

## INTRODUZIONE ALL'USO DI MATLAB

#### **Emanuele Crisostomi**

September 23, 2010

## Esercizi





- 1 Esercizio 1
- 2 Esercizio 2
- Sercizio 3
- Esercizio 4
- **5** Esercizio 5
- 6 Esercizio 6



# La matrice inversa generalizzata

# **Steps**

- lacktriangle Creare una matrice stocastica per righe  $\mathbb P$
- ② Calcolare la matrice inversa generalizzata di  $\mathbf{I} \mathbb{P}$

## **Definizione**

Chiamiamo inversa generalizzata di una matrice Q la matrice  $Q^{\#}$  tale che  $QQ^{\#}=Q^{\#}Q$ ,  $QQ^{\#}Q=Q$  e  $Q^{\#}QQ^{\#}=Q^{\#}$ .

## Procedura

- Chiamiamo X la matrice Q meno l'ultima colonna (dimensioni  $n \times (n-1)$ )
- Chiamiamo  $Y = \begin{bmatrix} I_{(n-1)\times(n-1)} & -1 \end{bmatrix}$  (pertanto di dimensioni  $(n-1)\times n$ )
- $Q^{\#} = X \cdot (Y \cdot X)^{-2} \cdot Y$



# Procedura di Kaprekar

# Steps:

- Prendere un numero intero di 4 cifre N(1)
- 2 Chiamare con  $\overline{N}(i)$  lo stesso numero con le cifre in ordine decrescente e  $\underline{N}(i)$  in ordine crescente
- $N(i+1) = \overline{N}(i) \underline{N}(i)$
- Terminare la procedura quando siamo giunti a convergenza (e calcolare il numero di passi per la convergenza)



# Calcolo della radice ennesima

#### Procedura:

$$\textbf{① Comporre una matrice } A = \left[ \begin{array}{ccccc} 1 & q & q & \dots & q \\ 1 & 1 & q & \dots & q \\ 1 & \ddots & \ddots & \ddots & \vdots \\ 1 & 1 & 1 & \ddots & q \\ 1 & 1 & 1 & \dots & 1 \end{array} \right] \text{ di}$$

dimensioni  $n \times n$ 

- ② Scegliere un vettore b(1) di numeri casuali normalizzato (cioé il numero piú piccolo é 1)
- 3 Calcolare  $b(i+1) = A \cdot b(i)$  e normalizzare il vettore risultante
- Continuare la procedura fin quando il vettore b non giunge a convergenza
- **5** Le componenti finali del vettore contengono le potenze i/q (numerate a partire dal basso) del numero n



# Simulare le equazioni di Lorenz

# **Equazioni**

$$\begin{cases} \dot{x}_1 = -\sigma(x_1 - x_2) \\ \dot{x}_2 = Rx_1 - x_2 - x_1x_3 \\ \dot{x}_3 = x_1x_2 - bx_3 \end{cases}$$
(1)

dove  $\sigma = 10$ , R = 28 e b = 8/3.

## Procedura:

- ① Discretizzare il sistema con passo 0.01.
- Scegliere condizione iniziale  $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$
- 3 Disegnare la traiettoria del sistema per 10000 passi



# Implementare manualmente l'algoritmo del gradiente

## Trovare il minimo di una funzione

$$\frac{1}{2}x^T A x + b^T + c$$

dove 
$$A = \begin{bmatrix} 10 & 5 \\ 5 & 40 \end{bmatrix}$$
,  $b = [1, 2]^T x e c = 20$ .

## Procedura:

- ① Considerare la condizione iniziale  $x(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}^T$
- 2 L'algoritmo del gradiente si implementa come  $x(k+1) = x(k) t\nabla f(x(k))$
- 3 Scegliere il passo *t* all'interno di una griglia di punti tra 0 e 1 con passo 0.01.



# Soluzione di un sistema di equazioni non lineare

#### **Fsolve**

- Leggere sull'help di Matlab il funzionamento del comando fsolve
- 2 Risolvere il sistema di equazioni non lineare

$$\begin{cases} x^2 + y^2 + z^2 + 2x - 2y - 2z - 1 = 0 \\ x^2 + y^2 + z^2 - 6x - 2y - 2z + 7 = 0 \\ x^2 + y^2 + z^2 - 2x - 6y - 2z + 7 = 0 \end{cases}$$



# INTRODUZIONE ALL'USO DI MATLAB

#### **Emanuele Crisostomi**

September 23, 2010