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Abstract A closed form solution of the problem of the minimum induced drag of a

finite span straight wing was given by Prandtl. In this paper, a mathematical theory,

based on a variational approach, is proposed in order to revise such a problem and

provide one with a support for optimizing more complex wing configurations, which

are becoming of interest for future aircraft. The first step of the theory consists in

finding a class of functions (lift distributions) for which the induced drag functional

is well defined. Then, in this class, the functional to be minimized is proved to be

strictly convex; taking into account this result, it is proved that the global minimum

solution exists and is unique. In Sect. Subsequently, we introduce the Image Space

Analysis associated with a constrained extremum problem; this allows us to define

the Lagrangian dual of the problem of the minimum induced drag, and show how

such a dual problem can supply a new approach to the design. After having obtained

the Prandtl exact solution in the context of a variational formulation, a numerical

algorithm, based on the Ritz method, is presented, and its convergence is proved.
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1 Introduction

The main parts of aerodynamic drag of an aircraft are the friction and the induced

ones. Friction drag depends on the wetted surface; induced drag depends on the

lift distribution along the lifting systems. According to the theorem of Kutta (1867-

1914) and Jukowski (1847-1921), lift equals the product of asymptotic speed, den-

sity and circulation (or vorticity). Ludwig Prandtl (1875-1953) and his collaborators

at the University of Göttinghen gave a significant contribution to Aerodynamics. In

the case of finite width straight wings, due to a theorem on the conservation of vor-

ticity, the vorticity variation along the wing equals the vorticity released along the

stream, which, in its turn, produces an induced velocity on the wing, in accordance

with the Biot and Savart law. Prandtl gave a solution to the Variational Problem

of assessing the lift distribution for which, given the total lift, the induced drag is

a minimum. For this problem, the optimality condition implies a constant induced

velocity along the wing span and the elliptical lifting distribution satisfy this con-

dition. This result was fundamental in the history of aviation: all actual aircraft are

designed in order to obtain an elliptical lift distribution as close as possible.

From these considerations, Prandtl’s problem is considered again, with the aim of

introducing an extensive mathematical analysis of the problem, taking into account

recent results of the theory of constrained extremum problems, in particular, the Im-

age Space Analysis. This will lead, among other things, to formulate a Lagrangian

dual problem of that of minimum induced drag. It is shown that such a dual problem

is a new approach to the primary problem.

2 Finite Span Wings

In a steady, subsonic and two dimensional stream, the aerodynamic force acting on

a solid body is given by

D = 0, P = ρV∞Γ ,

where D is the component along the asymptotic stream direction and P is the normal

to D; ρ and V∞ are the density and the asymptotic velocity, respectively. This result

is known as the Kutta-Jukowski Theorem and, accordingly, the drag on a profile is

zero, independently of the lift. This result, even for inviscid fluids, is no longer valid

when dealing with a finite span wing, where a drag induced by the lift (and, hence,

named “induced drag”) is present due to three-dimensional effects.

In a finite span wing (e.g., figure 1) the pressure difference between upper and

lower sides produces tip horse shoe vortices which, in turn, on any wing section,

induce a vertical downstream according to the well known Biot-Savart law. Thus, in

any section of the wing, the angle of incidence is locally modified by an angle αi

(of induced incidence), as shown in the following figure.

With small αi, the forces orthogonal to the stream (lift) and along the stream

direction (induced drag) are:
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Fig. 1: α-geometric angle of incidence, αi-angle of induced velocity, αe f f -actual angle of inci-

dence.

{
L = F cosαi =

∫ b
−b ρΓV∞dy,

Di = F sinαi = ρ
∫ b
−b w(y)Γ dy,

(1)

where 2b is the wingspan.

In the case of a large span/cord ratio, the wing can be assumed as a lifting line un-

dergoing a circulation distribution along the span (Prandtl). According to the Biot-

Savart law, the velocity induced in y0 by an elementary free vortex dΓ =

(
dΓ

dy

)
dy

is given by:

dw(y0) =
1

4π

(
dΓ

dy

dy

y0− y

)
, (2)

and velocity induced by the whole vorticity becomes:

w(y0) =
1

4π

∫ b

−b

dΓ

dy

dy

y0− y
. (3)

Combining the previous results, we have the induced drag:

Di =
ρ

4π

∫ 1

−1

∫ 1

−1

Γ ′(x)Γ (y)

y− x
dxdy.

Note that the double integral is defined by its principal value of Cauchy (see Sect.

6).
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Fig. 2: Vortices on the wing wake: on the lifting line, the difference between vortices (or circula-

tion) equals the free vortices detaching from trailing edge.

3 Problem of Minimum Induced Drag of a Straight Wing. An

optimality condition

Denote by R and R+ the sets of reals and non-negative reals, respectively. We con-

sider a straight wing, which is assumed to be a lifting segment of the real line; it is

not restrictive to represent the segment by T := [−1,1]⊂ R (see figure 3).

Fig. 3: Reference frame of the lifting line wing.

Let Ω be an open set of R, such that Ω ⊃ T . We wish to determine a function

Γ : Ω → R+, which minimizes the induced drag, denoted by f (Γ ), subject to a

constraint on the total lift, denoted by g(Γ ). Let us now give this problem a math-
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ematical formulation. To this end, let χ be a set of functions Γ , where a solution is

sought. Thus, the problem can be formulated as:

min f (Γ ) :=
ρ

4π

∫

T

∫

T

Γ ′(x)Γ (y)

y− x
dxdy, (4)

subject to

g(Γ ) := ρV∞

∫

T
Γ dx− c = 0, (5)

Γ ∈ χ, (6)

where min denotes the global minimum and c is a positive constant; “:=”denotes

“equality by definition”.

First of all, the elements of χ must make f positive and satisfies given boundary

conditions Γ (−1) = Γ (1) = 0. Furthermore, Γ must be such that the functionals f

and g exist. This is guaranteed by the assumptions of Proposition 1 of Appendix 1.

Such assumptions allow us to define f on the subset of T ×T where x = y, giving it

the value of its limit, so that the functional so extended – which, without any danger

of confusion, will be denoted by the same f – turns out to be continuous.

Having restricted χ in order to guarantee the existence and the continuity of f

and g, we now must assure the existence of the (constrained) minimum in (4)-(6).

This can be achieved in several ways. To this end, we introduce the following norm:

||Γ || := max
x∈T
{||Γ (x)||2, ||Γ ′(x)||2},

where || · ||2 is the L2 norm for the present problem.

A first way consists in restricting χ to be compact with respect to the above

norm; a simple (but sufficient for the design of a wing) example is given by a set of

bounded polynomials on T , with degree not greater than a fixed value. The assump-

tions of the Lebesgue Fundamental Theorem being fulfilled (Lebesgue measurabil-

ity and uniform boundedness of each sequence), then the set of solutions to (5) is

closed. Taking into account that a closed subset of a compact set is compact, the set

of solutions to (5)-(6) is compact. This and the continuity of f give the existence of

the minimum.

A second way consists in proving the strict convexity of the functional f (see

Theorem 2 in sect. ??) and show that, within the stated class χ , the first variation

vanishes. Of course, this depends on the fact that the first variation vanishes on χ;

otherwise, nothing can be said, unless the convexity of χ is proved; but this is not

an easy task.

Condition 1 The minimum of problem (4)-(6) is an increasing function of c, which

tends to +∞ as c tends to +∞.

The property expressed by the above condition, even if intuitively obvious from

engineering viewpoint, is of no easy mathematical proof. Indeed, due to its impor-

tance in the analysis of the solution of (4)-(6) when c is a parameter (and not a given
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number) as happens in Sect. 4, we should prove it; to avoid an excessive mathemat-

ical machinery, in the sequel we will assume it.

Having discussed the existence of the minimum of problem (4)-(6), let us now

consider an optimality condition. In Appendix 1 it is proved that a class, where it

is suitable to look for the circulation distribution Γ as solution of the minimum

problem (4)-(6), is the following:

X = {Γ ∈ AC[−1,1], Γ ′ ∈L
1+ε(−1,1), with ε > 0, Γ (1) = 0,

Γ (−1) = 0, Di(Γ ) > 0}.

Here, according to what was done by Munk [4], we can prove a necessary and

sufficient optimality condition for Γ .

Theorem 1 Let be Γ ∈X . Γ is solution of the isoperimetric problem (4)-(6), if

and only if w(y) =
1

4π

∫ 1

−1

Γ ′(x)
x− y

dx = constant, ∀y ∈ [−1,1].

Proof. Let Γ , Γ∗ ∈X and set δΓ (x) := Γ −Γ∗, with ||Γ∗|| < ε, ε > 0. Introduce

the functions:

Γ (z,α) := Γ (z)+αδΓ (z),

Γ ′(z,α) := Γ ′(z)+αδΓ ′(z).

Γ ′(z,α) is the derivative of Γ (z,α) with respect to z. Consider J(λ ) the functional:

J(λ ) :=
∫

T

∫

T

[
ρ

4π

Γ ′(x)Γ (y)

y− x
− λρV∞

2
Γ (y)

]
dxdy , (7)

and let us calculate the variation:

J(λ ,α) :=
∫

T

∫

T

[
ρ

4π

Γ ′(x,α)Γ (y,α)

y− x
− λρV∞

2
Γ (y,α)

]
dxdy

=
∫

T

∫

T

ρ

4π

(Γ ′(x)+αδΓ ′(x))(Γ (y)+αδΓ (y))

y− x
dxdy +

−
∫

T

∫

T

λρV∞

2
(Γ (y)+αδΓ (y))dxdy.

When the derivative of J with respect to α is evaluated in zero, we find:
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J′(λ ,0) =
∫

T

∫

T

[
ρ

4π

δΓ ′(x)Γ (y)+δΓ (y)Γ ′(x)
y− x

− λρV∞

2
δΓ (y)

]
dxdy

=
∫

T

∫

T

[
ρ

4π

δΓ (y)Γ ′(x)
y− x

− λρV∞

2
δΓ (y)

]
dxdy +

+
∫

T

∫

T

ρ

4π

δΓ ′(x)Γ (y)

y− x
dxdy.

(8)

Integrating by parts the second term of equation (8) leads to:

ρ

4π

∫

T

∫

T

δΓ ′(x)Γ (y)

y− x
dxdy =

[
ρ

4π
δΓ (x)

∫

T

Γ (y)

y− x
dy

]1

−1

− ρ

4π

∫

T
δΓ (x)

d

dx

∫

T

Γ (y)

y− x
dxdy.

(9)

The first term in the right-hand side of equation (9) is null because

δΓ (−1) = δΓ (1) = 0. Having put t = y− x, we have:

d

dx

∫

T

Γ (y)

y− x
dy =

d

dx

∫

T

Γ (t + x)

t
dt =

∫ 1−x

−1−x

Γ ′(t + x)

t
dt.

Coming back to the previous variables, we find:

d

dx

∫

T

Γ (y)

y− x
dx =

∫

T

Γ ′(y)
y− x

dy. (10)

By exchanging y with x in the right-hand side of equation (9) and remembering (10)

the right-hand side of (8) becomes:

J′(λ ,0) =
∫

T

∫

T
δΓ (y)dy

(∫

T

(
ρ

2π

Γ ′(x)
y− x

− λρV∞

2

)
dx

)
. (11)

Since J′(λ ,0) = 0, a sufficient condition is:

w(y) =
1

4π

∫

T

Γ ′(x)
x− y

dx = costant, ∀y ∈ [−1,1]. (12)

This condition is necessary as well, after observing that the functional is convex; in

fact, the second derivative of J with respect to α is:

J′′(λ ,α) =
ρ

4π

∫

T

∫

T

δΓ ′(x)δΓ (y)

y− x
dxdy, (13)

where the quantity at the right-hand side is the elementary induced drag Di , due to

the lift and, therefore, is positive. ⊓⊔
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4 Duality. A New Approach to the Design of Wings

Now, we want to introduce the dual problem of (4)-(6). To this end, let us say first

of all something about the birth of duality.

A general feature of duality (it would be better to say dualism) consists in two

entities, which express a sort of symmetry or complementary. In the field of Opti-

mization, such entities are a pair of constrained extremum problems. An early trace

of this – perhaps, the first – is due to Vecten, and, independently, to Fasbender (see

[1], [2]) with reference to Fermat–Torricelli problem on a triangle (which consists

in finding a point of a triangle – now called Torricelli point –, which minimizes the

sum of its distances from the vertices; the given problem is called primal): among

all the equilateral triangles, which are circumscribed to a given triangle, to find one

having maximum height; they showed that such a maximum height equals the min-

imum sum of the distances of Torricelli point from the vertices of the given triangle

(see [1], page 235). Fermat–Torricelli and Vecten–Fasbender problems are a pair of

constrained extremum problems, which enjoy the following properties:

(i) they are defined by the same data;

(ii) they search for opposite extrema;

(iii) the values of their objective functions, corresponding to feasible solutions, form

two sets of real numbers, which are separated;

(iv) the two extrema are equal; the common value of the two extrema being, there-

fore, the separating element of two contiguous classes of real numbers.

The above problems enjoy further properties, which Vecten and Fasbender did

not observe (and, perhaps, could not have noted at that time):

(v) relaxation: the dual is equivalent to search, in the primal, for the best lower

bound of the objective function obtained by relaxing the feasible region (of

course, if the primal searches for the maximum – like in the problem of this

paper –, then relaxation must be replaced by contraction);

(vi) reflexivity: the dual of the dual problem is (equivalent to) the primal.

The result by Vecten and Fasbender has marked the birth of duality theory for

constrained extremum problems. Subsequently, a few results appeared till when

John von Neumann claimed the above (i)–(iv) for a linear programming problem.

After von Neumann result, the theory of duality grew quickly; it achieved the present

general form, when it was recognized to be a step of the Image Space Analysis car-

ried on through Hahn–Banach separation theory. Appendix 2 contains a short outline

of Image Space Analysis and how it can lead to discover the theory of duality. Here,

by a logic-intuitive way, we merely consider the essentials steps to achieve the dual

problem of (4)-(6) which, for symmetry of language, is called primal.

Denote by R := {Γ ∈ χ : ρV
∫

T Γ (x)− c = 0} the feasible region of (4)-(6). Let

us start with the obvious remark that Γ ∈ R is a (global) minimum point of (4)-(6),

iff the system in the unknown Γ ; the notation is the same as in Sect. 5)

u := f (Γ )− f (Γ ) > 0, v := g(Γ ) = 0, Γ ∈ χ (14)
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is impossible. u and v run in the images of χ through the functionals f (Γ )− f and

g, respectively. Therefore, the space where Γ runs is paired with R
2 where (u,v)

runs; this R
2 is called the Image Space associated with (4)-(6); the set:

KΓ :=
{
(u,v) ∈ R

2 : u = f (Γ )− f (Γ ),v = g(Γ ),Γ ∈ χ
}

is called the iimage set of (4)-(6). By introducing the set

H :=
{
(u,v) ∈ R

2 : u > 0,v = 0
}

,

which mirrors the conditions in (14), we can say that Γ ∈ R is a (global) minimum

point of (4)-(6), iff

H ∩K = /0. (15)

It is trivial to note that (14) is impossible, iff (15) holds. While (14) has an algebraic

appeal, (15) appears a geometrical approach. In fact, the disjunction (15) can be

proved, by showing that there exists a line (of R
2), say H0, such that H and K lie

in the halfplanes, say H+ and H−, the former open and the latter closed, defined by

H0, respectively. Thus, taking into account that H is a halfline (of R
2) desprived of

the vertex and K can be replaced equivalently by a convex set (see Appendices 1,

2), and defining H0,H− and H+, respectively, by:

θu+λv = 0, θu+λv≤ 0, θu+λv > 0, θ ,λ ∈ R, (16)

it is easy to note that (15) is equivalent to the existence of λ ∈ R, such that:

θu+λv≤ 0, ∀(u,v) ∈K . (17)

Due to the homogeneity of the inequalities (16) and (17), we might set θ = 1;

this is not done, because of the meaning that θ and λ will have in the subsequent

application. In other words, H being included by definition in H+, (15) holds if and

(because of the convexity of both H and K ) only if (17) holds. Now, by recalling

the definition of u and v in (14), (17) turns out to be equivalent to the existence of

θ > 0 and λ , such that:

L (Γ ;θ ,λ )≤L (Γ ;θ ,λ ), ∀Γ ∈ χ, (18)

where

L (Γ ;θ ,λ ) :=
∫

T

∫

T

[
θ

ρ

4π

Γ ′(x)Γ (y)

y− x
−λρV∞

Γ (x)

2

]
dxdy. (19)

is the Lagrangian function.

In fact, Γ ∈ R implies g(Γ ) = 0, so that L (Γ ;θ ,λ ) = θ f (Γ ) and the inequality

(18) is equivalent to (17).

We have thus shown that the fulfillment of inequality (18) is equivalent to prove

the optimality of Γ . However, to verify (18) is not an easy task. Therefore, in order

to prove (18), we are led to evaluate, for each (θ ,λ ), the minimum (in general, infi-

mum) of L (Γ ;θ ,λ ) with respect to Γ ∈ χ (and not Γ ∈ R), and then the maximum
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(supremum, in general) of such minima (which, obviously, depends on θ ,λ ) with

respect to θ ,λ .

In other words, we are led to introduce the following problem:

max
θ>0,λ∈R

min
Γ∈χ

L (Γ ;θ ,λ ), (20)

which is called dual problem of (4)-(6). Due to special properties of (4)-(6), it is

possible to prove that (20) enjoys the properties (i)-(iv); see Appendix 2.

The Image Space Analysis allows one to achieve several other important proper-

ties and informations; see Appendix 2.

In particular, we can draw that a solution (Γ ;θ ,λ ) of the dual problem (19) enjoys

this property: λ/θ is nothing more than the classic Lagrangian multiplier and allows

one to change in the minimum induced drag consequent to a change in the value at

which the total lift is constrained.

Now, we are in the position to discuss a different approach to the design of the

wing. As discussed in details in Appendix 2, to consider the induced drag as an ob-

jective (to be minimized) and the total lift as a constraint is absolutely subjective. An

alternative approach, which does not oblige us to consider one of the two entities as

constraint, is the following. We consider both entities as objectives, in the sense that

we aim to minimize the induced drag and to maximize the total lift or, equivalently,

to minimize the opposite of the total lift. To try to fulfil both objectives, we consider

a combination of them:

θ f (Γ )−λg(Γ ), Γ ∈ χ, (21)

where θ ,λ > 0. If we minimize (21) (depending on the weights θ and λ , the mini-

mum may not exist, and the infimum may by −∞), we certainly pursue both objec-

tives, even if through a mixture of them. However, by itself, such a minimization does

not give us any guarantee, until we identify (21) with (19) and we exploit the previ-

ous analysis. This way, we discover that the minimum of (21), which is obviously a

function of the “weights”of the combination, is 6 of that of (4)-(6). In other words,

by minimizing such a combination, we find a lower bound of the minimum of (4)-

(6). This result is rather intuitive: in setting up a combination of the objectives and,

in addition, choosing arbitrary “weights”, we have been “arbitrarily optimistic”as

concerns the design of the wing. At this point, it comes natural to search, among all

such “optimistic designs”, for one which is the least optimistic; in other words, we

look for the maximum, with respect to the “weights”, of the several above minima

(found with respect to Γ ∈ χ), of (21). But this is the dual problem of (4)-(6), so that

we obtain the same result as from (4)-(6) (see Theorem 4 of Appendix 2 for details).

The dual problem of (4)-(6), namely (20) (see also the 1st side of (19) of Ap-

pendix 2) depends on the constant c, even if it does not appear explicitly in (20).

Now, replace c with the parameter ξ and denote the dual problem by P∗(ξ ); in other

words, P∗(ξ ) is the dual of (4)-(6), where c is replaced by ξ . Let us now continue

the interpretation of P∗(ξ ) and its exploitation for the design. By solving P∗(ξ ), we

find the functions:

Γ (ξ ), θ(ξ ), λ (ξ ), f ∗(ξ ), (22)
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the last of which gives the maximum in (20) (or in the 1st side of (61) of Appendix

2). As said before for the case ξ = c, the ratio λ (ξ )/θ(ξ ) gives a fundamental infor-

mation for the design (see Appendix 2 for details). Thus, it is reasonable to assume

that the designer can define a function, say ϕ : [c1,c2]→ R+ with c1,c2 given pos-

itive constants within which ξ must lie, which expresses a measure of the merit for

the project consequent to the value of the ratio λ (ξ )/θ(ξ ). It is reasonable to sup-

pose also that ϕ be unimodal (so that it possesses maximum and unique maximum

point). Then, the designer can now consider the problem:

max
ξ∈[c1,c2]

ϕ

(
λ (ξ )

θ(ξ )

)
. (23)

By solving it, he finds the unique maximum point, say ξ . Consequently, with regard

to the combination (21) of the two objectives, θ(ξ ) and λ (ξ ) are “the best weights”

with respect to the minimax criterion (expressed by the dual problem) and that is

expressed by the merit function ϕ . This way, the designer avoids to perform an

empirical choice of the weights. For such an approach, the Image Space Analysis

(see Appendix 2) has been instrumental: to see this, it is enough to note that the

pair (θ(ξ ),λ (ξ )) is the gradient of a supporting line of the image set (or its conic

extension) of (4)-(6) (see Appendix 2, Definition 2); the functional form of this line

is the core of the dual problem.

The above approach can be generalised in several ways. First of all, we can be

faced with l ≥ 2 objectives. In this case, by exploiting the reciprocity principle men-

tioned in (59) of Appendix 2, we can limit ourselves to consider l − 1 ratios of

type λ/θ . In order to formulate (4)-(6), we have chosen the constant c; in as much

as such a constant is replaced by a parameter, the determination of c becomes no

longer essential. When the determination of the functions (22) may be computation-

ally complex, the global analysis can be replaced by a local one.

To sum up the previous development, we can observe that the problem takes the

remarkable role to free us from the irrational task to choose arbitrary (or with an

empirical criterion) the weight of a combination of objectives. Of course, this fact

can be generalized in various directions, in particular, when there are more than two

entities/objectives; in such a case, the choice, among several entities, of one to be

considered as objective may be much more difficult than in the present case of only

two entities.

As concerns the computational aspects, let us observe that, due to Proposition 7,

the dual problem of (4)-(6) can be equivalently reduced to just one operation:

max
Γ∈χ;θ ,λ>0

L (Γ ;θ ,λ ), subject to L
′

Γ (Γ ;θ ,λ ) = 0, (24)

where L ′
Γ denotes the first variation of L with respect to Γ .

The second side of (61) offers a further interpretation in terms of designing a

wing. For each design Γ ∈ χ , we consider again the combination (21), but, this time,

we keep fixed Γ and we maximize it with respect to θ ,λ > 0 (depending on Γ , the

maximum may not exist, and the supremum may be +∞). This way, each design
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Γ is associated with a maximum of (21); this means to be “arbitrarily pessimistic”.

Then, by minimizing such a result with respect to Γ , we look for the least pessimistic

situation and free ourselves from the arbitrariness of the choice of the weights.

Let us now give a concise interpretation of the above development. The optimal-

ity of the circulation distribution Γ has been reduced to show separation, by means

of a line, between two sets, the image set KΓ and H . The separation line, namely

H0 (which in Appendix 2 is denoted, with a better notation, by H0(θ ,λ ,0)), turned

out to be a support line of the image set. The gradient of such a line, namely (θ ,λ ),
has shown to provide us with an extremely important information about the given

problem: indeed, λ/θ is the so–called Lagrange multiplier and is the (instantaneous)

velocity with which the minimum induced drag changes with respect to the total lift

(up to a constant). Hence, the dual problem of (4)-(6) can be viewed as the search

for “the best”among the support lines of the image set, or H0. Thus, a spontaneous

remark may arise: such a support line is not contained in the data which define (4)-

(6); being an adjunctive entity, which comes from the exterior of (4)-(6), the line

should have not an importance and be a mere catalyst; indeed, the support line is a

tangent (Bouligand tangent, if at the supporting point the image set is not smooth),

and this explains in a straightforward way its importance.

Another aspect of the above development has consisted in providing us with a

way of proving the existence of the minimum of (4)-(6), which is much easier than

the classic one: in fact, a remarkable fact is that such a way requires to us to prove

the existence of the extremum of a problem in a finite dimensional space, namely the

IS which in the present case is the Euclidean plane, notwithstanding the fact that the

given problem is infinite dimensional (Γ runs in a Banach space), while the classic

ones require to prove the existence of the extremum in an infinite dimensional space

(just that Banach space).

To sum up some of the wonderful aspect of the duality theory, we can say that

the dual problem allows us:

(j) to achieve important theoretical, analytical results;

(jj) to improve solving methods for the given problem;

(jjj) to obtain, with the dual variables, a knowledge on the given problem which,

often, is more important than the solution itself of the given problem; for in-

stance, if the given problem represents an engineering design, often its solution

is not striking for the designer and merely refines what he already knows; on the

contrary, almost always, the solution of the dual problem brings a precious and

unexpected information or even leads to a new approach to the design, as shown

in this subsection.

5 Direct Methods

In this section, we determine the solution, Γ , of the isoperimetric problem, and pro-

pose a computation direct method to obtain a set of approximations to Γ , converging
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to Γ . In this method, the Γ circulation is obtained by means of the two following

procedures:

• a classic Fourier expansion of Γ ;

• the Ritz method, with two minimizing sequences of the type

Γn(x) =
n

∑
i=0

biWi(x), n ∈ N,

where Wi = (1− x2)xi in the former type and Wi = (1− x2)i in the latter one.

5.1 Elliptic Distribution

We put y = cosθ and, hence dy =−sinθ , and consider the Fourier expansion of Γ ,

with the conditions Γ (−1) = Γ (1) = 0 , or:

Γ =
∞

∑
n=1

an sin(nθ). (25)

The expression of lift L becomes:

L = ρV∞

∫ 1

−1
Γ (y)dy

= ρV∞

∫ π

0
Γ (θ)sinθdθ

= ρV∞

∞

∑
n=1

an

∫ π

0
sinθ sin(nθ)dθ

= ρV∞

(
a1

∫ π

0
sin2 θdθ +

∞

∑
n=2

an

∫ π

0
sinθ sin(nθ)dθ

)
.

Because
∫ π

0 sin(mθ)sin(nθ)dθ = 0 if n 6= m, we have:

L = ρV∞a1

∫ π

0
sin2 θdθ =

π

2
a1ρV∞. (26)

In y0 ∈ [−1,1] the induced velocity is:

w(y0) =
1

4π

∫ 1

−1

dΓ (y)

dy

1

y− yo

dy, (27)

or, equivalently:
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w(θ0) =− 1

4π

∫ π

0

dΓ (θ)

dθ

1

cosθ − cosθo

dθ

=− 1

4π

∞

∑
n=1

nan

∫ π

0

cos(nθ)

cosθ − cosθo

dθ .
(28)

Due to the Glauert formula we obtain:

w(θ0) =− 1

4π

∞

∑
n=1

nan

(
π

sin(nθ0)

sinθ0

)

=−1

4

∞

∑
n=1

nan

sin(nθ0)

sinθ0
,

(29)

and, finally,

Di =−ρ

4

∫ π

0

(
∞

∑
n=1

nan

sin(nθ)

sinθ

)(
∞

∑
n=1

an sin(nθ)

)
− sinθdθ

=
ρ

4
na2

n

∫ π

0
sin2(nθ)dθ =

ρπ

8
(a2

1 +2a2
2 + . . .+na2

n + . . .)

(30)

Because all the terms are positive and, in order to have a non-negative lift, we

need a1 6= 0, the induced drag is minimum when a2
n = 0, ∀n > 1. Putting a1 = Γ0

the solution of the isoperimetric problem (4)-(6) is:

Γ (θ) = Γ0 sinθ , (31)

or, in terms of y:

Γ (y) = Γ0

√
1− y2, (32)

and the induced drag Di becomes:

Di =
ρπ

8
Γ0. (33)

Remarks 1 When: Γ (θ) = Γ0 sinθ , then:

• the induced velocity w is constant, because:

w(θ) =− 1

4π

∫ π

0

dΓ (α)

dα

1

cosα− cosθ
dα =−Γ0

4
= costant; (34)

• taking equations (26) and (33) into account, when Γ is elliptical, it is trivial to

obtain the well known result in Aerodynamics:

Di =
L2

2πρV∞

. (35)
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5.2 Ritz Method

In this subsection, we obtain an approximate solution of the isoperimetric problem

(4)-(6) by means of the Ritz method. The unknown circulation shape functions are

of the following type

Γn :=
n

∑
i=0

biWi(x), n ∈ N,

where, for example,

Wi(x) = bi(1− x2)i+1 and Wi(x) = bi(1− x2)xi,

in order to satisfy the kinematic boundary conditions Γn(−1) = Γn(1) = 0.

The two classes of polynomials are indicated as TIPO1 and TIPO2 respectively;

both of them respect the boundary conditions Wi(1) = Wi(−1) = 0.

We remark that, even though polynomials TIPO1 are symmetric and TIPO2 are

not, we do not need to assume any condition of symmetry from physics, because

symmetry is intrinsic in the mathematical solution of the isoperimetric problem; in

fact, for any Γn of TIPO2, the optimum solutions give bi = 0, for all i odd.

Now we describe a generic iteration for Γn :

5.2.1 Algorithm

• We write the induced drag Di as a function of Γn, by solving the double in-

tegral according to the principal value of Cauchy; moreover, because Γn =

∑
n
i=0 biWi(x), n ∈N, at any step we know Di( fn−2), relevant to the previous one.

We obtain:

Di(Γn) = Di(b0, . . . ,bn) = Di( fn−2)+
ρ

4π

n

∑
i=n−1

n

∑
s=0

bibs

∫ 1

−1

∫ 1

−1

Wi(y)W
′
s (x)

y− x
dxdy+

+
ρ

4π

n−2

∑
i=0

n

∑
s=n−1

bibs

∫ 1

−1

∫ 1

−1

Wi(y)W
′
s (x)

y− x
dxdy.

Because the functional Di is quadratic with respect to Γn and Γ ′n , the result of the

integration is a second order homogeneous polynomial in bi, i = 0, . . . ,n.

• The lift is written as a function of Γn as well, and we have:

L(Γn) = L(b0, . . . ,bn) = ρV∞

n

∑
i=0

bi

∫ 1

−1
Wi(y)dy.

The function L is linear in the unknowns bi. The isoperimetric problem (4)-(6)

becomes:

(P) min Di(b0, . . . ,bn), s.t. L(b0, . . . ,bn)= c, (b0, . . . ,bn)∈R
n+1. (36)
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• The functional induced drag is a second order homogeneous polynomial in bi,

and the condition that the derivatives of the Lagrangian with respect to bi must

be zero is equivalent to solve the following linear system:

Ax = b

where:

- the matrix A of coefficients is the Hessian of the Lagrangian

J(b0, . . . , bn,λ ) = Di(b0, . . . ,bn)−λL(b0, . . . ,bn);

- b = [0, . . . ,0,−c];
- Because of the convexity of the functional induced drag it results that x =

[b0, . . . ,bn,λ ] is a point of minimum of the Lagrangian J.

• Once the n+1-th (b0, . . . ,bn) we calculate Di(b0, . . . ,bn) and, hence, Di as a func-

tion of c:

Di(b0, . . . ,bn) = αnc2. (37)

• Calculation of the Oswald coefficient ”e” , that is :

e :=
Di

Di(b0, . . . ,bn)
, (38)

where Di is the induced drag relevant to the elliptic circulation defined in (35):

The algorithm described before has been implemented by using the commercial

code MapleV, with a symbolic computation.

As an example, we apply the iterative procedure with the following conditions:

• ρ = 1;

• V∞ = 1;

• c = 100;

• elliptical circulation Γ = 63.6942675
√

1− x2;

• Di corresponding to c = 100 is worth: 1592.356688;

• let us indicate Γ max the maximum value of Γ inside [−1,1].

5.2.2 Numerical results

In this section, some numerical results are reported in order to show that the method

is convergent when “n”becomes larger and larger.

Example 1

n = 8

Γ8 is shown, for TIPO1 polynomials, in Figure 4:
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Fig. 4: Circulation distribution Γ8

Di(Γ8) = 1612.261147

e = 0.9876543207

The error when Γ is approximated with Γ8(x) is shown in figure 5.

Example 2

n = 44

Γ44 is shown in Figure 6:

Di(Γ44) = 1593.143425

e = 0.9995061731

Figure 7 shows, for any x ∈ [−1,1] , the error when Γ is approximated with Γ44(x).

Di(Γ44) = 1594.252351, e = 0.9988109392

In the case of TIPO2 polynomials the results are very similar and they are not re-

ported here for brevity sake. The results show that the iterative procedure converges

to the exact solution and, also, that the solutions of TIPO1 and TIPO2 polynomials

(with the same degree) give the same induced drag. As an example, Table 1 shows

the TIPO1 main data relevant to some iterations.
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Fig. 5: Function y(x) =
|Γ8(x)−Γ (x)|

Γ max
.

Fig. 6: Circulation distribution Γ44
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Fig. 7: Function y(x) =
|Γ44(x)−Γ (x)|

Γ max
.

Table 1: Numerical iterations relevant to TIPO1 polynomials.

Degree Di

Di−Di

Di

e

4 1658.704883 0.04166666646 0.9600000002

12 1601.835002 0.005952381192 0.9940828400

20 1595.975680 0.002272726976 0.9977324266

28 1594.252351 0.001190476364 0.9988109392

36 1593.520691 0.0007309938840 0.9992695401

44 1593.020170 0.0004166666960 0.9995835068

52 1592.923767 0.0003561256120 0.9996440012

64 1592.733666 0.0002367421840 0.9997633138
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6 Appendix 1. Existence and convexity of the Induced Drag

functional

Before proving the existence of the functional Induced Drag, we recall some useful

definitions.

Definition 1 A function f : [a,b] → R is absolutely continuous in [a,b], and we

write f ∈ AC[a,b] iff, for any ε > 0 it exists δ > 0 such that for any finite collections

of disjoint intervals ]αi,βi[ , i = 1, . . . ,k, included in [a,b] e with
k

∑
i=1

(βi−αi) < δ , it

results
k

∑
i=1

| f (βi)− f (αi)|< ε .

Definition 2 Let (Y,F ,µ) be a measure space and 1≤ p < ∞. We put

L
p(Y ) = { f : Y → R : f is measurable and

∫

Y
| f |pdµ < ∞}.

If q is conjugate exponent of p (i.e.
1

p
+

1

q
= 1, and, by stipulation, the conjugate

exponent of 1 is ∞ and viceversa), we have || f ||L p(Y ) =

[∫

Y
| f |pdµ

] 1
p

.

Hölder Inequality. If f ∈L p(Y ) e g ∈L q(Y ), then f g ∈L 1(Y ) and || f g||1 ≤
|| f ||p||g||q.

Proposition 1 Let f ∈ AC]−1,1[ be such that:

f (1) = f (−1) = 0, f ′ ∈L
1+ε ]−1,1[,with ε > 0.

Then ∫ 1

−1

∫ 1

−1

f ′(x) f (y)

y− x
dxdy

is convergent as a Cauchy improper integral.

Proof. Let us set:

S1(h) := {(x,y) ∈ R
2 : x+h < y < 1, −1 < x < 1−h} ,

S2(h) := {(x,y) ∈ R
2 : −1 < y < x−h, −1+h < x < 1} ,

GSi(h)( f ) :=
∫ ∫

Si(h)

f ′(x) f (y)

y− x
dxdy, i = 1,2.

Let us integrate by parts both GS1(h) and GS2(h):
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GS1(h)( f ) =
∫ 1−h

−1

∫ 1

x+h

f ′(x) f (y)

y− x
dxdy =

=
∫ 1−h

−1

[[
ln(y− x) f ′(x) f (y)

]1
x+h
−
∫ 1

x+h
ln(y− x) f ′(x) f ′(y)dy

]
dx =

=−
∫ 1−h

−1

[
ln(h) f ′(x) f (x+h)−

∫ 1

x+h
ln(y− x) f ′(x) f ′(y)dy

]
dx,

GS2(h)( f ) =
∫ 1

−1+h

∫ x−h

−1

f ′(x) f (y)

y− x
dxdy =

=
∫ 1

−1+h

[
[ln(x− y) f ′(x) f (y)]x−h

−1 −
∫ x−h

−1
ln(x− y) f ′(x) f ′(y)dy

]
dx =

=
∫ 1

−1+h

[
ln(h) f ′(x) f (x−h)−

∫ x−h

−1
ln(x− y) f ′(x) f ′(y)dy

]
dx.

It results that

∫ 1

−1

∫ 1

−1

f ′(x) f (y)

y− x
dxdy + lim

h→0
GS1(h)( f )+GS1(h)( f ) =

= lim
h→0

−
∫ 1

−1+h

∫ x−h

−1
ln(x− y) f ′(x) f ′(y)dydx+

+ ln(h)

(∫ 1

−1+h
f ′(x) f (x−h)dx−

∫ 1−h

−1
f ′(x) f (x+h)dx

)
+

−
∫ 1−h

−1

∫ 1

x+h
ln(y− x) f ′(x) f ′(y)dydx =−

∫ 1

−1

∫ 1

−1
ln |y− x| f ′(x) f ′(y)dxdy.

The thesis is obtained by observing that:

∣∣∣∣
∫ 1

−1

∫ 1

−1
ln |y− x| f ′(x) f ′(y)dxdy

∣∣∣∣≤
∫ 1

−1
| f ′(x)|

∫ 1

−1
| ln |y− x| || f ′(y)|dydx, (39)

and that from the Hölder disequality we have:

∫ 1

−1
|ln |y− x||

∣∣ f ′(y)
∣∣dy≤

∣∣∣∣ f ′
∣∣∣∣

L 1+ε (−1,1)
||ln |y− x|||

L
1+ε

ε (−1,1)
.

After having observed that, for suitable constants δ > 0 and C ∈ R , it results:
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ln |y− x| ≤ C

|y− x|δ ∀|y− x| ∈]0,2],

we obtain: || ln |y− x|||
L

ε+1
ε (−1,1)

< η , η ∈ R. From (39) we have, finally:

∣∣∣∣
∫ 1

−1

∫ 1

−1
ln |y− x| f ′(x) f (y)dxdy

∣∣∣∣≤ η
∣∣∣∣ f ′
∣∣∣∣

L 1+ε (−1,1)
|| f ′||L 1(−1,1) < ∞ (40)

as required. ⊓⊔

Before proving the convexity of the functional, we recall the following:

Definition 3 Let be K a vector space. A function f : K → R is called convex, if and

only if

(1−α) f (x)+α f (y)≥ f ((1−α)x+αy)), ∀x,y ∈ K, ∀α ∈ [0,1]. (41)

We say that function f is strictly convex, if and only if the inequality (41) holds

strictly.

Equivalently,

Theorem 2 Let K be a vector space and f : K → R be a function whatever. f is

strictly convex on K, if and only if ∀x,y ∈ K the quotient ratio

t → Ry(t) =
f (x+ ty)− f (x)

t
, t ∈ R+\{0}

is an increasing function.

Proposition 2 Let be:

X = { f ∈ AC([−1,1]), f ′ ∈L
1+ε , f (−1) = f (1) = 0}

and let us define the functional

J : X → R,

putting

J( f ) =
∫ 1

−1

∫ 1

−1

f ′(x) f (y)

y− x
dxdy,

where the double integral on the right-hand side exists in the Cauchy principal. So,

we have:

(a) the functional J is not strictly convex on X ;

(b) the functional J ı̀s strictly convex on X + := { f ∈X : J( f ) > 0}.

Proof. (a) We calculate the difference quotient of J for f ,g ∈X whatever:
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Rg(t) =
J( f + tg)− J( f )

t

=
1

t

(∫ 1

−1

∫ 1

−1

( f ′(x)+ tg′(x))( f (y)+ tg(y))

y− x
dxdy−

∫ 1

−1

∫ 1

−1

f ′(x) f (y)

y− x
dxdy

)

=
∫ 1

−1

∫ 1

−1

f ′(x)g(y)+g′(x) f (y)

y− x
dxdy+ t

(∫ 1

−1

∫ 1

−1

g′(x)g(y)

y− x
dxdy

)
.

Now we calculate the derivative of the difference quotient:

R′g(t) =
∫ 1

−1

∫ 1

−1

g′(x)g(y)

y− x
dxdy. (42)

After Theorem 2 the functional J is not, in general, strictly convex; in fact there

exist functions g for which the difference quotient Rg(t) is decreasing, as for

example g =−2+ 3
4
(1− x2)2 because, ∀ f ∈X , we get: R′g(t) < 0.

(b) The strict convexity comes from theorem 2, if we adjoin, as an hypothesis for

the set X , that the condition J( f ) > 0 holds. ⊓⊔

The consequence of Proposition 2 is that, if the minimum for f exists, then it is

unique.

7 Appendix 2. Image Space Analysis

The study of the properties of the image of a real-valued function is an old one.

However, in most cases the properties of the image have not been the purpose of

the study and their investigation has occurred as an auxiliary step towards other

achievements [2].

Traces of the idea of studying the images of functions involved in a constrained

extremum problem go back to the work of C. Carathéodory. In the 1950s, R. Bel-

man, with his celebrated maximum principle, proposed – for the first time in the

field of Optimization – to replace the given unknown by a new one which runs in

the image; however, also here the image is not the main purpose. Only in the late

1960s and 1970s some Authors, independently from each other, brought explicitly

such a study into the field of Optimization (see Sect. 3.2 of [2]).

The approach consists in introducing the space, call it Image Space (for short,

IS), where the images of functions of the given extremum problem run. Then a new

problem is defined in the IS, which is equivalent to the given one. In a certain sense,

such an approach has some analogies with what happens in the Theory of Measure

when one goes from Mengoli-Cauchy-Riemann measure to the Lebesgue one.

The analysis in the IS must be viewed as a preliminary and auxiliary step – and

not as a concurrent of the analysis in the given space – for studying a constrained
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extremum problem. When a statement has been achieved in the IS, then, of course,

we have to write the corresponding (equivalent) statement in terms of the given

space; the latter is, in general, difficult to be conceived without having at disposal

the former. If this aspect is understood, then the IS Analysis may be highly fruitful.

In fact, in the IS we may have a sort of “regularization”: the conic extension (see

Definition 5) of the image set (see Definition 4) of the given extremum problem

may be convex or continuous or smooth when the given extremum problem does

not enjoy the same property, so that convex or continuous or smooth analysis can

be developed in the IS, but not in the given space. If the image set of an extremum

problem is finite dimensional (as happens to (4)-(6)), then it can be analysed, in

the IS, by means of the some mathematical concepts which are used for the finite

dimensional case, even if the domain of the given problem (χ in (4)-(6)) is infinite

dimensional. If the image set is infinite dimensional, by means of a suitable use of

the selection theory of point-to-set maps, it is possible to postpone such an infinite

dimensionality to the introduction of the IS, which, therefore, can be held finite

dimensional. In this section, we understand that suitable assumptions have been

made in order to let the extrema be achieved.

The IS approach arises naturally in as much as an optimality condition for an

extremum problem is achieved through the impossibility of a system. By para-

phrasing the very definition of global minimum point for (4)-(6), we can say that

Γ ∈ R := {Γ ∈ χ : ρV∞

∫
T Γ (x)dx− c = 0} is a global minimum point, iff the sys-

tem (in the unknown Γ ):

fΓ (Γ ) := f (Γ )− f (Γ ) > 0, g(Γ ) = 0, Γ ∈ χ (43)

is impossible. This system leads immediately to introduce the image set of (4)-(6).

Definition 4 The set

KΓ := {(u,v) ∈ R
2 : u = fΓ (Γ ), v = g(Γ ), Γ ∈ χ}

is called the image of (4)-(6).

By introducing the set:

H := {(u,v) ∈ R
2 : u > 0, v = 0},

which reflects the conditions of (43), it is trivial to state the following:

Proposition 3 Γ ∈ R is a global minimum point of (4)-(6), if and only if:

H ∩KΓ = /0. (44)

In passing, it is worth noting that minimization is the way of reading (in the

sense of Galilei) the laws of nature (or human behaviour), while the mathematical

core of an extremum problem consists in proving the impossibility of a system or

the disjunction of two sets, as (43) and (44) show.
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As announced, we can now introduce the image problem:

max(u), s.t. (u,v) ∈KΓ , v = 0, (45)

and prove the following:

Proposition 4 Problems (4)-(6) and (45) are equivalent, in the sense that (û, v̂) is

a global maximum point of (45), if and only if it is the image, through the map

( fΓ (Γ ),g(Γ )), of a global minimum point, say Γ̂ , of (4)-(6), and we have:

f (Γ )− û = f (Γ̂ ). (46)

Proof. Only if. (û, v̂) ∈KΓ ∩ (R×O)⇒∃Γ̂ ∈ χ , such that:

u = f (Γ )− f (Γ ),v = g(Γ ) = 0.

Taking into account these relations (the first of which proves the last claim), the

assumption:

û > u, ∀(u,v) ∈KΓ ∩ (R×O),

implies f (Γ )− f (Γ̂ ) > f (Γ )− f (Γ ) or f (Γ̂ ) 6 f (Γ ),∀Γ ∈ χ .

If. Set û := f (Γ )− f (Γ̂ ), v̂ := g(Γ̂ ), so that:

(û, v̂) ∈KΓ ∩ (R×O).

From the assumption we draw f (Γ̂ ) 6 f (Γ ),∀Γ ∈ R; by setting:

u := f (Γ )− f (Γ ) and v := g(Γ ), we have f (Γ )− f (Γ̂ ) > f (Γ )− f (Γ ),∀Γ ∈ R,

and hence û > u,∀(u,v) ∈KΓ ∩ (R×O). ⊓⊔

Note that, while (4)-(6)is infinite dimensional (its unknown runs in a Banach

space), (45) is finite dimensional (its unknown runs in the Euclidean plane).

The theory of constrained extrema is full of proposals for changing the data of

the given problem, without losing the extremum and extremum points, and with

the purpose of adding a desired property to the problem. Such proposals have been

made essentially with reference to the given space. The IS approach suggests a new

proposal, based on the following definition. cl denotes closure, and the difference is

in the vector sense.

Definition 5 Let Z ⊂ R
2 denote a generic set of the IS associated with (4). E will

denote the map which sends Z into Z −clH ⊂R
2; it is called conic extension of

Z .

Of course Z ⊆ E (Z ). In the sequel, we will consider only the conic extension

of the image set, or E (KΓ ). The above definition has been given for the particular

problem (4)-(6); obviously, it can be given for a general extremum problem (see [2],

Def. 3.2).
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Proposition 5 (44) holds, if and only if:

H ∩E (KΓ ) = /0 (47)

Proof. If. It is an obvious consequence of the inclusion KΓ ⊆ E (KΓ ).
Only if. Ab absurdo, suppose that ∃z1 ∈KΓ ,∃z2 ∈ clH (so that z1−z2 ∈ E (KΓ )),
and that z1− z2 ∈H . Then, being H the positive u-semiaxis (of the IS), we have:

z1 = (z1− z2)+ z2 ∈H + clH = H ,

and hence (44) is contradicted. ⊓⊔

The above proposition shows that the optimality condition (44) still holds, if the

image set (and therefore the data of (4)-(6)) are modified according to Definition

5. This has an obvious consequence on the image problem (45), as shown by the

following:

Proposition 6 Let Condition 1 hold.

(i) Problems (45) and

max(u), s.t. (u,v) ∈ E (KΓ ), v = 0, (48)

are equivalent in the sense of having the same maximum and maximum points.

(ii) Problem (48) has maximum.

Proof.

(i) Straightforward consequence of Propositions 3-5.

(ii) Because of Condition 1, − fΓ (Γ ) (see (43)) is coercive. Because of Proposition

2(b), fΓ (Γ ) is strictly concave. g(Γ ) is linear. Therefore, in the IS, the projection

of E (KΓ ) – as well as of KΓ – on the u-semiaxis is a closed (and bounded)

segment. Hence, the assumptions of Theorem 3.2.3 of [2] are fulfilled. Such a

theorem can thus applied to achieve the thesis. ⊓⊔

As announced in Sect. 3 (just before Condition 1), it is possible to prove the

existence of the minimum in (4)-(6) through IS: this is done by the above Proposition

6.

In section 7, we have shown that a feasible Γ ∈ R is a (global) minimum point

of (4)-(6), iff (44) holds. In the general case (but also in the present one), to prove

(44) is a difficult task. Therefore, a way of overcoming such a drawback consists in

trying to show that H and KΓ lie in two disjoint sets. The separation theory, whose

“root”is the Hahn–Banach Linear Extension Theorem (but it was already present,

even if in an implicit form, in Euclid!), is of great help.

Let us consider the function w : R
2×R

2 → R, defined by:

w(u,v;θ ,λ ) = θu+λv, θ ,λ ∈ R (49)
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For each pair (θ ,λ ) 6= 0, w(u,v;θ ,λ ) = 0 indetifies obviously a line, say H0,

through the origin, of the IS (i.e., R
2), where (u,v) runs; the IS is then split into two

disjoint halfplanes:

H−(θ ,λ ,k) := {(u,v) ∈ R
2 : θu+λv 6 k}, θ ,λ ,k ∈ R,

H+(θ ,λ ,k) := {(u,v) ∈ R
2 : θu+λv > k}, θ ,λ ,k ∈ R.

Of course, we have H ⊂ H+(θ ,λ ,0), iff θ 6= 0; thus, under this assumption, in

order to prove (44) (and, hence, the optimality of Γ ) it is sufficient to show that

∃θ ,λ ∈ R, with θ 6= 0, such that:

KΓ ⊆ H−(θ ,λ ,0), (50)

or, equivalently (Proposition 5),

E (KΓ )⊆ H−(θ ,λ ,0). (51)

In the general case, (50) – or (51) – is not necessary, as trivial examples show.

However, it will be shown that, in the present case (4)-(6), the inclusion (50) – or

(51) – is also necessary.

Let ∂S and cardS denote the boundary and the cardinality of the set S, respec-

tively; the difference between sets is denoted by “\”; H0(θ ,λ ,k) := {(u,v) ∈ R
2 :

θu+λv = k} denotes a line (iff (θ ,λ ) 6= 0) of the IS.

Proposition 7 Let Γ ∈ χ . E (KΓ ) enjoys the following properties:

(i) E (KΓ ) is strictly convex;

(ii) ∂E (KΓ )⊂KΓ ;

(iii) ∀(u,v) ∈ ∂E (KΓ ), E (KΓ ) admits a support, or ∃(θ ,λ ) ∈R
2, with θ 6= 0, and

∃k ∈ R, such that:

E (KΓ )⊂ H−(θ ,λ ,k), S := E (KΓ )∩H0(θ ,λ ,k) 6= /0, cardS = 1; (52)

the same happens to E (KΓ ), or:

E (KΓ )⊂ H−(θ ,λ ,k), E (KΓ )∩H0(θ ,λ ,k) = S; (53)

(iv)E (KΓ ) is regular, in the sense that, ∀(u,v) ∈ ∂E (KΓ ), no supporting line at

(u,v) to E (KΓ ) (boundary of the Bouligand tangent cone to E (KΓ ), is parallel

to the u–axis of the IS.

(v) at v > 0, a supporting line H0(θ ,λ ,k) sub (iii) has θ > 0 and λ > 0.

Proof. (i) Because of Proposition 2, f (Γ ) is strictly convex, so that fΓ (Γ ) (see

(43)) is strictly concave. Hence, taking into account that g(Γ ) is linear in Γ and

that E (KΓ ) is the hypograph of KΓ (when KΓ is viewed as the point–to–set maps

v ⇉ u), E (KΓ ) turns out to be strictly convex. (ii) It is a consequence of (i) and of

the fact that E (KΓ ) is the hypograph of KΓ . (iii) The first two conditions of (52)
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come from the convexity of E (KΓ ) and, as it concerns the existence of θ 6= 0, from

(iv); the last part of (52) is a consequence of the strict convexity of E (KΓ ). Passing

to (53), it is enough to observe that E (KΓ ) is the hypograph (in the sense specificed

sub (i)) of KΓ . (iv) Because of the assumption 1 (see the end of introduction to

Sect. 3), ∀v > 0,∃(u,v) ∈ KΓ (more general condition than the so-called Slater

constraint qualification). Therefore, the existence of a supporting line H0(θ ,λ ,k),
parallel to the u–axis, account taken of (i), would require the boundedness of KΓ
with respect to v and contradict the assumption. (v) It is a consequence of (iv) and

of the assumption 1. ⊓⊔

We are now ready to show that (50) and (51) are also sufficient.

Proposition 8 Γ ∈R is a (global) minimum point of (4)-(6), if and only if ∃(θ ,λ )> 0,

such that:

KΓ ⊂ H−(θ ,λ ,0) or equivalently E (KΓ )⊂ H−(θ ,λ ,0). (54)

Proof. The sufficiency is an obvious consequence of what has been noted about

(50). With regard to the necessity, the assumption that Γ be a (global) minimum

point of (4)-(6) implies (44) or (47). Because of Proposition 7(i), E (KΓ ) and H

are separable; because of Proposition 7(iv), the separation line is of type H0(θ ,λ ,0)
and does not contain the u–axis; because of Proposition 7(v), θ and λ are positive.

Thus, the latter of (54) follows; the former is a consequence of the inclusion

KΓ ⊂ E (KΓ ). ⊓⊔

Since it is not easy to verify (54), it comes spontaneous to try to express the

inclusion (54) through some extremum operators. In general, we cannot have equiv-

alence; here it happens, due to Proposition 7.

Proposition 9 Let Γ ∈ R.

(i) The equality

min
θ ,λ>0

max
(u,v)∈KΓ

(θu+λv) = 0 or min
θ ,λ>0

max
(u,v)∈E (KΓ )

(θu+λv) = 0 (55)

are equivalent, respectively, to (54).

(ii) Γ is a global minimum point of (4)-(6), if and only if (55) hold.

Proof. (i) Taking into account the definition of E (KΓ ), it is enough to prove the

equivalence between the second of (54) and the second of (55). Let the second of

(54) hold. Because of Proposition 7(iii)–(v), ∃θ ,λ > 0 and ∃(u,v) ∈ R
2, such that:

θu+λv 6 0, ∀(u,v) ∈ E (KΓ ), θu+λv = 0⇔ (u,v) = (u,v).

Then, the maximum in the second of (55) is a non–negative function of (θ ,λ ),
which takes the value zero. Hence, the second of (55) follows. The reverse implica-

tion is obvious. (ii) Straightforward consequence of (i). ⊓⊔
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The left-hand side of the first of (55) is called image dual problem. In looking at

the problems in (55), a question comes spontaneous: what kind of problem will we

find, if the operators will be exchanged each other? Surprisingly, we do not find any

problem, but just (45); this is expressed by the following:

Theorem 3 (Image Duality) Let Γ ∈ R. We have:

min
θ ,λ>0

max
(u,v)∈KΓ

(θu+λv) = max
(u,v)∈E (KΓ )

min
θ ,λ>0

(θu+λv) = max
(u,v)∈KΓ

v=0

(u), (56)

or:

min
θ ,λ>0

max
(u,v)∈E (KΓ )

(θu+λv) = max
(u,v)∈E (KΓ )

min
θ ,λ>0

(θu+λv) = max
(u,v)∈E (KΓ )

v=0

(u). (57)

Proof. If v 6= 0, then the minimum in the second side of (56) may not exist and, in

its place, the infimum – which is a function of (u,v) – is less than the value it takes

at v = 0. Therefore, it is not restrictive to add the constraint v = 0 to the minimum

in the second side of (56). Hence, taking into account that, due to the homogeneity

of θu + λv, it is not restrictive to assume θ = 1, so that the minimization becomes

obvious, the second equality of (56) follows. Between the first and second sides of

(56) the inequality > holds as a special case of a well known and classic inequality.

The equality is a consequence of Proposition 7. A quite similar reasoning proves

(57). ⊓⊔

Once the IS Analysis related to a given problem has been accomplished and

some (image) statements have been proved in the IS, then such statements must be

transferred to the given space, finding what we can call counterimage statements.

To find image statements is, in general, much easier than to search for them directly

in the given space; sometimes, in the given space it is difficult even to conceive a

statement of this type. This is the main role of the IS Analysis.

Now, let us write the counterimage statements of Proposition 8 and Theorem 3.

To this end, consider the function:

L (Γ ;θ ,λ ) := θ f (Γ )−λg(Γ ) =
∫

T

∫

T
[θ

ρ

4π

Γ ′(x)Γ (y)

y− x
−λρV∞

Γ (x)

2
]dxdy, (58)

which is called Lagrangian function associated to (4)-(6). It expresses a (linear)

combination of two entities, induced drag and the (difference between the) total

lift (and a given constant, i.e. c). In the format (4)-(6), the former is considered

as an objective and the latter as a constraint. To adopt such a format is subjective.

Therefore, why not to consider the reciprocal problem:

max[c+g(Γ )], subject to f (Γ ) = d, Γ ∈ χ, (59)

where d is a constant? In passing, we recall that the introduction of the reciprocal

problem goes back to the ancient Greeks; under very general conditions (see [2],
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Sect. 5.5), it holds that, for suitable values of the constants c and d, a same Γ solves

both (4)-(6) and (59); this is known as reciprocity principle.

We will see that the theory of duality offers a way for overcoming the embarrass-

ment of being obliged to choose between the formats (4)-(6) and (59).

Proposition 10 Γ ∈ χ is a (global) minimum point of (4)-(6), if and only if

∃(θ ,λ ) > 0, such that:

L (Γ ;θ ,λ ) = L (Γ ;θ ,λ ) 6 L (Γ ;θ ,λ ), ∀Γ ∈ χ,∀θ ,λ > 0. (60)

Proof. The equality in (60) holds, iff Γ ∈ R or iff Γ is feasible for (4)-(6). When

such an eqaulity holds, the inequality in (60) is equivalent to the optimality of Γ ,

due to Proposition 8 (first inclusion). ⊓⊔

Note that, unlike Proposition 8, in Proposition 10 Γ is assumed to merely belong

to χ . A triplet (Γ ,θ ,λ ) fulfilling (60) is called saddle point of L ; the second side

of (60) is the corresponding saddle value.

Theorem 4 (Duality) Let Γ ∈ R. We have:

max
θ ,λ>0

min
Γ∈χ

L (Γ ;θ ,λ ) = min
Γ∈χ

max
θ ,λ>0

L (Γ ;θ ,λ ) = min
Γ∈R

f (Γ ). (61)

Proof. It is enough to use (43), Definition 4 and (58), and replace u and v in (56)

with their expression in terms f ,g,χ , and, finally apply Theorem 3. ⊓⊔

The first side of (61) is called the dual problem of (4)-(6), or of the third side

of (61). The second side on (61) has been obtained from the dual problem, by ex-

changing the order of the extremum operators; as announced above, it equals the

primal problem. Note that the dual problem has nothing to share with the reciprocal

problem, as it is easy to see, by comparing the first side of (61) with (59).

The IS Analysis allows one to achieve several other important informations.

Proposition 7 – and, in particular, its (iii) – suggests the introduction of the fol-

lowing function:

u(ξ ) := max
(u,v)∈KΓ

v=ξ

(u) = max
(u,v)∈E (KΓ )

v=ξ

(u), (62)

the second equality in (62) being due to Proposition 7(i). The function (62) is called

perturbation function associated with (4)-(6). When a problem does not enjoy a

convexity property like (i) of Proposition 7, then the definition of the perturbation

function is more general than (62). The perturbation function gives the value of the

image problem (45) or (48), when the constraint v = 0 is replaced by v = ξ ; since

the image problem is related to (4)-(6) by a relationship of type (46), then u(ξ )
allows one to know the change in the minimum in (4)-(6) consequent to a change

in the right-hand side of (5), where now zero is replaced by ξ . Furthermore, the

(sub)derivative of u(ξ ) gives the (instantaneous) velocity of the minimum of (4)-

(6) with respect to the right-hand side of (5), namely ξ . Inparticular, at ξ = 0, the
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(instantaneous) velocity of the minimum of (4)-(6) with respect to the right-hand

side of (5) is given by λ/θ . This number, which is nothing more than the classic

Lagrangian multiplier, allows one to evaluate the change in the minimum induced

drag consequent to a change in the value at which the total lift is constrained.


