERPOSITION PRINCIPLE 
 
 

 
 

Any loading configuration can be represented by 
appropriate tractions applied directly to the crack faces 
 
Proof: 
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SUPERPOSITION PRINCIPLE 
 

- Infinite plate subject to uniaxial load with a crack of length 
2a oriented at an angle β with the x axis 
 

 
 
- For β ≠ 0 the crack experiences Mode I and Mode II 
 
- Introduce a new coordinate system x' - y' with x' coincident 
with the crack orientation 
 
- Define loads in the new system using Mohr's Circle 
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- Stress intensity factors 
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MIXED MODE FRACTURE 
 
 

 
 
 
 

Assumptions: 
homogeneous, isotropic, linear elastic material 
plane problem (Mode I + Mode II) 

 
 
Griffith’s Energy Criterion applies only to collinear crack 
growth 
 
 
A Criterion for Mixed Mode fracture must define: 
 
a) the direction of crack growth 
 
b) the critical values of the fracture parameters 
 
 
MAXIMUM CIRCUMFERENTIAL STRESS CRITERION 
(Erdogan and Sih, (1963), On crack extension in plates under plane loading 

and transverse shear, J. Basic Engineering, 85, 519-527)
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Example of Application 
 
 
- Cracked plate subject to biaxial load σ1 - σ2 

 
 
 

 
  
 
- Assume:  m = σ1 / σ2 
   β = crack direction about σ2 
 
 

- Crack tip stress intensity factors:         
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Direction of crack growth 
 
The crack propagates in a direction normal to the maximum 
circumferential stress σθ  

 
 

 
 
Special cases: 
 
1)  m = 1 , σ1 = σ2 ⇒ Mohr’s circle degenerates  

into a point 
symmetry about crack direction 

0
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=

β

β

τ

σσ
   ⇒ KII = 0, θ = 0  

⇒ collinear crack growth 
 
2) m = 0, σ1 = 0 (uniaxial tension) 

if β = 0  ⇒ θ = 0  collinear crack growth 

if β ≠ 0  ⇒ °==
→ + 70.6)0,(m 

0
lim

βθ
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Criterion for crack growth 
 
The Mixed-Mode crack will propagate along θ when σθ = 
σθcr(Mode I) 

 
 

Fracture locus  
  

 

 

 
 
 
- the fracture locus is symmetric about the K*I  axis  
 
- the fracture locus is not defined for KI < 0 
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GRIFFITH ENERGY CRITERION 
 

(Griffith, A.A., The phenomena of rupture and flow in solids, Philosofical 
Transactions, Series A, vol. 221, 1921, 163-198; 
Griffith, A.A., The theory of rupture, First Int. Congress of Applied 
Mechanics, Delft, 1924, 55-63;) 
 
- First law of Thermodynamics: 
when a system goes from a nonequilibrium state to 
equilibrium there will be a net decrease in energy 
 
→ A crack can form in a body only if such a process causes 
the total energy to decrease or remain constant (Griffith) 
 
 
- Consider an infinite plate of unit width subject to biaxial 
load in plane stress conditions.  
 
Imagine to create a crack of length 2a while keeping the 
remote displacements constant  

 
The elastic strain energy released is proportional to the 
strain energy contained in a circle of radius a (after Inglis): 
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The strain energy, W, of the cracked plate is then given by: 
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where W0 is the strain energy of the uncracked plate. 
 
 

- The energy required to create the crack surface is: 
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- An incremental crack extension da is possible if: 
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(substitute E with E’ for plane strain) 
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Fracture Energy: 
 

GIC = 2 γs 

 
= energy required to create a unitary crack area. 
(crack area = 2a; surface area = 4a) 
 
- measure of the fracture toughness of the material 
 
- to be defined through standard tests 

 
 

⇓ 
 
 
Griffith equation: 
 
Stress for equilibrium 
crack growth: 
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Stress for equilibrium 
crack growth: 
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- crack growth is unstable: the load decreases on increasing 
the crack length 
 
- two asymptotes: 
 
• for a →∞,      σmax → 0 
 

 

• for a →0     σmax → ∞  ???? 
 
analogy with buckling collapse vs. strength collapse: 
 
for a<a0 the strength collapse precedes the fracture collapse 
 
 
- The crack length a0 corresponding to σmax = σy ( = σp) is an 
equivalent measure of the microcracks, flaws and defects of 
the virgin material: 
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MODIFIED GRIFFITH EQUATION 
 

(Irwin, (1948), Fracture Dynamics, Fracturing of Metals, ASM Cleveland, 
146-166; 
Orowan,(1948), Fracture and strength of solids, Reports on Progress in 
Physics, XII, p. 195.) 
 
 
- In actual structural materials: 
 
a) the energy needed to cause fracture is much higher than 
the surface energy (orders of magnitude higher) 
 
b) inelastic deformations arise around the crack front → 
linear elastic medium with infinite stresses at the crack tip 
unrealistic 
 
- Griffith equation can be modified to include the plastic work 
γP dissipated at the crack front 
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- Orowan estimated γP ≈ 103 γs in typical metals. 
 
- The modified Griffith equation is correct only if: 
 
the size of the plastic zone around the crack tip is very small 
compared to the crack size  (small-scale yielding conditions) 
 
→ the details of the crack tip stress do not affect the stress 
field in the elastic bulk of the medium 
→ purely elastic solutions can be used  to calculate the rate 
of energy available for fracture (!!!!!!!!) 
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ENERGY BALANCE 
IN BRITTLE FRACTURE  

 
 
- Griffith criterion refers to a special case, i.e. infinite 
cracked plate, biaxial loading, fixed-grip conditions 
 
- In general, the First Law of Thermodynamics yields: 
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A = crack area 
ET = total energy 
Ws = energy required to create new crack surfaces 
W = total potential energy    W = U - L 
U = potential strain energy 
L = potential of external forces 
 
- From the definition of fracture energy: 
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- Energy criterion for brittle crack growth (Mode I): 
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THE STRAIN ENERGY RELEASE RATE 
 
(Irwin, (1957), Analysis of stresses and strains near the end of a crack 
traversing a plate. ASME Journal of Applied Mechanics, 24, 361-364) 
 
 
- Irwin introduced the Strain Energy Release Rate 
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as the energy available for an increment of crack extension, 
given by the total potential energy released due to the 
formation of a unit crack area 
 
 
- G is also called Crack Driving Force or Crack Extension 
Force 
 
 
 
- Energy criterion for brittle crack growth (Mode I): 
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ENERGY APPROACH VS. STRESS APPROACH 
(CRITICAL CONDITIONS) 

 
- The strain energy release rate is the fracture parameter 
describing the global behavior of the body. 
 
- The stress intensity factor if the fracture parameter 
describing the local behavior (stresses, strains and 
displacements near the crack tip) of the body 
 
- Stress criterion for brittle crack growth (Mode I): 
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KIC = critical stress intensity factor 
 
KIC is a measure of the material fracture toughness to be 
defined through standard tests 
 
- ICG and KIC are related through a fundamental relationship  
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STRAIN ENERGY RELEASE RATE 
 IN A DCB SPECIMEN 

 
- Assume built-in end conditions for the two arms. 
 
From beam theory: 
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- The elastic compliance is: 
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- The strain energy release rate in the DCB specimen is: 
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- Same conclusion from: 
 

3

2

2

232

Eh
a 

B
P 12

EI
a 

B
P

3EI
aP

da
d

B
1P

2
1

da
d

B
1

Bda
dW 22

==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛ Δ−−=−=G  



 energy approach 18

- The critical load for crack propagation (Griffith criterion) is 
 
 

12
BEh

a
1P

23
IC

cr
G

=  

 
 

⇒ unstable crack growth   
 
Note: 
 
Strain energy release rate and critical load have been 
defined through a beam theory approximation. 
 

If the geometry satisfies the assumptions of beam theory the 
solution is correct. 
 
However, the local fields at the crack tip are not correctly 
given by beam theory 
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ENERGY RELEASE RATE IN A BODY SUBJECT 
TO DIFFERENT LOADING SYSTEMS 

 
 
Hp: self-similar crack growth 
 
- From the stress intensity factors of a body subject to 
different loading systems (A), (B), (C),….. 
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and the relationship between G and K 
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⇒ the strain energy release rate is 
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- The strain energy release rate contributions for each mode 
of fracture are addictive 
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- The strain energy release rate contributions for each 
loading system are not addictive, e.g. for mode I 
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NONLINEAR FRACTURE MECHANICS  
THE COHESIVE CRACK MODEL 

 
 
(Dugdale, D.S.: Yielding of steel sheets containing slits, J. Mechanics 
Physics Solids 8 (1960), 100-104 
Barenblatt, G.I.: The formation of equilibrium cracks during brittle fracture. 
General ideas and hypotheses. Axially-symmetric cracks, J. Applied 
Mathematics and Mechanics 23 (1959), 622-636. 
Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle 
fracture, in H.L. Dryden and T. von Karman (eds.), Advanced in Applied 
Mechanics, Academic Press, New York, 1962, pp. 55-129.) 
 

 
 
ductile materials       ⇒   Dugdale’s model 
 
purely brittle materials  ⇒   Barenblatt’s model 
 
quasi brittle materials   ⇒   Hillerborg’s Fictitious 
(e.g. concrete)      Crack Model 
  
brittle matrix composites ⇒  Bridged crack model 
 
quasi brittle matrix composites ⇒ Cohesive crack model 
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Dugdale’s Model for ductile fracture 
 

Fracture of elasto-plastic materials 
 
Assumptions: 
 
- Mode I crack in an infinite sheet under uniform tensile 
stress 

- the material is ductile and the plastic deformations 
localized in a thin zone coplanar with the crack 

- the plastic zone is modeled through a fictitious crack (of 
unknown length) and a uniform distribution of cohesive 
tractions σP = yield stress 
 

 
 
 

Length of the cohesive zone 
 
The length of the cohesive zone aP is calculated by 
imposing the condition of smooth closure of the crack faces: 
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The SIF due to the plastic stresses is calculated using the 
SIFs due to a pair of concentrated forces F acting at x: 
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From the condition for smooth closure: 
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In the limit σ = 0   ⇒ aP = 0 

σ → σP   ⇒ aP → ∞  
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Performing a Taylor series expansion (if σ << σP): 
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and, as a function of KIσ, 

2
P

2
I

P
K

8
 a

σ
π σ=  

 
Length of the cohesive zone in critical conditions 
 
Following Irwin's approach: 
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with δa the crack tip opening displacement given by: 
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(use Castigliano's method) 
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Barenblatt’s Model for purely brittle fracture 
 
“In our work the question concerning equilibrium cracks forming 
during brittle fracture of a material is presented as a problem in the 
classical theory of elasticity, based on certain very general 
hypotheses concerning the structure of a crack and the forces of 
interaction between its opposite sides, and also on the hypothesis 
of finite stresses at the ends of the crack, or, which amounts to 
the same thing, the smoothness of the joining of opposite sides 
of the crack at its ends” (Barenblatt, 1959) 
 

 
Consider a Mode I crack in a homogeneous, isotropic, 
linear-elastic infinite medium under uniform loading 

 

     
 
 

Represent the atomic bonds holding together the two halves 
of the body separated by the crack as cohesive forces 
acting along the edge regions of the crack and attracting 
one side of the crack to the other 
 
b = interatomic distance (order = 10-7 mm) 

maximum intensity = ideal strength  
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Determination of the cohesive forces 
 
The accurate determination of the cohesive forces acting 
along the edge regions is difficult 
 
- Assumptions: 
 
1) The dimension of the edge region is small in comparison 
with the size of the whole crack 
 
2) The displacements in the edge region, for a given 
material under given conditions, is always the same for any 
acting load 
 
⇒ during crack propagation the edge region simply translate 
forward 
 
1) + 2) = small scale yielding assumption 
 
3) The opposite sides of the crack are smoothly joined at the 
ends or, which amounts to the same thing, the stress at the 
end of a crack is finite  
 

⇒ K = 0 (zero stress intensity factor) 
 

 
 
These assumptions lead to the definition of the critical state 
of mobile equilibrium which depends on the modulus of 
cohesion depending on the integral of the cohesive tractions 
along the edge region 
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Equivalence of Griffith and Barenblatt approaches  
 
Willis (by means of the complex variable method) and 
Rice (by means of the J integral) proved that: 
 
 
 
Barenblatt’s theory based on atomic forces is equivalent to 
Griffith’s energy approach provided the integral of the 
cohesive forces is equal to the fracture energy 
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Barenblatt also showed that the cohesive forces essentially 
have effect only on the displacement field close to the edge 
of the crack and not on those in the main part of the crack   
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Rice’s proof of the equivalence between Barenblatt’s 
model and Griffith’s energy approach 

 
- Assume the crack to be in a state of mobile equilibrium 
- Consider cohesive forces σ(δ) acting along the crack 
- Let δ∗ to be the separation distance beyond which the cohesive 
tractions vanish 
 

        
 
- Consider the path Γ  for which: 
dy = 0, ds = dx on Γ− and ds = -dx on Γ+ , T1 = 0, T2 = σ(δ) on Γ+ ,  
T2 = -σ(δ) su Γ−   
 
-Evaluate the J integral along Γ: 
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⇒ The value of J which will cause crack extension is given by the 
integral of the cohesive forces: 
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